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ABSTRACT
Soil-covered upland landscapes are common in much of the habitable world, and our

understanding of their evolution as a function of different climatic, tectonic, and geologic
regimes is important across a wide range of disciplines. Erosion laws direct quantitative
study of the processes shaping Earth’s surface and form the basis of landscape evolution
modeling, but are based on limited field data. Here we use in situ–produced cosmogenic
10Be and 26Al concentrations from granitic saprolite to quantify an exponential decline in
soil production with increasing soil thickness for a new field site in Point Reyes, California.
Results are similar to soil production functions from two different, previously studied field
sites, and are used with extensive measurements of soil thickness to quantify depth-
integrated sediment transport flux. Plots of calculated sediment fluxes against the product
of soil depth and hillslope gradient provide the first field-based evidence that soil transport
is a nonlinear, depth-dependent function. Data from all sites suggest that the widely used
linear diffusion equation is only appropriate for shallow gradient, convex-up regions, while
the depth-dependent transport law is more broadly applicable. Quantifying both the mo-
bile soil thickness and landscape morphology is therefore critical to understanding how
landscapes evolve.
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INTRODUCTION
Upland landscapes across a large part of

Earth’s surface are soil mantled. Erosional
processes transport soil from these uplands
into networks of stream channels, and ulti-
mately into sediment sinks, but the mathe-
matical relationships used to model these pro-
cesses are based on limited field data (Dietrich
et al., 2003; Furbish, 2003). The persistence
of soil across the landscape depends in large
part on the production of soil from the under-
lying bedrock at rates at least equal to the ero-
sion rate (Anderson and Humphrey, 1989;
Carson and Kirkby, 1972; Dietrich et al.,
1995; Heimsath et al., 1997). Cosmogenic
nuclide-based techniques determined soil pro-
duction functions under different climatic,
lithologic, and tectonic conditions (Heimsath
et al., 1997, 2000), while field-based quanti-
fication of a soil transport function remains
elusive (Dietrich et al., 2003).

Transport of soil is widely assumed to de-
pend linearly on topographic slope, which re-
sults in a differential equation similar to the
diffusion equation when used in continuity
equations (e.g., Dietrich et al., 1995). There
are, however, limited field data supporting a
linear transport law, and its appeal rests with
its mathematical simplicity rather than its
process-based confirmation. The term diffu-
sive refers not to the processes, but to how the
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land surface might be evolving. Other work
(e.g., Andrews and Buckman, 1975) suggested
that transport depends nonlinearly on slope,
especially on steeper gradients, but the only
direct measurements are from experimental
modeling (Roering et al., 2001) and analyses
of fire-induced dry ravel (Gabet, 2003; Roer-
ing and Gerber, 2005). Many workers have ex-
plored transport processes (e.g., Fleming and
Johnson, 1975; Gabet, 2000; McKean et al.,
1993), but field or measurement constraints
often obscure the detailed processes of trans-
port. Here we combine new cosmogenic
nuclide-based soil production rates with topo-
graphic surveys and extensive measurements
of soil depth across three different landscapes
to provide the first field-based evidence of a
nonlinear, depth-dependent transport function.

SOIL TRANSPORT MODELS
The conceptual framework used here is

based on the equation of mass conservation
for physically mobile soil overlying its parent
material (Carson and Kirkby, 1972; Dietrich
et al., 1995). Typically, the boundary between
soil and the underlying weathered (or fresh)
bedrock is abrupt and can be defined within a
few centimeters. Soil is produced and trans-
ported by mechanical processes, and soil pro-
duction rates decline exponentially with depth
(Heimsath et al., 1997, 2000). The transition
from soil-mantled to bedrock-dominated land-
scapes occurs when transport rates are greater

than production rates (Anderson and Hum-
phrey, 1989), and two transport functions are
typically used to model landscape evolution
(Dietrich et al., 2003). The slope-dependent
transport law has its basis in the characteristic
form of convex, soil-mantled landscapes as-
sumed to be in equilibrium, and has some field
support (e.g., McKean et al., 1993; Roering et
al., 2002). A nonlinear, slope-dependent trans-
port law also has its roots in morphometric
observations, and has recent support with the
veracity of assuming landscape equilibrium
(Roering et al., 1999), experimental con-
straints (Roering et al., 2001), or postfire ravel
(Gabet, 2003; Roering and Gerber, 2005).

