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a b s t r a c t

Previous works have shown that when liquid flows in a pipe whose boundary temperature is below
freezing, a tubular drainage conduit forms surrounded by solidified material that freezes shut under the
appropriate combination of forcing conditions. We conduct laboratory experiments with wax in which
the tube freezes shut below a certain value of flux from a pump. As the flux is gradually decreased to this
value, the total pressure drop across the length of the tube first decreases to a minimum value and then
rises before freezing. Previous theoretical models of a tube driven by a constant pressure drop suggest
that once the pressure minimum is reached, the states for a lower flux should be unstable and the tube
should therefore freeze-up. In our experiments, flux and pressure drop were coupled, and this motivates
us to extend the theory for low Reynolds number flow through a tube with solidification to incorporate
a simple pressure-drop–flux relationship. Our model predicts a steady-state relationship between flux
and pressure drop that has a minimum pressure as the flux is varied. The stability properties of these
steady states depend on the boundary conditions: for a fixed flux, they are all stable, whereas for fixed
pressure drop, only those with a flux larger than that at the pressure drop minimum are stable. For a
mixed pressure–flux condition, the stability threshold of the steady states lies between these two end
members. This provides a possible mechanism for the experimental observations.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Injected liquids that freeze as they flow are common in many
areas of engineering (injection molding, freezing, metallurgy) as
well as in earth and planetary sciences (lava tubes, magma con-
duits, glaciology, and magma fissure flows). In such cases, liquid
flows through a region whose boundary temperature is below the
solidification temperature of the liquid, so that advection of heat by
thewarm liquid acts in tandemwith removal of heat by the bound-
ary. In some cases, the cooling is weak enough that solid may form
at the boundary but leave a centralmelted tubewhere liquid flows.
In other cases the entire body of liquid may freeze so that all flow
ceases. It is useful to know the conditions that are necessary for
such freezing.

In the geophysical literature, the pioneering study of the dy-
namics of melting and solidifying material was for flow up a fis-
sure with variable gap width [1,2], where conditions for melt-back
(widening) or solidification (narrowing) of the gap are calculated
from thermal energy budgets. This was followed by many studies
on the dynamics of either fissure flow or lava dynamics, investi-
gating situations such as the temperature distribution and velocity
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profile in a magma tube, or the driving pressure required to keep
it open (e.g. [3–6]). These studies invariably use simplified, time-
independent geometries for the tubeboundary, and generally, little
analysis has been made of the stability of the flows. A notable ex-
ception is the theoretical study by Lister and Dellar [7], in which
cooling occurs at infinity and therefore no steady-state tube is
possible.

For engineering purposes, numerous studies focus on flow of a
liquid in a container whose walls are below the freezing temper-
ature. Applications include injection molding, the freezing of wa-
ter, the condensation of water vapor in ducts, and metal casting,
among others. For example, experiments with water demonstrate
the focusing of flow into a narrow region along with the forma-
tion of waves of solid on the walls, and in some cases freeze-up
[8–11]. A common feature is that the curve of steady-state pres-
sure drop against flux exhibits sizeable curvature, in many cases
reaching a minimum such that as the flux is gradually decreased,
the pressure drop first decreases, then increases, a result that has
been recovered in theoretical studies [8,12]. If the flow is driven by
imposing a fixed pressure drop, however, the low-flux branch of
this curve, where pressure drop increases with decreasing flux, is
unstable: a perturbationmaking a smaller cross-sectional area pro-
duces more drag, which produces slower flow that leads to colder
liquid and more solidification and finally to total freezing [13,14].
If, instead, the flow is driven by a pump imposing a fixed flux, the
steady state is presumed to be stable, although a complete stability
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Fig. 1. (a) Sketch of the tube surrounded by water from a cold bath. The wax enters from the right and solidifies (grey) at the outer radius of the liquid tube. Upstream liquid
elevation indicates the pressure. (b) A photograph of the apparatus.
analysis has never been done; a smaller cross-sectional areamakes
a faster flow that brings warmer fluid from upstream to the region,
which widens the perturbation. The constant flux upstream con-
dition is widely used in theories that calculate the solid accumu-
lation along flow ducts of assorted material properties and shapes
(e.g., [9,15,16]), but such problems do not exhibit flow freeze-up
from an instability.

Since theory shows that stability depends on the particular
type of flow boundary condition that is imposed at the upstream
end, our attention here is focused upon the stability of solidifying
flow with a more general upstream condition than either constant
flux or constant pressure drop. We tackle the question of stability
with both experiment and theory. First, we describe laboratory
experiments of flow through a pipe whose temperature is held
below the solidus, in which there was a coupling between flux
and pressure drop (Section 2). The flow froze when the steady-
state flux was below a certain value. As the steady-state flux was
decreased in successive experiments to this value, the pressure
drop across the tube reached aminimumand then increased before
freeze-up. This result is not explained by either constant flux or
constant pressure drop models, one of which suggests freeze-up
should never occur, and the other that it should occur as soon as
the pressure minimum is reached. It motivates us to investigate
the stability of low Reynolds number flow through a tube using a
standard idealized theoretical model with the addition of a mixed
pressure–flux upstream driving condition (Section 3). Essentially,
we suppose the tube drains from an upstream reservoir into which
fluid is pumped at a constant rate, so the total amount of fluid in
the reservoir determines the driving pressure and therefore the
flux through the tube. Naturally, this new upstream condition is
intended to be a more realistic model both of conditions in our
experiment as well as in some types of geological melt conduits,
and possibly in some engineering applications. A linear stability
analysis shows that the mixed upstream condition allows the
stable range of the flow to extend to lower values of flux that are
unstable for fixed pressure drop. Thus, it is in qualitative accord
with the laboratory results. In addition, the theory predicts an
oscillatory instability that has not been found in the previous
theoretical studies. Numerical simulations recover both the new
features (Section 3.4). In Section 3.5 we show how the basic model
(without the stability results) can be used straightforwardly to
provide a realistic constraint on the length of geological melt
conduits.

