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ABSTRACT

Record lows in Arctic sea ice extent have been making frequent headlines in recent years. The change in
albedo when sea ice is replaced by open water introduces a nonlinearity that has sparked an ongoing debate
about the stability of the Arctic sea ice cover and the possibility of Arctic ‘‘tipping points.’’ Previous studies
identified instabilities for a shrinking ice cover in two types of idealized climate models: (i) annual-mean
latitudinally varying diffusive energy balance models (EBMs) and (ii) seasonally varying single-column
models (SCMs). The instabilities in these low-order models stand in contrast with results from compre-
hensive global climate models (GCMs), which typically do not simulate any such instability. To help bridge
the gap between low-order models and GCMs, an idealized model is developed that includes both latitudinal
and seasonal variations. The model reduces to a standard EBM or SCM as limiting cases in the parameter
space, thus reconciling the two previous lines of research. It is found that the stability of the ice cover vastly
increases with the inclusion of spatial communication via meridional heat transport or a seasonal cycle in
solar forcing, being most stable when both are included. If the associated parameters are set to values that
correspond to the current climate, the ice retreat is reversible and there is no instability when the climate is
warmed. The two parameters have to be reduced by at least a factor of 3 for instability to occur. This implies
that the sea ice cover may be substantially more stable than has been suggested in previous idealized
modeling studies.

1. Introduction

Arctic sea ice is undergoing a striking, closely moni-
tored, and highly publicized decline. A recurring theme
in the debate surrounding this decline is the question of
how stable the ice cover is, and specifically whether it
can become unstable. This question is often linked to the
ice–albedo feedback, which is expected to play a key
role in the observed sea ice retreat.
The ice–albedo feedback has been studied since at least

the nineteenth century, whenCroll (1875) investigated its
importance for the climate system, and it has had a major
role in climate science since then. The feedback is asso-
ciated with a nonlinearity in the climate system due to the
jump in local albedo between ice-free and ice-covered
surface conditions. This nonlinearity has long been ex-
pected to affect the stability of the climate system in the
sense that it can potentially trigger abrupt transitions

between ice-free and ice-covered regimes (e.g., Budyko
1966). The bifurcations associated with such abrupt
transitions are often referred to as ‘‘tipping points.’’
The idea of an irreversible jump from one stable state

to another gained momentum when studies using ide-
alized latitudinally varying diffusive energy balance
models (EBMs) of the annual-mean equilibrium state of
the global climate (Budyko 1969; Sellers 1969) en-
countered such bistability in realistic parameter regimes
(Budyko 1972; Held and Suarez 1974). These early
studies were primarily concerned with the possibility
of a catastrophic transition to a completely ice-covered
planet, typically called the ‘‘snowball earth instability.’’
In addition, however, many studies have shown that
small polar ice covers that terminated poleward of about
758 latitude are also typically unstable in EBMs, a fea-
ture referred to as the ‘‘small ice cap instability’’ (SICI)
[see review in North (1984)]. More recent studies of
the SICI in EBMs have, for example, compared this
behavior with global climate model (GCM) results
(Winton 2008) and identified additional bifurcations
when a more complex representation of energy trans-
port is used (Rose and Marshall 2009).
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A bistability analogous to the SICI was found by
Thorndike (1992) in an idealized single-column model
(SCM) of Arctic sea ice and climate. In contrast with
EBMs, this model had no representation of spatial var-
iations, but it included seasonal variations. Modeling the
sea ice seasonal cycle required representations of ther-
modynamic processes associated with sea ice thickness
changes. More recently, a number of studies using a
range of similar SCMs identified bistability and bi-
furcations associated with the loss of the sea ice cover
(Flato and Brown 1996; Björk and Söderkvist 2002;
Eisenman 2007; Eisenman andWettlaufer 2009; Müller-
Stoffels andWackerbauer 2011; Abbot et al. 2011;Moon
and Wettlaufer 2011; Eisenman 2012; Moon and
Wettlaufer 2012; Müller-Stoffels and Wackerbauer
2012; Björk et al. 2013).
The results of these EBMs and SCMs stand in contrast

with results from most comprehensive GCMs, which
typically have found no evidence of bistability (e.g.,
Armour et al. 2011) and simulate a smooth transition
from modern conditions to a seasonally ice-free Arctic
(Winton 2006; Ridley et al. 2008; Winton 2008; Tietsche
et al. 2011; Ridley et al. 2012). In these simulations, the
Arctic and Antarctic sea ice areas typically scale ap-
proximately linearly with global-mean temperature
(Gregory et al. 2002; Winton 2011; Armour et al. 2011),
displaying no indication of instability. The loss of the
wintertime-only sea ice cover in a very warm climate
(i.e., the transition from seasonally ice-free to perenni-
ally ice-free conditions) also typically occurs in a smooth
and linear fashion in GCMs (Ridley et al. 2008; Winton
2008; Armour et al. 2011). One GCM showed some
evidence of nonlinearity during this transition (Winton
2008), but further analysis suggests that the nonlinearity
is not sufficient to cause bistability in this case (Li et al.
2013). In other words, even though the ice–albedo
feedback is operating in comprehensive GCMs, they
simulate strikingly linear sea ice changes. In contrast to
comprehensive GCMs, an atmosphere-only GCM with
no seasonal cycle was found to simulate bistability re-
sembling the SICI (Langen and Alexeev 2004), and a
GCM with simplified atmospheric physics and idealized
ocean geometries was found to simulate bistability with
the ice edge of the cold state located at considerably
lower latitudes than the SICI (Ferreira et al. 2011).
The discrepancy between the instabilities found in

