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Abstract
Metabolism is a molecular, cellular, ecological and planetary
phenomenon, whose fundamental principles are likely at the
heart of what makes living matter different from inanimate one.
Systems biology approaches developed for the quantitative
analysis of metabolism at multiple scales can help understand
metabolism’s ancient history. In this review, we highlight work
that uses network-level approaches to shed light on key in-
novations in ancient life, including the emergence of proto-
metabolic networks, collective autocatalysis and bioenergetics
coupling. Recent experiments and computational analyses
have revealed new aspects of this ancient history, paving the
way for the use of large datasets to further improve our un-
derstanding of life’s principles and abiogenesis.
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Introduction
The metabolic network of a cell transforms free energy
and environmentally available molecules into more cells,
moving electrons step by step along gradients in a com-
plex energetic landscape [1,2]. The ability of a cell to
efficiently and simultaneously manage hundreds of
metabolic processes so as to accurately balance the pro-
duction of its internal components constitutes a very
complex resource allocation problem. In fact, it is only

through recent systems biology research that we have
www.sciencedirect.com
begun to quantitatively assess this resource allocation
problem at the whole-cell level [3,4]. A common
perspective in the analysis of cellular self-reproduction is
the notion that the genome, with its crucial information-
storage role, is the central molecule of the cell, and that
everything else can be collectively regarded as the ma-
chinery whose role is to produce a copy of the DNA. It is

therefore not surprising that, as we struggle with the
fascinating question of how life started on a lifeless
planet, it is tempting to look for how a single information-
containing molecule could arise spontaneously from
prebiotic compounds. However, in spite of the appeal of
thinking of DNA (or its historically older predecessor,
RNA) as the central molecule that is being replicated in
the cell, no molecule in the cell really self-replicates: the
cell is a network of chemical transformations capable of
collective autocatalytic self-reproduction. Collective
autocatalysis is the capacity for an ensemble of chemicals

to enhance or catalyze the synthesis or import of its own
components, enabling a positive feedback mechanism
that can lead to their sustained amplification. Combining
this systems-level view of a cell with the argument of
what is usually called the “metabolism first” view of the
origin of life, one could propose that the ability of a
chemical network to produce more of itself (or to grow
autocatalytically) is and has always been a key hallmark of
life [5e9]. An interesting modern version of this very
same principle is embedded in one of the most popular
systems biology approaches for the study of whole cell

metabolism: this approach, based on reaction network
stoichiometry and efficient constraint-based optimiza-
tion algorithms, is commonly known as flux balance
analysis (FBA) [3]. FBA solves mathematically the
resource allocation problem that every living cell needs to
solve in order to transform available nutrients into the
macromolecular building blocks that are necessary for
maintenance and reproduction. When an FBA calculation
estimates the maximal growth capacity of a cell, it
essentially computes the set of reaction network fluxes
that enable optimally efficient autocatalytic self-

reproduction. While in cellular life this process is finely
regulated and controlled, ancient life must have gone
through many different stages of similar, but much less
organized collectively autocatalytic processes. Thus, one
of the key problems of the origin of life is the question of
how an initially random path in the space of possible
chemical transformations driven far from thermodynamic
equilibrium could have ended up being dynamically
“trapped” in a collectively autocatalytic state.

The focus on cellular self-reproduction as the funda-

mental level at which life and its origin should be
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understood is however too narrow. An exciting recent
development in systems biology of metabolism is the
rise of methods to extend FBA models from the genome
scale to the ecosystem level [10e12]. In addition to
solving the resource allocation problem of metabolism
for individual organisms in a given environment, these
approaches take into account the fact that metabolites
can be exchanged across species, giving rise to

metabolically-driven ecological networks [11]. These
advances suggest that metabolism may be best under-
stood as an ecosystem-level phenomenon (Figure 1b),
where the collective biochemical capabilities of multi-
ple co-existing organisms may reflect e better than any
individual metabolic network e an optimal capacity of
life to utilize resources present in a given environment
[9,13]. The ecosystem-level nature of metabolism is
another feature of present-day life whose roots likely
date back to the early stages of life on our planet. For
example, the chemical networks that gradually gave rise

to reproducing protocells may have wandered for quite
some time in a broader chemical space, effectively
generating molecular ecosystems before the rise of
spatially and chemically well-defined cellular structures.