The central implication of these results is that stability is
very sensitive to the upstream conditions that drive the melt
through the tube. This sensitivity may be one mechanism behind
the complex nature of many real solidifying flows in nature and
industry.
Fig. 2. A view looking upstream into the end of the melted tube. The melt fills the
white circular region. The solid possesses circular rings of unknown origin.

2. Experiments with freezing of flow through a tube

Weperformed experimentswith flow through a chilled circular
pipe, whose setup is shown in Fig. 1. The pipe was a standard glass
condenser for a chemistry laboratory with a central glass pipe of
radius r0 = 0.49× 10−3 m surrounded by a sleeve (see Table 1 for
list of symbols). The length of the portion of the pipe surrounded
by this sleeve was L = 0.18 m. The sleeve was flushed with wa-
ter from a constant temperature bath at temperature T0 that was
accurate to ±0.1 °C. The central axis of the condenser was placed
horizontally. Liquid at 20 °C was fed from a constant displacement
metered pump into one end of the condenser. The pump volume
flux rate (henceforth simply called either flux or, in case of a pump
setting, the pumping rate) was calibrated to ±2%. The other end
was the tube exit fitted with a rubber stopper with a flat notch cut
along the top. The liquid exited the glass tube by flowing over this
notch; therefore, the stopper served as a miniature dam so that
the pipe within the condenser remained filled with liquid at all
times with no air traveling upstream from the exit into the tube.
A photograph of the outlet with the stopper removed after a run
shows a circular drainage channel surrounded by solid (Fig. 2). The
ridges in the solid are evidence of uneven solidification whose ori-
gin will not be studied further here. The liquid was 1-Octadecene
(Chevron Phillips C18, kindly donated). In this study, we simply
call this material a wax. The freezing point (solidus temperature)
is Ts = 17.8 °C and the pour point is half a degree higher at 18.3 °C,
indicating that viscosity increases greatly close to the solidus.
The specifications for the liquid state are: a thermal conductivity
of k = 0.114 W/m K, a specific heat of cp = 2.26 × 103 j/kg K
with significant changes in value near freezing temperature [17],
a density of ρ = 785 kg/m3 (these three give a thermal diffusiv-
ity of κ = 0.64 × 10−7 m2 s−1) and kinematic viscosity values of
ν = 8.28 × 10−6 m2 s−1 at 31 °C and ν = 3.8 × 10−6 m2 s−1
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Table 1
List of symbols. For perturbation theory, the basic state is denoted by subscript 0
and the perturbation by subscript 1.

A Upstream reservoir cross-sectional area
An Coefficients of temperature solution
E Radial heat flux in the solid
Gn Coefficients of solution for flux of temperature Anφ

′
n(1)

H Elevation of liquid upstream of the tube
I Radial heat flux in the liquid
L Tube length
LH Latent heat of solidification
P Pressure
1P Pressure drop across entire tube
Pr Prandtl number
Q Volume flux through the tube
Qi Volume flux into upstream reservoir
S Stefan number LH/Cp (Ti − Ts)
T Temperature in the liquid
Te Temperature in the solid
Ti Temperature of fluid at inlet
Tn Dimensionless temperature constant, equal to (Ts − T0)/(Ti − Ts)
T0 Temperature at the outer radius
Ts Temperature of solidification
a Radius of the solid–liquid interface
cp Specific heat
g Acceleration of gravity
k Thermal conductivity
p Dimensionless pressure
1p Dimensionless pressure drop r401P/4µκL2

1pc (Tn) Critical value of pressure drop, below which no steady-state tube is
possible

q Dimensionless flux 2Q/κπL
qi Dimensionless inlet flux 2Qi/κπL
qc(Tn) Critical value of flux, at which 1p = 1pc
r Radial coordinate
r0 Outer tube radius
t Time
u Fluid velocity
u′ Dimensionless fluid velocity
v Velocity in a radial direction
x Coordinate along the axis of the tube
α Dimensionless radius of solid–liquid interface a/r0
ε Amplitude of perturbation
η Dimensionless radial coordinate r/a
θ Dimensionless liquid temperature (T − T0)/(Ti − Ts)
θe Dimensionless temperature of solid (Te − T0)/(Ti − Ts)
κ Thermal diffusivity k/ρcp
λn Eigenvalues of the Graetz problem
µ Dynamic viscosity
ν Kinematic viscosity µ/ρ

ρ Density
τ Pressure–time constant πSr60ρg/8AµκL
φn Eigenvectors of the Graetz problem
χ Dimensionless coordinate along axis x/L

at 37.8 °C. Also, the fluid is very hygroscopic. Since the model de-
veloped in subsequent sections assumes constantmaterial proper-
ties, the fact that viscosity and specific heat changes greatly in the
temperature range of interest means that we will only be able to
compare the experimental results with prediction qualitatively.

For all experiments, the temperature of the liquid pumped into
the condenser was Ti = 20 °C. After starting the liquid pump, the
temperature of the water flushing the sleeve was set to a value
below the solidus so that the wax became solid along the inner
radius of the glass pipe as sketched in Fig. 1, with flow occurring
in a central liquid tube. The liquid tube radius varied in the
flow direction and it was a function of the pumping rate and
sleeve temperature.Wemeasured pressure immediately upstream
of the condenser by splitting the upstream plastic tubing with
a Y connection. The tube on one side of the Y was the input
to the condenser and the other plastic tube was held vertically
next to a centimeter scale to allow a measurement of pressure
of the upstream fluid. Since pressure at the downstream end
was fixed at atmospheric pressure, the elevation of the liquid
surface in the vertical plastic tube above the elevation of the
outletwas proportional to pressure drop across the condenser. This
elevation was read to a precision of 1 mm. The vertical tube is
also a storage region for liquid supplied by the pump. In fact, the
difference between the flux of the pump and the flux out through
the condenser is proportional to the rate of change of height in
the vertical pressure tube. This provides a mixed pressure–flux
upstream boundary condition to the flow through the condenser.
The exact expression for this will be derived in the next section.

The top of the vertical plastic tube was bent over and extended
back to the wax reservoir as an overflow. If upstream pressure
became too great, the overflowing liquid indicated freeze-up of the
tube.