Disturbances due to freeze-thaw (e.g., An-
derson, 2002; Matsuoka and Moriwaki, 1992),
shrink-swell (e.g., Fleming and Johnson,
1975), viscous or plastic flow (e.g., Ahnert,
1976), and biological activity (e.g. Gabet,
2000) cause soil transport, and the disturbanc-
es decline with depth, typically exponentially
(e.g. Roering, 2004). Disturbance penetration
distance sets the mobile soil thickness. In thin
soils, the penetration is limited by underlying
bedrock or saprolite, but can result in me-
chanical soil production from the rock. In
thick soils, the disturbance-driven depth can
be less than the thickness of the total deposit.
This disturbance depth influence suggests that
soil transport should depend on local gradient
and mobile depth, and while depth-slope de-
pendency has long been postulated (e.g. Ah-
nert, 1967), field data have been lacking.

Recently, two theories have been proposed
(Furbish, 2003; Roering, 2004) that explicitly
model transport due to biotic disturbance.
Here we test the simpler of the two, as we
lack data on the velocity profiles that would
inform the Roering (2004) model. Furbish
(2003) argues that the dilational effects of bi-
otic activity cause the vertically averaged vol-
umetric flux density (i.e., vertically averaged
velocity), q̄s(L t21), to be proportional to land
surface, z, gradient. The depth-integrated flux
per unit contour distance is then the product
of mobile soil thickness, H, and this flux den-
sity:

Hq̄ 5 2K H¹ .s h z (1)

The coefficient Kh (L t21) characterizes the
magnitude and frequency of downslope soil-
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Figure 1. Soil production functions. A: Point Reyes (PR). Solid black circles are averages
of rates from both 10Be and 26Al (Table DR1; see footnote 1), and error bars represent all
errors propagated through nuclide calculations, i.e., uncertainty in atomic absorption, ac-
celerator mass spectrometry, bulk density and soil depth measurements, and attenuation
length of cosmic rays. Gray diamonds are erosion rates from outcropping tors on ridge
crests. B: Point Reyes data shown with results from Nunnock River (open black squares,
long-dashed regression line; Heimsath et al., 2000) and Tennessee Valley (gray diamonds,
short-dashed regression line; Heimsath et al., 1997); open symbols labeled creek sands are
average rates from detrital cosmogenic nuclide concentrations from each site. C: Topo-
graphic map, 2 m contour intervals by laser total station survey, showing soil pit locations
for PR. Creek drains right to left at page bottom and elevation of crest is 195 m.

particle motions. It is constant with uniform
particle activity over depth, but may vary if
particle activity declines significantly with
depth wherein transport occurs mostly near
the surface. For simplicity, here we assume
vertically uniform particle activity/mixing as
a first step in testing a depth-slope transport
relation.

FIELD SITES AND METHODS
Each field site is a soil-mantled upland

landscape with the characteristic convex form
used to infer a slope-dependent transport law.
The Nunnock River (NR), southeastern Aus-
tralia, field site is at the base of the passive
continental margin escarpment (Heimsath et
al., 2000). Underlying bedrock is Late Silurian
to Early Devonian granodiorite, rainfall is
;900 mm yr21 distributed equally across sea-
sons, and vegetation is a dry sclerophyll for-
est. We also use the well-studied region of
Tennessee Valley, northern California, with a
Mediterranean climate, active tectonic setting,
and metasedimentary bedrock typical of the
Franciscan Formation (e.g., Dietrich et al.,
1995). Our third site is on the relatively steep
slopes of Mount Vision, in Point Reyes, Cal-
ifornia, is underlain entirely by granitic rocks,
mostly quartz diorite and granodiorite (Gal-
loway, 1977), and is ;30 km north of the Ten-
nessee Valley site. It is outside historical ag-
ricultural impacts and supports a native forest
of Bishop pine trees that burns periodically
and is replaced by grassland and scrub under-
brush. Tree throw contributes to soil produc-
tion and transport, which are also observed to
be due to burrowing gophers, mountain bea-
vers, and invertebrates, with overland flow po-
tential following fires. Biogenic processes are
also observed to be dominant at the Nunnock
River and Tennessee Valley sites.

Soil production rates from parent material
underlying the soil mantle, and erosion rates
from exposed bedrock or stream sediments,
can be quantified by measuring the in situ–
produced cosmogenic nuclides, 10Be and 26Al.
Measured concentrations of either nuclide de-
pend on the nuclide production rate and half-
life as well as the erosion or soil production
rate of the target material. We use 10Be and
26Al concentrations from saprolite, bedrock,
and stream sediments to determine soil pro-
duction, tor erosion, and average erosion rates
for each site, and report the new Point Reyes
results here. Site-specific nuclide-derived soil
production rates and detailed soil depth mea-
surements are used to determine the depth-
integrated flux for each site. Soil thickness is
measured by digging soil pits to the soil-
bedrock boundary at ;10 m intervals across
the sites. We assume that on convex portions
of the landscape, soil production and transport

is much faster than the rate of change in to-
pography. In this case, the rate of soil thick-
ness change is sufficiently small that we de-
termine soil flux by integrating soil production
within flow tubes mapped from ridge crest to
base (see Data Repository1).