At an even larger scale, metabolism can be viewed as
operating not just at the level of individual cells or
ecosystems, but as a planetary phenomenon, in which
cellular processes collectively affect (and are affected
by) the flow of molecules at geological scales
(Figure 1c). The strong coupling between the metabolic

processes of ecosystems and planetary-scale geochem-
istry [14,15] suggest that biosphere-level metabolism
should be viewed as one of the natural scales for the
study of life’s history. A paramount challenge in the
study of life’s history is thus bridging the gap between
material and energy fluxes at the biosphere scale, and
detailed molecular mechanisms responsible for the
Figure 1

Metabolism at different scales. (a) Metabolic networks can be modeled at t
energy flow, are collectively transformed into biomass of the self-reproducing
viewed as an ecosystem-level phenomenon, where biochemical processes in
bolism can be also considered a planetary scale phenomenon, whereby the
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properties of life at the cellular and subcellular
level [16]. Bridging this gap could greatly benefit from
the use of integrative models similar to the ones used in
systems biology research and data science. In this
perspective, we will discuss some recent system-level
approaches that have provided new important insight
into life’s ancient history at multiple scales, highlighting
that metabolism and its multiscale nature e from the

single reaction to the biosphere e are taking a center
stage role in this endeavor.
Protometabolism before enzymes
A top-down reconstruction of ancient metabolic net-

works can be achieved based on the inferred history of
gene families, using traditional phylogenomic tech-
niques [17e20]. Leveraging information on the newly
mapped genomic diversity of modern life [21], Martin
and colleagues recently proposed a comprehensive
phylogenetic reconstruction of the metabolic capabil-
ities of the last universal common ancestor (LUCA),
suggesting that LUCA was an autotrophic, thermophilic,
N2-fixing anaerobic prokaryote, living in hydrothermal
vents and equipped with life’s most complex molecular
machines (e.g. ATP synthase) [22]. Although the details

of LUCA’s specific repertoire of metabolic enzymes are
still subject of debate [23,24], these results corroborate
the notion that LUCA was very complex, highlighting a
massive gap in knowledge with regard to the transition
from prebiotic geochemical processes to the biochem-
ical complexity of LUCA and its progeny.

A major challenge in the study of the origin of metabolic
networks is to gain insight on the structure of metabolic
networks before LUCA and before the rise of genetic
coding (Figure 2). At the core of this challenge is the
question of whether and how metabolic reactions, which

depend on genome-encoded enzymes in modern cells,
he organismal level, where environmentally-supplied resources, under an
and evolving organisms. (b) At higher scales, metabolic networks can be
clude metabolic exchange and competition between species. (c) Meta-
free energy flow maintains global biogeochemical cycles.
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Figure 2

Towards a model of ancient metabolism. (a) Models of protometabolism can be constructed using a wide range of data including geochemically-
supported data of environments and atmospheres in the early Archean Eon, knowledge of non-enzymatic chemical reactions, plausible driving forces
keeping protometabolism out of equilibrium and a mechanism for sustained growth (e.g. network autocatalysis). (b) The structure of plausible networks
can be investigated using the network expansion algorithm which models the integrative expansion of metabolic networks from a set of seed compounds
and allowable chemical reactions.
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could have been carried out without such enzymes,
resulting in a classical origin of life “chicken-and-egg”
problem. One possible way out of this conundrum is the

possibility that some of these metabolic reactions were
initially catalyzed by less sophisticated and less specific
catalysts, such as small organic molecules, metal ions,
minerals, short RNA polymers, prebiotic amino acids or
peptides. These small molecules could have persisted
throughout evolution, gradually becoming incorporated
into protein enzymes as catalytic cores or cofactors
[25,26]. Adding on to a large body of evidence on indi-
vidual metabolic reactions being catalyzed by small
molecules [27,28], recent experimental work has
demonstrated that several key pathways found in