The procedure for these experiments at the beginning of each
day was to start with everything at room temperature so the wax
was completely liquid. A run commenced by turning on the wax
pump to a desired pumping rate and then changing the cold bath
temperature from20 °C to the desired value,whichwe call T0. After
about 15 min, the wax solidified along the inner radius of the tube
and the flow continued through the liquid tube. The elevation in
the vertical tube was measured many times until the value was
steady, and then the final value of pressure (in units of vertical
elevation) was recorded. The flux was also measured then.

Fig. 3 shows the elevation of the liquid surface in the vertical
tube versus the imposed pumping rate, or flux formany runs in ex-
periments with cold bath temperatures set to two different values:
T0 = 5.0 °C and T0 = 10.0 °C. At both temperatures the flowing
liquid froze shut at a pumping rate approximately 5% below the
measurement on the extreme left. To the right of the freezing point,
the inverse relation between the pressure and pumping rate was
unmistakable. For T0 = 10.0 °C, pressure increased slightly with
pumping rate for flux Qi > 0.5 × 10−6 m3 s−1 but for T0 = 5.0 °C,
a pressure increase with flux is not visible. The errors for the pres-
sure measurement and for the calibration of the pumping rate are
approximately the size of the symbols. Since obviously the scat-
ter about a smooth curve for all the data is considerable, we con-
cluded after careful checking that the scatter is not from errors in
measurement. In addition, we conducted long runs to determine
whether the scatter was due to the experiment duration being too
short. For all these experiments (which were conducted for more
than two hours each, and compromise 70% of the data points), such
scatter persisted even though the pressure reading had been con-
stant for the entire second hour. Therefore, we believe the scatter
is a basic feature and the scatter might possibly be due to small
differences in the detailed shape of each frozen solid. In support of
this, Fig. 2 shows irregularities in the solid surface near the exit.

The experiment results are scaled by noting that the experi-
mental flow tube has the following variables: the glass tube radius
r0, tube length L, fluid viscosity µ, fluid density ρ, fluid thermal
diffusivity κ , temperature at the inlet Ti, temperature of the sur-
face of the tube T0, temperature of solidus Ts, and flux of the liq-
uid initially entering upstream Qi. This totals 9 variables with four
units: temperature, force, length and time. Therefore, five dimen-
sionless numbers are needed. Two of them are simply temperature
ratios, but they are best combined and expressed as Tn =

Ts−T0
Ti−Ts

. A
third is aspect ratio of the tube r0/L. A fourth is Prandtl number
Pr = ν/κ , and the last is non-dimensional flux qi =

2
κπLQi. In

addition, we calculate a value of non-dimensional pressure drop

1P =
r40

4µκL2
P , where P is the pressure above atmosphere pressure

at the upstream end.
Using the values for this liquid, the Prandtl number is Pr = 129.

Using the tube length and radius, and using the magnitude for flux
near the minimum of about Qi = 0.3 × 10−6 m3 s−1 from Fig. 3,
we get qi = 15. The magnitude of scaled pressure from the same
figure is found using the hydrostatic equation for pressure P =

ρgH , where acceleration from gravity is g and a typical elevation of
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Fig. 3. Measured pressure versus flow rate with bath temperatures of 5.0 °C (stars)
and 10.0 °C (squares), for experiments discussed in Section 2.

wax in the vertical pressure measuring tube is H = 0.02m. From
this, we get 1P = 1650.

Next, the values of actual critical fluxes for freezing were
checked by four precise experiments at four different values of T0
= 2.5, 5.0, 7.5, and 10.0 °C. For each of these values, an experi-
mental run started with the pump set at a value that allowed
continuous flow. Then, the freezing point was approached by
decreasing the pumping rate by 5% increments and waiting an
hour or more to see if the flow froze. If the flow did not freeze
after that time interval, another decrease wasmade. The aggregate
time for each run was many hours. The lowest values of pumping
rate at the above four temperature settings are 0.42, 0.23, 0.18,
and 0.16 × 10−6 m3 s−1, successively, These correspond to non-
dimensional values of qi = 23.2, 12.7, 9.95, and 8.84 at Tn = 6.95,
5.82, 4.68, and 3.55, respectively. Flow ceased by freezing shut for
incrementally changed pumping rates that were approximately 5%
below these rates.

In experiments using more than the 5% incremental decrease
in pumping rate from one experiment to the next, the critical flux
for freezing was measurably larger. For example, the wax always
froze shut for experiments at T0 = 10 °C with a steady pumping
rate of 0.36 × 10−6 m3 s−1 and then after steady flow developed
were given a 33% decrease in pumping rate to 0.24 × 10−6 m3 s−1

(qi = 19.89 to 13.26). The exact reason why a large incremental
decrease leads to a higher critical flux than the value with a 5%
incremental decrease, which in this case is 0.16 × 10−6 m3 s−1

(qi = 8.84), is unknown. Possibly the upstream pressure cannot
build up rapidly enough to allow sufficient flux through the melt
region when the interior radius shrinks.

After a steady flow developed, the stopper at the exit was
removed to view the inner conduit radius by looking into the end
of the pipe. A light beam from a slide projector at right angle
to the tube and directed at the end of the tube far from the
camera illuminated fluid upstream as the white circle in Fig. 2.
Regrettably,we are skeptical about using such images to attempt to
measure the diameter of the liquid conduit. Clearly, therewas large
distortion of the light as it passed to the camera across the curved
liquid/air surface. Also, each light beam reaching the camera from
the inside of the liquid tube was bent by the axial temperature
distribution within the liquid tube with the axial equivalent of
the mirage effect. Therefore, no optical measurements of the tube
radius as a function of flow rate and sleeve temperature were
attempted.

If the flux and the bath temperature were slightly above the
values that gave freezing, the flow was easily made to freeze
even with very small disturbances. For example, with a sleeve
temperature of 2.5 °C, and pumping rate of 0.42 × 10−6 mm3 s−1,
when the pump was stopped for five seconds, the flow ceased and
never started again. Conversely, with the same initial conditions
the flow resumed most of the time if the pump was stopped for
three seconds, and it always resumed if the pump was stopped for
only one second.We also found that a piece of very fine copperwire
inserted into the liquid hole readily nucleated a freezing event.