SEDIMENT PRODUCTION
Soil production rates from 13 samples from

the bedrock-soil interface at Point Reyes (Table
1) define a clear exponential decline of soil pro-
duction with soil depth such that the variance-
weighted best-fit regression (Fig. 1A) is

2(0.01760.001)H«(H) 5 (88 6 6)e , (2)

where soil production, «(H), is in meters per
million years and soil depth, H, is in centi-
meters. Average erosion rates, inferred from
three samples of stream sand from the creek
draining the study area, determine a basin-
averaged rate of 62 m/m.y., similar to that of

1GSA Data Repository item 2005186, Appendix
1, obtaining soil flux, and Table DR1 is available
online at www.geosociety.org/pubs/ft2005.htm, or
on request from editing@geosociety.org or Docu-
ments Secretary, GSA, P.O. Box 9140, Boulder, CO
80301-9140, USA.

Tennessee Valley (Fig. 1B). Lower erosion
rates from two tors at Point Reyes are consis-
tent with granitic core-stone emergence shown
at Nunnock River (Heimsath et al., 2000).
Comparison of the soil production functions
reveals remarkable similarity in form with rel-
atively little scatter around the Point Reyes re-
gression line (Fig. 1B). Similar to the Nun-
nock River and Tennessee Valley sites, these
data, combined with the spatial variation of
depth data from Figure 2A, show spatially
variable rates of soil production, indicating a
landscape out of long-term dynamic equilib-
rium. This is not surprising given the prox-
imity of the San Andreas fault to the site, and
the southern California origin of the Point
Reyes peninsula (Galloway, 1977).

The Point Reyes results are evidence for the
applicability of the soil production function as
a transport relationship (cf. Dietrich et al.,
2003) characterizing hilly, soil-mantled land-
scapes. Comparison of functions from these
different sites offers the potential for untan-
gling the connections between erosion rates,
climate, and tectonics. The slope of the de-
pendency of production rate on soil depth
shows that in all three cases (Fig. 1B), the
production rate is halved by a cover of 35 cm
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Figure 2. Negative curvature vs. vertical soil depth. Curvature calculated as in Heimsath et
al. (1999) and is proxy for soil production if local soil depth is constant with time. A: Black
circles from individual soil pits at Point Reyes with exponential negative curvature axis. B:
Black circles (as in A) with open gray diamonds are from Nunnock River (Heimsath et al.,
2000). Tennessee Valley data from Heimsath et al. (1997, 1999) overlay Nunnock River data
values and range and are not included here for plot clarity. Black dashed line separates
divergent from convergent topography. C: Curvature map for Point Reyes: blue represents
convex and red represents concave topography.

Figure 3. A: Depth-
integrated soil flux (cal-
culated as per Appendix
1; see footnote 1) per unit
contour length (m2yr21)
vs. the depth-slope prod-
uct (cm) for all field sites.
B: Depth-integrated flux
divided by depth-slope
product vs. downslope
distance. Kh value, deter-
mined by fitting data
shown in A, is dashed
line. NR—Nunnock River;
TV—Tennessee Valley;
PR—Point Reyes.

and reduced to a tenth by 115 cm, which is
roughly the maximum soil depth found on
ridges. Soil depth varies across the study sites,
with thinnest soils on the narrow ridge crests,
and thicker soils bordering unchanneled val-
leys (e.g. Heimsath et al., 1997, 2000). The
soil production functions (Fig. 1B) imply that
ground surface lowering is highest on ridge
crests. This apparent topographic disequilib-
rium may be counteracted by periodic evacu-
ation of the adjacent colluvial fills, setting up
a transient upslope thinning of soils (Dietrich
et al., 1995).