modern day metabolic networks can be catalyzed non-
www.sciencedirect.com
enzymatically [29e34]. For instance, Ralser and col-
leagues [29e32,35] have shown the feasibility of non-
enzymatic networks that resemble modern day

biochemical pathways, including the TCA cycle,
glycolysis and gluconeogenesis. In addition, Moran and
colleagues have demonstrated that metals can selec-
tively catalyze and drive portions of non-enzymatic
reductive TCA cycle (rTCA) [33]. These experi-
mental results support the hypothesis that the catalytic
cores of some modern enzymes may represent evolved
variants of simple geochemically available prebiotic
catalysts like transition metals, iron-sulfur clusters or
organic cofactors [36]. Despite these important ad-
vances, the known instances of non-enzymatic catalysis

are still the tip of the iceberg relative to the large
Current Opinion in Systems Biology 2018, 8:117–124
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number of possible catalyst-reaction pairs. Future high-
throughput experiments could greatly expand the
scope of possible prebiotic chemical networks and test
the limits of non-enzymatic catalysis, shedding impor-
tant light on the complexity of prebiotic chemistry
obtainable before the availability of proteinaceous
enzymes.
From non-enzymatic catalysis to collective
autocatalysis
The above examples illustrate the fact that chemical
reactions, and whole pathways, typically viewed in bio-
logical context as feasible only in the presence of protein

enzymes, could take place under much more primitive
conditions, through the catalytic action of small mole-
cules, minerals or even non-covalent supramolecular as-
semblies [37]. Asmentioned above, however, amajor leap
in the history of life must have involved the rise of a
collectively autocatalytic chemical system. The feasi-
bility of pre-enzymatic chemistry suggests a possible path
for the rise of such collective autocatalysis: if the mole-
cules produced by these reactions are themselves good
catalysts, or if these reactions contribute to solubilize
inorganic catalysts from rocks, there is a chance that a

subset of reactions and molecules will effectively display
a dynamic behavior that is equivalent to that of a single
autocatalytic, exponentially growing entity [5e8].

Insight into how these autocatalytic sets may have
operated has come from both theoretical and experi-
mental work. Recent theoretical work has uncovered
generic constraints of autocatalytic networks [38], and
offered plausible biophysical mechanisms leading to
sustained autocatalysis of biopolymer ensembles
[39,40]. Experimentally, Whitesides and colleagues have
constructed an autocatalytic chemical network based on

simple, biologically relevant organic compounds [41]. In
particular, by using a continuous flow of nutrients into
and out of their reaction vessel, they showed that simple
mixtures of thiols and thioesters could display a wide
range of dynamical properties, such as bistability, oscil-
lations and autocatalysis. Notably, this work demon-
strated that dynamical properties observed in biological
networks can emerge from simple mixtures of prebiot-
ically plausible chemicals held out of equilibrium. As
described recently by Vetsigian and Baum, the time is
ripe for experimental explorations of how collectively

autocatalytic cycles could spontaneously arise from
mixtures of small molecules and mineral surfaces [42].
Navigating possible paths from primordial
to present-day networks
Studies in evolutionary biology suggest that biological
systems evolve by partially building on prior innovations.
If this principle extends back to the origin of metabolic
networks, then it is reasonable to hypothesize that early
proto-metabolic networks were based on previously
Current Opinion in Systems Biology 2018, 8:117–124
accessible chemistry. Such logic leads to the conjecture
that the structure of metabolic networks encodes the
evolutionary history of metabolism, and that the chem-
istry of core metabolism is similar to the initial abiotic
chemical networks that lead to life’s emergence [43,44].
This conjecture is supported, as discussed above, by
experimental work demonstrating that a significant
portion of core metabolism is accessible without the use

of proteinaceous enzymes. While these concepts have
been heavily utilized in origin of life research, recent
efforts have transformed this conceptual paradigm into
an algorithmic and quantitative framework using
metabolic network modeling [19,45]. A modeling
approach recently used to explore the plausible evolu-
tionary history of very early stages of biochemistry is the
network expansion algorithm (Figure 2b), which itera-
tively simulates the growth of new metabolites and re-
actions starting from an initial seed set [46e48]. We
used the network expansion algorithm to construct a