3. Flow through a tube: theory

3.1. Fundamental equations

We begin the analysis by reviewing a standard theoretical
model for a melt conduit of flow at low Reynolds number into a
long cold pipe (e.g. [8]). The pipe has a fixed length L in the x-
direction and it has a perfectly circular cross-section with constant
radius r0 (Fig. 4). Liquid enters the pipe at a uniform initial hot
temperature Ti and it flows with laminar flow. The boundary of
the pipe is maintained at a constant temperature T0 that is colder
than the solidification temperature Ts. The temperature varies
continuously from T = T (0, x, t) > T s in the liquid at the center
of the tube, to T0 at r0. Solid material forms a tube of radius a (x, t)
at the isotherm T = Ts.

A number of assumptions are made to make the model
analytically tractable. A full list can be found in [8], but we
mention those that will be most important. First, the basic flow
is made as simple as possible by assuming that there are constant
material properties, a simple cutoff solidification temperature, and
no buoyancy force. Second, the Reynolds number is small enough
for there to be no turbulence and no inertia in the momentum
equation. Third, the length L is assumed to be large enough
compared to r0 that changes in the along-tube direction x are slow.
Finally, the Stefan number is assumed to be large, so that the
solidification process and corresponding motion of the crust are
much slower than the thermal, advective, or viscous timescales.
Therefore time derivatives are only retained in the equation for the
radius, andwhile other fluid variables are time dependent, they are
a b

Fig. 4. (a) Cross-section through the centerline of the melt tube. (b) Cross-section tube across the direction of flow.
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only quasi-steadily so via their dependence on the radius. We now
proceed to introduce the basic equations.

The velocity in the downstream direction is given by the well-
known equation for flow at low Reynolds number (e.g. [18]), ∂P

∂x =

µ 1
r

∂
∂r


r ∂u

∂r


, where ∂P/∂x is the pressure gradient in the axial

direction, u is the velocity in the axial direction, µ is the fluid
viscosity and r is the radial coordinate. The radial velocity v can
be found from the condition of non-divergence, and is non-zero
because the radius of the tube changes in the flow direction. The
solution for u with the boundary condition u = 0 at r = a(x, t)

is Poiseuille flow u = −
∂P
∂x

(a2−r2)
4µ . Integrating over the area

determines the flux Q whose relation to the pressure gradient is

∂P
∂x

= −
8µQ
πa4

, (3.1)

so the velocity can also be written as

u =
2Q
πa2


1 − (r/a)2


. (3.2)

In the solid, the temperature field Te satisfies a diffusion
equation when the x derivatives and time derivatives are
neglected:

1
r

∂

∂r


r
∂Te
∂r


= 0, (3.3)

with the boundary conditions Te|r=r0 = T0, Te|r=a = Ts. This can
be solved to give

Te =
T0 − TS
ln r0

a

ln
r
a

+ TS . (3.4)

In the liquid, the temperature field is determined by a balance
between advection and diffusion when time derivatives are
neglected:

u
∂T
∂x

+ v
∂T
∂r

= κ
1
r

∂

∂r


r
∂T
∂r


, (3.5)

with boundary conditions T |r=a = TS, T |x=0 = Ti, ∂T
∂r


r=0 = 0.

It is more convenient to solve this by defining a new variable η =

r/a, which scales the radial coordinate by the radius of the tube,
so that streamlines of the flow are lines of constant η. Under this
transformation equation (3.5) becomes

2Q
κπa2

(1 − η2)
∂T
∂x

=
1
a2

1
η

∂

∂η


η
∂T
∂η


(3.6)

with boundary conditions T |η=1 = Ts, ∂T
∂η


η=0

= 0, T |x=0 = Ti.

The final equation is for the radius. The time-dependent
equation for the radius is a standard Stefan equation (e.g. [18])

LH
cp

∂a
∂t

= κ


∂Te
∂r


r=a

−
∂T
∂r


r=a


, (3.7)

where κ is thermal diffusivity of both the liquid and the solid,
which are assumed here to be equal in magnitude, LH is the latent
heat of solidification, and cp is the heat capacity of the liquid. The
rate of change of the radius of the tube is proportional to the
difference in heat flux at the boundary of the tube, which, by the
slowly-varying-in-x assumption, is the flux in the radial direction
only.
3.2. Steady-state solutions

We first consider the solution for the steady state of the model,
given by the steady components of (3.1), (3.3), (3.6) and (3.7)
with the corresponding boundary conditions. The equations are
non-dimensionalized with x = Lχ, a = r0α, T−Ts

Ti−Ts
= θ, Te−Ts

Ti−Ts

= θe,Q =
κLπ
2 q, P =

4µκL2

r40
p, and u =

κL
r20
u′. Pressure is non-

dimensionalized so it remains in the balance to first order, and
flux is non-dimensionalized so that the effect of conductive cooling
is balanced by advection. The model depends on a dimensionless
imposed temperature difference

Tn =
Ts − T0
Ti − TS

. (3.8)

The non-dimensional velocity and the temperature in the solid
are

u′
=

q
α2


1 − η2 , θe =

Tnln η

lnα
(η ≥ 1) (3.9)

and the pressure drop across the tube 1p is related to the flux by:

1p = q
∫ 1

0

1
α4

dχ. (3.10)

The steady non-dimensional internal temperature equation is

q(1 − η2)
∂θ

∂χ
=

1
η

∂

∂η


η
∂θ

∂η


. (3.11)

This can be solved by separation of variables to give

θ(χ, η) =

−
n

Ane−λ2nχ/qφn(η), (3.12)

where λn, φn are the eigenvalues and eigenfunctions of the
problem 1

η
∂
∂η

(η
∂φn
∂η

) + λ2
n(1 − η2)φn = 0, φn(0) = 1, φn(1) =

0, φ′
n(0) = 0. The solution was originally found by Graetz [19]

for flow of uniform viscosity through a pipe of constant radius,
and was modified for steady flow with solidification as in this
configuration by Zerkle and Sunderland [8]. The An are constants
determined from the upstream temperature distribution. A more
complete discussion of this solution, including numerical values,
is given in the appendix of [3]. In steady state, the dimensionless
equation at the liquid solid interface becomes