DEPTH-DEPENDENT TRANSPORT
Soil depths vary spatially across the diver-

gent areas of the Point Reyes landscape such
that topographic curvature declines exponen-
tially with increasing soil thickness (Fig. 2A),
although a linear decline similar to the other
field sites cannot be ruled out (Fig. 2B). In the
case of a simple slope-dependency of trans-
port, curvature is a proxy for soil production
(Heimsath et al., 1999), and the exponential
decline of curvature with depth would support
the soil production function defined by equa-
tion 2, assuming an independently document-
ed (Reneau, 1988) linear diffusivity of 30
cm2yr21. The clear linear (versus exponential)
decline of curvature with increasing soil
depths at Nunnock River suggested, however,
that a linear slope-dependent transport model
did not adequately capture the transport mech-
anisms, prompting modeling (Braun et al.,
2001) and optically stimulated luminescence
(Heimsath et al., 2002) studies highlighting
the role of soil thickness in sediment transport.

Here we plot depth-integrated flux, deter-
mined by integrating soil production rates
downslope (Data Repository; see footnote 1),
against the depth-slope product across all field
areas to test equation 1 (Fig. 3A). We observe
strong linear increases of soil flux with in-
creasing depth-slope product for both Nun-
nock River (NR) and Tennessee Valley (TV),
but no such relationship at Point Reyes (PR),
where a purely slope-dependent relationship is
a better fit. Two observations might explain
the failure of the depth-slope model at PR.
First, the significantly greater soil depths for
any given curvature value suggest that the fre-
quency and magnitude of biotic penetration
into the soil might be mediated differently
than at NR and TV, and not be captured by a
constant Kh. Second, the higher gradients on
the lower slopes of PR suggest that shallow
landsliding might be a dominant process.

Data from Nunnock River support equation
1 with a transport coefficient, Kh, equal to 0.55
cm yr21. Roughly equating this coefficient to
the linear diffusivity with an average soil
thickness for Nunnock River of 50 cm yields

a coefficient of 28 cm2yr21, compared to the
40 cm2yr21 reported by Heimsath et al.
(2000). Reversing the process for the Tennes-
see Valley and Point Reyes data, which have
independently determined linear diffusivities
of 50 and 30 cm2yr21 (Reneau, 1988) and av-
erage soil thicknesses of 40 cm and 60 cm,
yields depth-dependent transport coefficients,
Kh, of 1.25 and 0.5 cm yr21, respectively. Us-
ing the data from Tennessee Valley and Point
Reyes (Fig. 3A), Kh values of 1.2 and 0.4 cm
yr21 are determined.

This comparison of transport coefficients
places the depth-dependent transport flux
within the context of the more familiar slope-
dependent transport framework and supports
the applicability of a linear transport law for
low-gradient convex landscapes. Plotting flux
against gradient shows, however, that a linear
relationship does not reflect all the data (Data
Repository; see footnote 1). Our test for
depth-dependent transport thus involves two
sets of complementary plots: Hq̄s vs. HS (Fig.
3A) and Hq̄s (HS)21 versus downslope dis-
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tance, X (Fig. 3B). If equation 1 is correct, the
first plots (Fig. 3A) should show a linear in-
crease, with slope equal to Kh and zero
origin—in the absence of covariance of H or
S with distance X. However, because Hq̄s

must, by definition, increase with X, these
plots might exhibit spurious covariance with
the depth-slope product. Thus, the importance
of the inset plots (Fig. 3B) is to remove any
such covariance such that the data should be
homoscedastic about a flat line equal to Kh

(dashed line) to support equation 1. We ob-
serve, instead, an increase with distance close
to the ridge crests, followed by a tendency to
flatten roughly around the Kh values. Potential
explanations for the increase include the un-
known role of chemical weathering or a non-
constant covariant transport coefficient.

THE ILLUSION OF DIFFUSION
We present the first field-based test of the

hypothesis that sediment transport is propor-
tional to the product of soil depth and topo-
graphic gradient to support an alternative sed-
iment transport law from the widely used
diffusion model. To do this we quantify first
a new soil production function based on cos-
mogenic nuclide analyses of bedrock beneath
an actively eroding soil mantle. Soil produc-
tion rates decline exponentially with soil depth
across a broad spectrum of climate and tec-
tonic regimes, supporting the function’s gen-
erality as a geomorphic transport law. We then
integrate downslope soil production rates us-
ing extensive field measurements of soil
depth. Plotting depth-integrated flux against
the depth-slope product shows support for a
depth-dependent transport law at Nunnock
River and Tennessee Valley, which have dif-
ferent bedrock, climate, and tectonic regimes.
Although soil production and transport rates
vary between sites, potentially driven by their
respective tectonic and climatic settings, the
forms of the transport functions are similar
and may be driven by similarities in the bio-
genic processes. To further delimit soil trans-
port will require quantifying soil and parent
material chemical weathering, documenting
velocity profiles, and extending analyses
across the entire upland landscape. We con-
clude that it is an illusion to think of land-
scapes eroding by processes termed to be dif-
fusive and suggest that future landscape
evolution modeling efforts more completely
couple spatial variations in soil depth with soil
production and transport processes.