model for ancient prebiotic metabolism, specifically
addressing the question of whether any portion of cur-
rent biochemistry could have possibly emerged in the
absence of phosphate (and thus prior to transcription/
translation) [45]. Models of prebiotic networks were
constructed starting from minimal sets of compounds
thought to have been readily available on early Earth.
Notably, even if these initial compounds did not include
any phosphate-containing molecule, a surprisingly large
expanded network could ensue, covering several path-
ways that are part of central metabolism today, and of

previously proposed models of biogenesis [44]. This
finding is consistent with the possibility that thioesters,
sulfur-based energy rich chemical moieties, could have
predated phosphates as energy carriers in the cell,
providing the required thermodynamic driving force.
Interestingly, recent work has experimentally demon-
strated the possibility that a thioester-based chemistry
could fuel autocatalytic networks [41]. Future ap-
proaches could extend the use of network expansion
models by incorporating additional constraints on
metabolic network growth, such as the removal of likely
toxic intermediates. Although further experimental and

theoretical work is required to fully address the scope,
implications, and fundamental limitations of an early
phosphate-free biosphere, the use of the network
expansion algorithm to explore plausible routes of
abiogenesis represents an interesting research direction.

Although the majority of chemical reactions important
in early living systems may still be encoded in modern
day living systems, there is also a possibility that key
reactions and compounds initially critical for living sys-
tems were lost throughout the course of evolution. Even

more broadly, it is plausible that a much bigger space of
chemically possible reactions could have given rise to an
organized metabolism [49,50]. As shown in recent
elegant experimental work, molecules important for life
as we know it may in principle be producible through
www.sciencedirect.com
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reactions and pathways that are not part of current
biochemistry [51,52]. On the theoretical side, recent
advances in computational chemistry [53] have enabled
the construction of chemical network models beyond
the scope of modern living systems, paving the way for
future broader analyses of possible transient chemistries
along the history of life, and of putative alternative
outcomes that could have materialized but did not [49].

Beyond these realistic chemical spaces, biochemical
organization has been studied extensively using simpli-
fied toy models based on artificial chemical rules, such
as the so called “string chemistries” [54]. Similar ap-
proaches were the foundation of some of the early work
on collectively autocatalytic networks [8,55]. More
recently, a very simple string chemistry, simulated and
analyzed using systems biology approaches (including
FBA [3]) yielded a family of optimally efficient path-
ways, some of which resemble functionally and topo-

logically the rTCA cycle network [56]. An artificial
chemistry which incorporated catalytic polymers with a
toy folding process was recently shown to be helpful
towards explaining the emergence of polymer-based
structures within a compositional inheritance world
[39]. In addition to serving as a basis to explore possible
scenarios for the emergence of metabolism, abstract
chemistry models can be very helpful in the exploration
of statistical physics-based models of non-equilibrium
chemical systems [57].
Overcoming energy barriers, then and now
Whether realistic or abstract, ancient or modern, any
metabolism can operate only if kept far from thermo-
dynamic equilibrium by an external free energy source.
Thus, to achieve a working theory for the origin of
metabolism, one should identify not only sources of

materials, but also sources of free energy consistent with
geochemical data. Effectively, even if early life may have
extensively used abiotic organic material heterotrophi-
cally, this question largely hinges on our understanding
of what free energy source could have fueled the pro-
duction of electron donors capable of reducing abundant
gases like CO2 and N2 into the reduced forms readily
used by biological systems. Two potential sources
include chemical energy from hydrothermal vents, and
photochemical energy from solar (especially UV) radi-
ation [58]. The former scenario is consistent with

recent phylogenomic studies [22], where chemical
energy in the form of molecular hydrogen is used to fix
carbon dioxide using a variant of the Wood-Ljungdahl
pathway in LUCA. However, it is unclear whether this
scenario would be compatible with thioesters as a key
component for free energy transduction, given that
these molecules have been recently shown to be highly
unstable in simulated hydrothermal systems [59].
Interestingly, UV light can support the synthesis of
organic molecules [60,61] and iron-sulfur clusters [62]
www.sciencedirect.com
as well as drive the reductive steps in the rTCA cycle
[63]. Future work exploring the potential roles of
various energy sources to fuel non-enzymatic prebiotic
networks will be important in determining plausible
models for ancient metabolism.