∂θ

∂η


η=1

=
∂θe

∂η


η=1

. (3.13)

Using (3.9) and (3.12), we calculate

∂θe

∂η


η=1

=
Tn
lnα

,

∂θ

∂η


η=1

=

−
Gne−λ2nχ/q, where Gn = An

∂φn

∂η


η=1

,

so the radius of a steady-state tube is

α (χ) = exp


Tn∑

Gne−λ2nχ/q


. (3.14)

Profiles ofα for several different values of q are shown in Fig. 5a.
Note the relation between α, q, and 1p. If flux q is prescribed then
(3.14) gives an explicit solution for α, while if 1p is prescribed
it must be solved in conjunction with (3.10), which provides a
transcendental integro-differential equation for α. Fig. 6a shows
the pressure drop as a function of flux for a steady-state tube, for
a particular choice of temperature constant. This has a minimum
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Fig. 5. (a) Steady-state curves of shape of the tube α(χ) for several different values of flux q. (Note that these curves are obtained from one another by re-scaling χ .) The
top two curves are stable at fixed pressure drop, and the bottom two curves are unstable. (b) Critical pressure drop 1pc (solid) and critical flux qc (dashed) as a function of
non-dimensional temperature constant Tn .
a b

Fig. 6. (a) Pressure drop 1p of a steady-state tube with flux qi . When τ = 0 (constant pressure drop), all tubes on the right-hand branch are stable and all tubes on the
left-hand branch are unstable. As τ increases, the transition to instability moves leftwards, so that more profiles are stable. Markers indicate the critical value of flux above
which the system becomes stable for a given fixed τ . (b) Stability regions for linear perturbation problem, as a function of qi and τ . The solid linemarks the boundary between
stability (right) and instability (left). The region between the dashed lines has complex eigenvalues, so the perturbed equations show oscillating solutions. The temperature
constant for both figures is Tn = 10.
1pc at a critical flux qc , suggesting that when 1p > 1pc there are
two solutions for a steady-state tube and when 1p < 1pc there
are no possible tubes, a fact which has been verified analytically in
[20]. The critical pressure drop1pc(Tn) and critical flux at which it
is attained qc(Tn) are shown in Fig. 5b.

Note the qualitative similarities between the analytic pressure-
drop–flux relationship in Fig. 6a and the experimental results in
Fig. 3: as flux is decreased there is a very weak decline in pressure
drop, and then a sudden sharp increase for low values of flux.

3.3. Linear stability analysis

To investigate stability we introduce an upstream condition
with an additional parameter to capture each of the three
possibilities: (i) constant flux, (ii) constant pressure, and (iii) a
model allowing the two variables to co-vary. One assumes that
the tube is fed from an upstream reservoir that in turn is fed by
a steady volume flux of rate Qi. (The model can also be derived
by assuming that the upstream reservoir is elastic.) Flow from the
reservoir obeys the equation

A
dH
dt

= Qi − Q ,

whereA is the cross-sectional area of the reservoir andH is the fluid
elevation in it. The downstream end of the tube is open and hence
at atmospheric pressure, so the pressure drop across the tube is
given by

1P = gρH.

Letting the timescale be Sr20/κ , where the Stefan number is
S = LH/cp (Ti − TS), and non-dimensionalizing the other scales as
before, leads to the non-dimensional system

∂α

∂t
=

1
α

(E (α) − I (χ, q)) (3.15a)

d1p
dt

= τ (qi − q) (3.15b)

1p = q
∫ 1

0

1
α4

dχ (3.15c)

where the temperature gradient in the solid at the solid–liquid
interface is E (α) =

∂θe
∂η


η=1

=
Tn
lnα

, and the temperature gradient

in the liquid at the interface is I (χ, q) =
∂θ
∂η


η=1

=
∑

Gne−λ2nχ/q.

This model has a new non-dimensional parameter τ =
πgSr60
8AνκL ,

which measures the rate of change of the upstream pressure
relative to the rate of change of the radius of the interface, and is
proportional to the Stefan number times a thermal response time
r20/κ divided by the hydraulic reservoir response time ALν/gr40 .
The latter is the exponential time for a viscous fluid to empty the
reservoir with no solidification (Tn → 0).

The model also depends on the non-dimensional flux qi into
the upstream reservoir. Therefore, the dynamics of (3.15) are
determined by the three parameters Tn, τ , qi. When τ = 1, the
elevation, or pressure in the reservoir adjusts extremely slowly to
changes in the flux, and by extension the radius of the tube, so the
system should behave as if the pressure drop were held constant,
with a constant pressure drop system recovered exactly when τ =

0. When τ ≫ 1, the pressure in the reservoir adjusts rapidly to the
flux into the reservoir so the system should behave as if the flux
through the tube were held constant. Thus, setting different values
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Table 2
Particular form of the functions used in the perturbation calculations.

E (α (χ, t)) =
∂θc
∂η

=
Tn
lnα

I (χ, q) =
∂θ
∂η

=
∑

Gne−λ2nχ/q

Eα(χ) ≡
1
α0

dE
dα


α0

=
−Tn

α2
0 (lnα0)2

Pq ≡
∂1p
∂q


α0,q0

=
 1
0

1
α4
0
dχ

Pα[α1] ≡
δ1p
δα


α0,q0

[α1] = qi
 1
0

−4α1
α5
0

dχ

Aq ≡
∂α0
∂q


q0

= α0
Tn∑

Gne−λ2χ/qi
2 ∑Gn

λ2nχ

q2i
e−λ2χ/qi

of τ allows us to quantitatively interpolate between constant flux
and constant pressure drop conditions.