ACKNOWLEDGMENTS
We thank K. Heimsath and J. Roering for field

assistance; S. Bateman, the landowner of the Nun-
nock River site; the National Park Service for ac-
cess to Point Reyes; and the Golden Gate National
Recreation Area for access to Tennessee Valley. M.
Borosund helped with flow tube analyses. M Jun-
gers, J. Roering, and an anonymous reviewer helped
improve the paper. We were funded through the Na-
tional Science Foundation. Nuclide measurements
were partially performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract W-7405-Eng-
48.

REFERENCES CITED
Ahnert, F., 1967, The role of the equilibrium con-

cept in the interpretation of landforms of flu-
vial erosion and deposition, in Macar, P., ed.,
L’evolution des versants: Liege, University of
Liege, p. 23–41.

Ahnert, F., 1976, Brief description of a comprehen-
sive three-dimensional process-response mod-
el of landform development: Zeitschrift fur
Geomorphologie, supplement band, v. 25,
p. 29–49.

Anderson, R.S., 2002, Modeling the tor-dotted
crests, bedrock edges, and parabolic profiles
of high alpine surfaces of the Wind River
Range, Wyoming: Geomorphology, v. 46,
p. 35–58.

Anderson, R.S., and Humphrey, N.F., 1989, Inter-
action of weathering and transport processes
in the evolution of arid landscapes, in Cross,
T.A., ed., Quantitative dynamic stratigraphy,
Englewood cliffs, New Jersey, Prentice Hall,
p. 349–361.

Andrews, D.J., and Buckman, R.C., 1975, Fitting
degradation of shoreline scarps by a nonlinear
diffusion model: Journal of Geophysical Re-
search, v. 92, no. B12, p. 12,857–12,867.

Braun, J., Heimsath, A.M., and Chappell, J., 2001,
Sediment transport mechanisms on soil-
mantled hillslopes: Geology, v. 29,
p. 683–686.

Carson, M.A., and Kirkby, M.J., 1972, Hillslope
form and process: New York, Cambridge Uni-
versity Press, 475 p.

Dietrich, W.E., Reiss, R., Hsu, M.-L., and Mont-
gomery, D.R., 1995, A process-based model
for colluvial soil depth and shallow landslid-
ing using digital elevation data: Hydrological
Processes, v. 9, p. 383–400.

Dietrich, W.E., Bellugi, D., Heimsath, A.M., Roer-
ing, J.J., Sklar, L., and Stock, J.D., 2003, Geo-
morphic transport laws for predicting land-
scape form and dynamics, in Wilcock, P.,
and Iverson, R., eds., Prediction in geomor-
phology: Washington, D.C., American Geo-
physical Union, Geophysical Monograph 135,
p. 103–132.

Fleming, R.W., and Johnson, A.M., 1975, Rates of
seasonal creep of silty clay soil: Engineering
Geology Quarterly Journal, v. 8, p. 1–29.

Furbish, D.J., 2003, Using the dynamically coupled
behavior of land-surface geometry and soil
thickness in developing and testing hillslope
evolution models, in Wilcock, P., and Iverson,
R., eds., Prediction in geomorphology: Amer-

ican Geophysical Union Geophysical Mono-
graph 135, p. 169–182.

Gabet, E.J., 2000, Gopher bioturbation: Field evi-
dence for nonlinear hillslope diffusion: Earth
Surface Processes and Landforms, v. 25,
p. 1419–1428.

Gabet, E.J., 2003, Sediment transport by dry ravel:
Journal of Geophysical Research, v. 108,
no. B1, doi: 10.1029/2001JB001686.

Galloway, A.J., 1977, Geology of the Point Reyes
Peninsula, Marin County, California: Sacra-
mento, California Division of Mines and Ge-
ology, p. 72.

Heimsath, A.M., Dietrich, W.E., Nishiizumi, K., and
Finkel, R.C., 1997, The soil production func-
tion and landscape equilibrium: Nature,
v. 388, p. 358–361.

Heimsath, A.M., Dietrich, W.E., Nishiizumi, K., and
Finkel, R.C., 1999, Cosmogenic nuclides, to-
pography, and the spatial variation of soil
depth: Geomorphology, v. 27, p. 151–172.

Heimsath, A.M., Chappell, J., Dietrich, W.E., Ni-
shiizumi, K., and Finkel, R.C., 2000, Soil pro-
duction on a retreating escarpment in south-
eastern Australia: Geology, v. 28, p. 787–790.