Even if a source of free energy is available, a major open
question in the evolution of bioenergetics is the rise of

coupling between driving forces and driven reactions.
Through this coupling, currently enabled by large pro-
teins, reactions that dissipate free energy (e.g. thioester
or phosphodiester bond breaking) drive reactions that
require a free energy input. Such couplings have recently
been proposed to universally operate as a “Brownian
ratchet”, in which enzyme complexes rely on the step-
wise, gated mechanism of highly coordinated multi-
domain enzymes [2]. Martin and colleagues proposed
that electron bifurcation, the most recently discovered
energy conserving process [64,65], may have been the

first mechanism through which ancient metabolic net-
works coupled free energy sources to drive endergonic
reactions. Electron bifurcation is a mechanism that en-
ables coupling between available, mid-potential electron
donors (e.g. H2) and acceptors (e.g. CO2) to generate
low-potential electron donors. This mechanism is for
example capable of producing reduced ferrodoxin, an
energy source common in diverse biochemical pathways
like photosynthesis and methanogenesis [66]. In gen-
eral, identifying the scope of non-enzymatic analogs for
such free energy coupling processes remains an open

challenge, and efforts to this end will undoubtedly shed
light on the earliest phases of bioenergetic evolution.
Towards data-driven origin of life research
As the above examples clearly illustrate, origin of life
research is a multidisciplinary endeavor, requiring

consideration of multiple, increasingly large datasets
(chemical, geological, biological, physical) for both
experimental and computational analyses [67].
Currently available databases that may be useful for the
study of ancient life range from collections of genetic
and phenotypic diversity of microbial species and com-
munities [68], to “knowledge-base” resources available
for exploring metabolites, reactions and biochemical
pathways [69]. As origin of life research may require data
from broader categories of molecules and reactions
beyond present-day biochemistry [51], databases of

known organic and inorganic chemicals [70] and re-
actions [50] will constitute important components of
future attempts to reconstruct the first biochemical
processes. Other categories of data relevant to the
ancient history of metabolism are available in more
specialized databases [71,72]. Future efforts could
assemble other databases useful for the computational
analysis of prebiotic chemistry, including a database of
documented prebiotic chemistry experiments. Further-
more, and most importantly, a standardization of
Current Opinion in Systems Biology 2018, 8:117–124
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experimental and computational results would enable
comparisons across different efforts, allowing re-
searchers to build more systematically on previous work.
Integrating data from various sources, ranging from
prebiotic chemistry experiments to inferred early Earth
geochemical data, could allow for the construction of
large-scale models of ancient metabolic states at un-
precedented levels of resolution.

Future work aimed at understanding early life will

increasingly benefit from ongoing synthetic biology ef-
forts towards the implementation of minimal living
systems, and from quantitative approaches developed
for systems biology of metabolism [73]. It would be
highly beneficial for origin of life research to embrace
theory and modeling as essential tools for transforming
data and hypotheses into testable, nontrivial pre-
dictions, i.e. predictions whose outcome may not be
known a priori, and whose validation or falsification may
be clearly achievable, even if technologies may be years
away from feasibility. Conversely, the study of early

metabolism has a chance to provide new tools and ideas
for how to move systems biology approaches beyond the
current paradigms. For example, the exploration of pu-
tative early metabolic pathways not known in present-
day organisms bears some similarities with the huge
and challenging efforts of annotating metabolic enzyme
functions in newly sequenced genomes and meta-
genomes [74]. Furthermore, biosphere-level analyses of
ancient metabolism [45,48] could inspire new ap-
proaches for studying the collective biochemistry of
microbial ecosystems.
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