Let us now examine the linear stability of (3.15). Expanding
up to first order in small ε, q = q0 + εq1, α = α0 + εα1 and
1p = p0 + εp1 (note that we have dropped the 1 symbol for the
pressure drop steady states and perturbations), the steady state is

q0 = qi (3.16a)

α0 = α0 (χ, qi) = exp


Tn∑

Gne−λ2nχ/qi


(3.16b)

p0 = qi

∫ 1

0

1
α4
0
dχ (3.16c)

and the O(ε) parts are

∂α1

∂t
=

1
α0


dE
dα


α0

α1 −
∂ I
∂q


q0

q1


(3.17a)

dp1
dt

= −τq1 (3.17b)

q1 =

p1 −
δ1p
δα


α0,q0

[α1]

∂1p
∂q


α0,q0

. (3.17c)

The forms of some of the functions are given in Table 2. In
these equations we have taken care to distinguish between partial
derivatives and functional derivatives, by using the symbol ∂ for a
partial derivative and δ for a functional derivative, which results
in a linear operator. We simplify notation by writing Eα(χ) ≡
1
α0

dE
dα


α0
. Let us analyze the three different boundary conditions in

turn.
Case (i) Constant flux. The stability of the constant flux case is

simple to analyze separately. Replacing (3.17b) with the condition
q1 = 0 and substituting for E(α), Eq. (3.17a) becomes

dα1

dt
= Eαα1 =

−Tnα1

α2
0 ln

2α0
.

Since both α0, Tn > 0, we have that sgn (dα1/dt) = −sgn (α1) for
every χ , so this equation is sign-definite and hence linearly stable.

Case (ii) Constant pressure. This case was first analyzed by
Sampson and Gibson [13]. Recall that for a given pressure drop
there are two possible steady-state tubes, one with q > qc and one
with q < qc , where qc is the value of fluxwhichminimizes pressure
drop. By computing the single eigenvalue in the discrete spectrum
of the operator on the right-hand side of (3.17), Sampson and
Gibson showed that only the former is linearly stable. Holmes [20]
analyzed this case in more detail by considering the full spectrum
of the operator, obtaining the same results for the discrete
spectrum and further showing that the continuous spectrum
is exactly Range {Eα} = (−∞, c) where c < 0, so that only the
discrete spectrum determines the stability properties.

Case (iii) Variable pressure and flux. This case is considerably
more difficult to analyze analytically, and we will ultimately rely
on numerical results. These show that as in the constant pressure
case, the continuous spectrum appears to be Range {Eα} which
is entirely negative, so we focus our analysis on the discrete
spectrum.

Returning to (3.17), the equations can be rewritten by not-
ing that α0 solves the equation E (α0 (q, χ)) = I (q, χ), so tak-
ing the partial q-derivative and evaluating at q0 gives ∂ I

∂q


q0

=

dE
dα


α0

∂α0
∂q


q0
. Here we introduce symbols Aq, Pq, Pα[α1] to repre-

sent the derivative terms, which are defined precisely in Table 2.
Under these transformations, (3.17a) and (3.17b) become

dα1

dt
= Eα


α1 −

p1 − Pα[α1]

Pq
Aq


dp1
dt

=
−τ

Pq
(p1 − Pα [α1]) .

To find the eigenvalues in the discrete spectrum, we look for
a solution of the form (α1, p1) = eλt


α̃1, p̃1


, substitute into the

above equations, and solve to get

p̃1 =
τPα


α̃1


Pqλ + τ
 (3.18)

α̃1 =
−Eα


p̃1 − Pα


α̃1


Aq

Pq (λ − Eα)
=

Pα


α̃1

EαAqλ

Pqλ + τ

(λ − Eα)

. (3.19)

These equations are valid provided λ ≠ −τ/Pq and λ ≠ Eα(χ)
∀χ . The first is a single point, which can be ignored. The second ex-
ception requires λ > maxχ (Eα(χ)), which is simply the condition
that λ is greater than the supremum of the continuous spectrum,
which again we denote by c. Therefore, we consider (3.18) and
(3.19) only for λ ∈ (c, ∞) \


−τ/Pq


.

Applying the operator Pα to (3.19) leads to an equation for λ:

F (λ) ≡ Pα


EαAqλ

Pqλ + τ

(λ − Eα)


− 1 = 0. (3.20)

If τ = 0 this equation is exactly the constant pressure case
mentioned above. For other values of τ we solved this equation
numerically for λ in (qi, τ ) parameter space. The full regions of sta-
bility/instability and oscillating solutions for a representative value
of dimensionless temperature constant Tn = 10 are summarized
in Fig. 6b. Let us describe these in more detail.

Consider a fixed q0 such that it is less than the flux qc that
minimizes pressure drop. If τ = 0 there is one eigenvalue, and
the tube is unstable. As τ increases, there is a critical value of τ at
which a bifurcation occurs and the system has three eigenvalues.
One of these is real and the other two are complex with non-zero
imaginary parts. The real root is always negative and less than
−τ/Pq, sowe track the signs of the complex roots in order to detect
instability. As τ increases, the real parts of the roots decrease,
eventually crossing zero so that the system becomes stable. As τ is
further increased, the complex eigenvalues eventually disappear.

For q0 > qc the system is always stable. As τ increases, a similar
bifurcation occurs, with complex eigenvalues appearing for large
τ and disappearing for even larger τ . For a fixed value of τ , this
means that there is a critical value of q0 belowwhich the system is
unstable, and above which the system is stable. This critical value
is plotted with diamonds in Fig. 6a for several values of τ . The
figure shows that the critical value decreases as τ increases, so that
the range of stable steady states is much greater with large τ . As
τ → ∞, all steady states become stable, corresponding to case (i)
with constant flux. As anticipated, the value of τ serves the function
of interpolating between constant pressure drop and constant flux
for quantifying a stability criterion.
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Fig. 7. Final states of two numerical simulations done at fixed pressure drop. The
simulation was started with the unstable profile (dotted line) corresponding to a
flux of 3× 103 , and a small perturbation of either +0.01 or −0.01 was added to the
profile. For the positive perturbation, the tube opens up and moves to the stable
steady-state profile corresponding to the same value of pressure (dashed line). The
final flux is 1.38 × 104 . For the negative perturbation, the tube freezes shut (solid
line).