Heimsath, A.M., Chappell, J., Spooner, N.A., and
Questiaux, D.G., 2002, Creeping soil: Geolo-
gy, v. 30, p. 111–114.

Matsuoka, N., and Moriwaki, K., 1992, Frost heave
and creep in the Sor Rondane Mountains, An-
tartica: Arctic and Alpine Research, v. 24,
p. 271–280.

McKean, J.A., Dietrich, W.E., Finkel, R.C., Sou-
thon, J.R., and Caffee, M.W., 1993, Quantifi-
cation of soil production and downslope creep
rates from cosmogenic 10Be accumulations on
a hillslope profile: Geology, v. 21,
p. 343–346.

Reneau, S.L., 1988, Depositional and erosional his-
tory of hollows: Application to landslide lo-
cation and frequency, long-term erosion rates,
and the effects of climatic change [Ph.D. the-
sis]: Berkeley, University of California, 328 p.

Roering, J.J., 2004, Soil creep and convex-upward
velocity profiles: Theoretical and experimental
investigation of disturbance-driven sediment
transport on hillslopes: Earth Surface Process-
es and Landforms, v. 29, p. 1597–1612.

Roering, J.J., and Gerber, M., 2005, Fire and the
evolution of steep, soil-mantled landscapes:
Geology, v. 33, p. 349–352.

Roering, J.J., Kirchner, J.W., and Dietrich, W.E.,
1999, Evidence for non-linear, diffusive sedi-
ment transport on hillslopes and implications
for landscape morphology: Water Resources
Research, v. 35, p. 853–870.

Roering, J.J., Kirchner, J.W., Sklar, L.S., and Die-
trich, W.E., 2001, Hillslope evolution by non-
linear creep and landsliding: An experimental
study: Geology, v. 29, p. 143–146.

Roering, J.J., Almond, P., Tonkin, P., and McKean,
J., 2002, Soil transport driven by biological
processes over millenial time scales: Geology,
v. 30, p. 1115–1118.

Manuscript received 18 May 2005
Revised manuscript received 12 August 2005
Manuscript accepted 15 August 2005

Printed in USA



1

(A.1)

(A.2)

(A.3)

APPENDIX: Obtaining Soil Flux from Integration of the Soil
Production Rate
PRINCIPLES AND PRACTICE
The magnitude of the soil flux h  [L2 t-1] can be estimated from downslope integration of the local
soil production rate p  [L t-1] between two arbitrarily curved “flow lines” of downslope soil motion.
Here we first describe this integration as applied to sites at Nunnock River, Point Reyes and
Tennessee Valley.  We then examine possible sources of error in our estimates of soil flux arising
from the numerical integration and from the assumption that the rate of change in soil storage is
negligible.

To illustrate the idea behind the downslope integration, first consider two soil transport flow
lines that are parallel and straight and separated by a uniform contour distance B.  Let x denote a
horizontal axis that is positive in the downslope direction.  The z-axis is vertical and positive
upward.  Neglecting horizontal tectonic motion the vertically integrated equation of mass
conservation is:

where  is the vertically averaged soil flux density parallel to x, h is the soil thickness,  is the
vertically averaged soil concentration, c  is the soil concentration at the base of the soil, p  is the rate
of soil production, and t is time.  Note also that, although B could be removed from (A.1), we retain
it here for illustration.  Integrating this with respect to x from the divide (x = 0) to a position x = X,

which illustrates that the total soil flux Q(X) [L3 t-1] at position x = X, that is Q(X) = Bh X, obtains
by integrating the unsteady term and the soil production rate upslope of X.  In the case of steady soil
thickness h, and uniform and constant concentrations  and c , this reduces to

If the production rate p  is uniform, then the soil flux Q(X)
increases linearly with X.  Note that the first integral quantity
in (A.2) is equivalent to integrating the local rate of change in
soil storage, (h )/ t, over the area A(X) = BX.  Similarly, the
second integral quantity in (A.2) and the integral quantity in
(A.3) are equivalent to integrating the local soil production
rate over the area A(X) = BX.  Also note that the soil flux per
unit contour distance at position X is Q(X)/B.  The formulation
above can be generalized to a curvilinear or radial coordinate
system (Furbish, unpublished notes), although it suffices here
to proceed to a simpler formulation that builds on these points.

Consider two soil transport flow lines that are everywhere
normal to elevation contours (Fig. A1).  For convenience we
now let x denote a curvilinear downslope coordinate centered

divide

flow line

x

x = 0

x = X

contour

B

Figure A1.  Curvilinear coordinate
system; flow lines normal to contours.
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(A.4)

(A.5)

(A.6)

between the two flow lines with origin (x = 0) at the upslope divide.  At any coordinate position x
there is an arbitrarily curved elevation contour segment, locally normal to x, with length B between
the two flow lines.  Thus, B = B(x).

The total soil flux Q [L3 t-1] passing a given contour segment at position x = X must equal the
total rate of soil production, minus the rate of change in storage, upslope of the segment between
the flow lines.  Thus,

indicating that Q(X, t) is obtained by simply integrating the local production rate and the rate of
change in soil storage over the area A(X) upslope of x = X.

As described in the next section, we assume that the soil storage term in (A.4) is negligible
relative to the other terms whence,

where c  is assumed to be uniform.  With square brackets denoting an average, the magnitude of the
soil flux per unit contour distance at position x = X is then estimated as an average over B(X),
namely [h ] X = Q(X)/B(X), which is the value that we report in the text.

The numerical integration of (A.5) is performed as follows.  Voronoi polygons are constructed
for soil thickness measurements within and near the total area A(X).  Let ai denote the subarea of the
ith polygon falling within A(X) such that A(X) = ai.  Then assuming the local soil production rate
p  = -Pexp(-h/ ),

where N is the total number of polygon subareas.  The importance of constructing Voronoi polygons
is that this procedure objectively weights each local production rate (obtained from measured soil
thickness) in proportion to its relative areal (Voronoi) coverage within A(X).

We also note that reported slopes are averages obtained at position X.  That is, we estimated local
slopes for two to seven locations along B (depending on its length), then averaged these to obtain
S(X).  The significance of this is that plots involving flux, slope and the depth-slope product are
based on averages over B(X) rather than representing “local” values.

TRANSIENT SOIL STORAGE
Nonuniform soil thicknesses on the hillslopes suggest that transient soil storage is non-zero.
Nonetheless we suggest that the storage term in (A.4) is significantly smaller than the other terms,
with the implication that (A.5) is an adequate estimate of the soil flux.

Under steady-state conditions, where either uplift is balanced by stream incision at the lower
hillslope boundary or the land-surface is lowering uniformly, the storage term in (A.4) is zero (for
constant ).  Changes in storage are thus related either to changes in the lower boundary condition
wherein effects of this condition are propagated upslope, or to changes in the soil transport rate due
to a change in the transport coefficient (or diffusivity), or both.  The sites were selected to avoid
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(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

complications related to possible changes in transport processes, so here we focus on the magnitude
of soil storage related to changes in the lower boundary condition.  The downslope thickening soils
at the field sites in particular are consistent with cessation of stream downcutting, whence soils
thicken with time, and this thickening slowly propagates upslope.

Assuming momentarily that the soil flux is proportional to slope, namely Q(X) = -BDS where
D [L2 t-1]is a diffusivity, then with uniform c  and constant , (A.4) integrates to

where chevron brackets denote that the quantity is averaged over the area A.  Under steady
conditions this reduces to

The terms in (A.7) can be directly scaled to evaluate their relative magnitudes.  To clarify the
physical basis for this scaling, however, we consider the rate of change of these terms in response
to a change in the lower boundary condition.

Envision a change in the transport rate BDS during a small interval dt, following a steady state
condition at time t.  Expanding (A.7) as a Taylor series about t,

Thus, the new transport rate at time t + dt involves the “old” steady-state balance at time t; and the
change in the transport rate is balanced by changes in production or storage, or both.  Thus, to clarify
when the storage term can be neglected, it suffices to show when the term involving the second
derivative is small relative to terms involving first derivatives.  More simply, the rate of change of
(A.7) is

which may be viewed as a measure of the extent to which a change in soil production is
accommodated by a change in transport versus being partitioned into storage.

Let S = / x, where  is the land-surface elevation.  Then noting that p / t = -Pexp(-
h/ ) / t  (1/ ) h / t, where  = / p  is a measure of the mean soil residence time,

The slope and the soil thickness must change over the same timescale T in response to a change in
the lower boundary condition.  We thus define the following dimensionless quantities denoted by
a circumflex:
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(A.13)

(A.14)

(A.15)

(A.16)

Substituting these first into (A.8) obtains

where T* = A/BD is like a relaxation timescale.  (Note that, in the case of parallel, straight flow
lines, A = BX, whence T* = X/D.)  Moreover, this steady-state case requires that T* .