3.4. Numerical simulations of stability

Numerical simulations of the non-dimensional equations (3.15)
were performed to test the linear stability predictions. The
pressure difference was either kept constant, or varied according
to (3.15b), and the tube radius was stepped forward in time using
(3.15a). Time derivatives were calculated using forward Euler, the
trapezoidal rule was used for integration, and 1000 eigenvalues
were used to calculate the heat flux and steady profiles. 40
points were used to represent the tube in the horizontal direction.
The simulations were stopped if the tube froze shut, i.e. when
α (χ, t) = 0 for some χ . The numerical simulations confirm the
theoretical predictions. Small perturbations to a profile that is
linearly stable return to the original state,whereas perturbations to
a profilewhich is linearly unstable eventually freeze shut for τ ≠ 0.
The perturbation oscillates about the steady state as it grows or
decays exactly where linear theory predicts complex eigenvalues.

Consider now the fixed pressure case, τ = 0, which is unique
as it has two possible steady states, one stable and the other
unstable. Fig. 7 shows the two different types of evolution that are
possible if we start with the linearly unstable profile and perturb
it a little. If the perturbation is mostly positive, in the direction of
the stable profile corresponding to the same value of 1p, then the
tube opens up, and moves to the stable profile. If the perturbation
is mostly negative, away from the stable profile, then the tube
freezes shut. As the tube moves from one profile to another, its
shape is always close to that of a steady profile. Any localized
disturbances to the profile are rapidly ironed out. This is consistent
with the linear theory,which predicts large negative eigenvalues in
the continuous spectrum that appear to be associated with highly
localized eigenfunctions.

Fig. 8 shows two cases of the radius at the endpoint of the tube
α(1) in the case of a growing or decaying oscillating solution. The
time constant τ was kept constant, and the flux varied so that it
was to the right of the critical flux in one case, and to the left in the
other. In the first case, a small perturbation oscillated about the
steady state and eventually decayed, leaving a steady-state tube in
its wake. In the second case, a small perturbation oscillated about
the steady state but grew larger, and eventually the tube froze shut.

3.5. Application: length of a lava tube

One motivation for this study was to explain the length of
lava tubes observed in some volcanic flows on Earth and Mars,
where tubes of 50–200 km have been found [3]. Such steady-
state tubes, which are formed when highly viscous lava flows
down low-angle slopes, often terminate because of geographical
features such as an abrupt change in slope or reaching an ocean,
and it would be interesting to know whether there are physical
constraints governing their lengths as well. Therefore, as a final
note, we would like to show some simple calculations to illustrate
how this model can be used to provide an upper bound for the
length of a melt conduit in an Earth or planetary context. In many
tubes, the pressure at the upstreamend of the tube is dominated by
the hydrostatic pressure so we use this as the constraint. Recalling
that the non-dimensional pressure drop must be greater than a
critical value in order for a steady-state tube to exist, the length
satisfies

1Pr40
4κµL2

≥ 1pc(Tn) ⇔ L ≤


1Pr40

4κµ1pc(Tn)
. (3.21)

Using typical lava parameters [21,3] κ = 10−7 m2/s, ρ = 2300
kg/m3, µ = 60(54–160)Pa · s , Ti = 1133–1187 °C, Ts = 1077 °C,
T0 = 30 °C, (these temperatures correspond to Tn = 8–20), and
calculating the hydrostatic pressure difference as 1P = ρgH,
where H is the total vertical distance traveled by the lava tube and
g is gravity, we find that a tube with a radius of 10 m which drops
1 km can have a maximum length of 110–440 km.
It is encouraging that this is consistent with observations, but we
note that there are many reasons (not detailed here) why this
model is too idealized tomake direct conclusions about lava tubes.
We note also that our mixed upstream condition applies in certain
flows, such as when the lava tube drains from a lava lake or an
interior elasticmagma chamber, each receiving lava either steadily
or impulsively from a source inside the earth, in which case the
linearized version of the geophysical upstream condition is similar
a b

Fig. 8. Radius at the end point (solid curve, left axis) and pressure drop across the tube, (dotted line, right axis) for (a) stable flow and (b) unstable flow. The steady states
for both variables coincide. (a) Stable oscillation, with qi = 7 × 103 . Tube eventually moves to steady state. (b) Unstable oscillation, with qi = 5 × 103 . The perturbation
grows larger as it oscillates and eventually the tube freezes shut. The parameters for both simulations are Tn = 10, τ = 100.
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to (3.15b). However, due to the difficulty of obtaining accurate data
for such flows we prefer not to speculate on numerical values at
present.

4. Summary and discussion

We conducted a laboratory experimentwhich shows thatwhen
fluid flows through a tube whose boundary is held below freezing,
solid material forms on the boundary, leaving an inner tube of
flowing liquid. As the flow rate is progressively decreased, the
pressure drop across the tube first decreases and then increases
before finally the tube freezes shut.

We investigate a theoretical model for low Reynolds number
flow through a tube with solidification, in which we solve for the
shape of a steady-state tube as a function of distance downstream
and find the relationship between pressure drop and flux in steady
state. This shows that the pressure drop has a minimum as flux
is varied. The linear stability of the steady states depend on the
upstream boundary condition: when constant flux is applied, all
states are predicted to be stable; when constant pressure drop is
applied, those corresponding to a flux less than the flux at the
minimum are unstable, and for a coupled condition the critical flux
for stability is in between. In the experiments, pressure drop and
flux were coupled by the measuring device, so these qualitative
results may explain the experimental rise in pressure drop as flux
is slowly decreased to freezing value.