Turning to (A.11),

which indicates that the last term can be neglected if T* T.  Qualitatively, inasmuch as
transport depends on land-surface slope, any effect on transport due to a change in the lower
boundary condition is felt through changes in slope that propagate upslope.  For a relaxing hillsope,
a change in transport rate (i.e. a change in slope) generally involves a change in soil thickness (and
a concomitant change in soil production), which implies a change in storage.  Nonetheless, inasmuch
as changes in soil thickness occur over a timescale that is much longer than the mean soil residence
time, soil production remains essentially balanced by transport.

For completeness we substitute (A.12) into (A.7) with T* = A/BD to obtain:

Based on the scaling quantities adopted in (A.12) and applied in (A.15), the timescale T may be
interpreted as the time that it takes to accumulate a soil thickness equal to h.  In the absence of
transport — assuming that all production goes into storage — then T , typically on the order of
several thousand years, the shortest possible value of T.  Numerical simulations of relaxing
hillslopes suggest, however, that to accumulate (excess) soil thicknesses equal to h requires
periods approaching the relaxation time of the hillslope, TR L2/D, where L is the hillslope length
(Furbish, 2003; Furbish and Dietrich, in prep.).

The scaling in (A.15) also reveals important consequences of land-surface slope and gradient.
The lengthscale  may be interpreted as the distance over which the land-surface elevation changes
by an amount .  Thus, as  increases (slope decreases), the timescale T* increases such that
the magnitude of the storage term increases.  This merely reflects that, with decreasing slope and
therefore decreasing soil throughput, the mean residence time increases.  In addition, for given area
A, a small ratio A/B coincides with diverging flow lines, whereas a large ratio A/B coincides with
converging flow lines.  Thus, the significance of the storage term decreases with increasing
divergence of the lines, whereas this term may become increasingly important with converging flow
lines.

A similar scaling can readily be applied with the assumption that the soil flux is proportional to
the product of soil thickness and land-surface slope, namely Q(X) = -BK h S where K [L t-1] is a
transport coefficient.  Using (A12) with T* = A/BK  we obtain:
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Comparing this with (A.15) it is apparent that conclusions regarding the importance of the storage
term are the same as those outlined above.

SPURIOUS CORRELATION BETWEEN FLUX, SLOPE AND THICKNESS
If the hypothesis that soil flux is linearly proportional to land-surface slope is correct, then a plot of
flux [h ] X = Q(X)/B(X) versus slope S(X) should in principle exhibit a linear trend with zero
intercept and slope equal to the diffusivity D.  Similarly, if the hypothesis that soil flux is
proportional to the product of soil thickness and land-surface slope is correct, then a plot of flux
[h ] X versus the product h(X)S(X) should exhibit a linear trend with zero intercept and slope equal
to the transport coefficient K (Fig. 3A).  However, as an integrated quantity, th soil flux, see  (A.5),
must generally increase with downslope distance.  Moreover, both slope and thickness generally
increase downslope at the field sites.  This means that plots of flux versus slope, or flux versus the
product of thickness and slope, may exhibit spurious (positive) correlations, and therefore do not
represent a rigorous “test” of the two hypotheses.  For this reason we consider plots involving the
ratios [h ] X/S(X) and [h ] X/h(X)S(X) versus distance X (Figure 3B).  The effect of this 
is to remove correlations among flux, slope and thickness.  For the data to be consistent with one 
of the transport hypotheses, the trends in these plots should be flat, at a value equal to either D or K.
See Data Repository Figures A2 and A3, below, for plots of flux versus gradient and flux/gradient.
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Data Repository Figure A2: Depth-integrated soil flux used in Figure 3 in text (calculated as 

described above) per unit contour length (m
2
yr

-1
) versus the gradient for all field sites. 

For data to fit the linear slope-dependent transport law both a linear increase of flux with gradient,

as well as an intercept with the origin (i.e. zero flux at zero slope) are required.

NR-Nunnock River; TV-Tennessee Valley; PR-Point Reyes.

Data Repository Figure A3: Depth-integrated flux divided by gradient versus downslope distance. 

K
L
 value is dashed line independently determined by several different studies: NR value from 

Heimsath et al. (2000); TV value from Reneau (1988), used in Dietrich et al. (1995) and 

Heimsath et al. (1997, 1999); PR value from Reneau (1988). 

Used in a similar way to Figure 3B in the text, these data would support a linear slope-dependent

transport law if the data were homoscedastic about the transport coefficient plotted as the dashed 

line for each site.

NR-Nunnock River; TV-Tennessee Valley; PR-Point Reyes.