Attempts to produce a full quantitative comparison between
the laboratory experiment and the theory have produced poor re-
sults which we attribute to numerous possible causes of uncer-
tainty in the experiment. There was, of course, uncertainty in the
mean values as well as internal variations of viscosity and spe-
cific heat, which makes quantitative comparison difficult. There is
also an overall sensitivity of the system to the precise tube geom-
etry, which is not captured by an axisymmetric model. Our exper-
iments showed that small perturbations near the endpoint could
initiate large-scale freezing events. Most solidifyingmaterials have
some crystal structure that might generate local flaws, and even
small bits of foreign material (particles, dust, microbubbles, etc.)
might produce effects that get magnified near the exit. It is possi-
ble that experiments using pure filtered or distilled water that is
completely free of dust, particles and dissolved air, could produce
resultsmuch closer to theory since it has verywell-knownmaterial
properties and minor viscosity changes near freezing. However, it
is important to note again that the earlier experiments with wa-
ter (e.g. [8–11]) exhibited wave formation in the ice and that such
local features might be common and that their role in freeze-up is
probably not yet fully appreciated. To clarify such points, optical
views of the liquid tube interiors would be very useful.

Overall, our findings suggest that the distance traveled by fluid
in a melt conduit is very sensitive to the conditions that govern
pressure and flow rate at the upstream end. One of our motiva-
tions was to study the paths of magma and lava flows, which are
well known to be quite complicated. We suggest that the sensitive
interrelation between upstream pressure and the stability of the
tube at the downstream end, where it is most likely to freeze shut,
is one mechanism responsible for such complexity.
Acknowledgements

Support was received from the Geophysical Fluid Dynamics
Program, which is supported by the Ocean Sciences Division of
the National Science Foundation under Grant OCE-0325296, and
from the Oceanography Section of the Office of Naval Research
under Grant N00014-07-1-0776. The laboratory experiments were
supported by the Deep Ocean Exploration Institute of W.H.O.I.
M.C. Holmes-Cerfon would like to thank Lou Howard for many
helpful conversations during the GFD summer program. We are
also very grateful for the thorough help and comments of two
anonymous referees.

References

[1] P.M. Bruce, H.E. Huppert, Thermal control of basaltic fissure eruptions, Nature
342 (1989) 665–667.

[2] P.M. Bruce, H.E. Huppert, Solidification and melting in dykes by the laminar
flow of basaltic magma, in: M.P. Ryan (Ed.), Magma Transport and Storage,
Wiley, New York, 1990, pp. 87–102. 420 pp.

[3] S.E.H. Sakimoto, M.T. Zuber, Flow and convective cooling lava tubes, J.
Geophys. Res. 103 (1998) 27465–27487.

[4] M. Dragoni, F. Donza, A. Tallarico, Temperature distribution inside and around
a lava tube, J. Volcanol. Geotherm. Res. 115 (2002) 43–51.

[5] S.E.H. Sakimoto, T.K.P. Gregg, Channeled flow: analytic solutions, laboratory
experiments, and applications to lava flows, J. Geophys. Res. 106 (2001)
8629–8644.

[6] F. Klingelhofer, M. Hort, H.J. Kumpel, H.U. Schmincke, Constraints on the
formation of submarine lava flows from numerical model calculations, J.
Volcanol. Geotherm. Res. 92 (1999) 215–229.

[7] J. Lister, P. Dellar, Solidification of pressure-driven flow in a finite rigid
channel with applications to volcanic eruptions, J. Fluid Mech. 323 (1996)
267–283.

[8] R.D. Zerkle, J.E. Sunderland, The effect of liquid solidification in a tube upon
laminar-flow heat transfer and pressure drop, Trans. ASME C 90 (1968)
183–190.

[9] J.C. Mulligan, D.D. Jones, Experiments on heat transfer and pressure drop in a
horizontal tubewith internal solidification, Int. J. HeatMass Transfer 19 (1976)
213–219.

[10] T Hirata,M. Ishihara, Freeze-off conditions of a pipe containing a flow ofwater,
Int. J Heat Mass. Trans. 28 (2) (1985) 331–337.

[11] B. Weigand, J. Braun, S.O. Neumann, K.J. Rinck, Freezing in forced convection
flows inside ducts: a review, Heat Mass Transfer 32 (1997) 341–351.

[12] D.G. Lee, R.D. Zerkle, The effect of liquid solidification in a parallel plate channel
upon laminar-flow heat transfer and pressure drop, J. Heat Transfer 91 (1969)
583–585.

[13] P. Sampson, R.D. Gibson, Amathematicalmodel of nozzle blockage by freezing,
Int J. Heat Mass Transfer 24 (1981) 231–241.

[14] S.M. Richardson, Injection moulding of thermoplastics: freezing of at gates,
Rheol. Acta 24 (1985) 497–508.

[15] M. Epstein, F.G. Chueng, Complex freezing–melting interfaces in fluid flow,
Ann. Rev. Fluid Mech. 15 (1983) 293.

[16] S.M. Richardson, Injection moulding of thermoplastics: freezing of variable-
viscosity fluids. III Fully developed flows, Rheol. Acta 25 (1986) 372–379.

[17] C.V. Bindhu, S.S. Harilal, V.P.N. Nampoori, C.P.G. Vallabhan, Thermal diffusivity
measurements in organic liquids using transient thermal lens calorimetry,
Opt. Eng. 37 (10) (1998) 2791–2794.

[18] D.L. Turcotte, G. Schubert, Geodynamics, Cambridge University Press, 2002,
482 pp.

[19] L. Graetz, Uber die Wärmeleitungsfähigkeit von Flüssigkeiten, Ann. Phys.
Chem. 18 (1883) 79.

[20] M. Holmes, Length and shape of a lava tube, in: Woods Hole Oceanographic
Institution Geophysical Fluid Dynamics Program Proceedings Volume 2007,
2007. http://www.whoi.edu/page.do?pid=19276.

[21] L.P. Keszthelyi, Emplacement of the 75-km-long Carrizozo lava flow field,
south-central New Mexico, J. Volcanol. Geotherm. Res. 59 (1993) 59–75.

http://www.whoi.edu/page.do?pid%3D19276

	Instability and freezing in a solidifying melt conduit
	Introduction
	Experiments with freezing of flow through a tube
	Flow through a tube: theory
	Fundamental equations
	Steady-state solutions
	Linear stability analysis
	Numerical simulations of stability
	Application: length of a lava tube

	Summary and discussion
	Acknowledgements
	References