idealized models and the smooth ice retreat found in
most comprehensive GCMs raises a conundrum: Is the
disagreement between the two approaches the result
of a fundamental misrepresentation of the underlying
physics in GCMs, or is it rather the result of some aspect
of the simplifications used in the idealized models? In
more general terms, what physical processes dictate

whether there are multiple sea ice states under a given
forcing? These questions are the focus of this study.
Our approach is essentially to add a standard SCM

representation of seasonally varying sea ice thickness to a
standard EBM, thereby combining the two classes of
modeling approaches. We therefore study a system that is
akin to the idealized models discussed above, but it in-
corporates both spatial and seasonal variations, taking a
small step from conventional idealized models toward
comprehensive GCMs and ultimately nature. We in-
vestigate how the inclusion of both variations influences
the stability of the ice cover, focusing specifically on
whether or not unstable solutions occur such that warming
and cooling the climate leads to a hysteresis loop.
Note that seasonally varying EBMs have been

employed previously to study how idealized land–ocean
configurations dictate the glaciation of polar regions
(North and Coakley 1979; North et al. 1983; Lin and
North 1990; Huang and Bowman 1992). Furthermore,
several EBM studies have included some representation
of a seasonal cycle and sea ice thickness changes (Suarez
and Held 1979; Morales Maqueda et al. 1998; Bendtsen
2002; Bitz and Roe 2004). However, these previous
studies have not considered how the inclusion of a sea-
sonal cycle affects the stability of the system.
The article is structured as follows: in section 2 we

formulate the diffusive energy balance sea ice model.
The simulated climate in the default parameter regime
and its response to forcing are presented in section 3.
Section 4 discusses how the model reduces to a standard
EBM and a standard SCM as limiting cases in the pa-
rameter space. Section 5 investigates the presence of
bistability as parameters are varied. Conclusions are
presented in section 6.

2. Model of sea ice and climate

Here we derive the model used in this study, which
is an idealized representation of sea ice and climate
with seasonal and latitudinal variations in a global
domain. The surface is an aquaplanet with an ocean
mixed layer that includes sea ice when conditions are
sufficiently cold. We consider only zonally uniform
climates (Fig. 1).

a. Representation of model state

SCMs typically compute the seasonally varying sea
ice thickness h(t) as a prognostic variable. The surface
temperature of the ice T is calculated diagnostically
based on h and the surface energy flux. When the ice
thickness reaches zero, SCMs often evolve the tem-
perature of an ocean mixed layer of fixed depth
(Thorndike 1992, and later studies). This temperature
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is taken to be vertically uniform in the ocean mixed
layer and hence equal to the surface temperature T.
To succinctly account for both ice thickness when ice
is present and the temperature of the ocean mixed
layer when ice is not present, an SCM can evolve the
surface enthalpy E(t), which is defined as (Eisenman
and Wettlaufer 2009)

E[

(
2Lf h , E, 0 (sea ice),

cw(T2Tm) , E$ 0 (open water) ,
(1)

where Lf is the latent heat of fusion of sea ice and cw is
the heat capacity of the ocean mixed layer, which is
equal to the product of the ocean mixed layer specific
heat capacity, density, and depth. The melting point Tm

is approximated to be constant at its freshwater value.
The default values for all model parameters are dis-
cussed in section 2d and summarized in Table 1.
In contrast to SCMs, standard EBMs compute the

equilibrium value of the spatially varying surface tem-
perature T(x). Here, x [ sinu with latitude u, such that
x 5 0 at the equator and x 5 1 at the North Pole.
The model developed here evolves the surface en-

thalpy as a function of both time and latitude E(t, x). A
standard SCM is represented in each latitudinal grid
box, and the grid boxes are coupled via latitudinal dif-
fusion of T, as is done in standard EBMs. The temper-
ature T represents either (i) the temperature of the
ocean mixed layer in the absence of ice or (ii) the ice
surface temperature when ice is present. Below, we
begin by discussing the seasonally varying EBM for-
mulation that will be used to give spatial dependence,
and then we add an SCM representation at each lat-
itudinal grid box to evolve sea ice thickness. The reader
who is primarily interested in the model results may skip
to section 3.

b. EBM formulation with seasonal variations

The time evolution of E(t, x) is determined at each
latitude by the net energy flux into the atmospheric
column and surface below:

›E

›t
5 aS

|{z}
solar

2 L
|{z}
OLR

1 D=2T
|fflfflffl{zfflfflffl}
transport

1 Fb
|{z}
ocean
heating

1 F
|{z}
forcing

, (2)

which includes fluxes from top-of-atmosphere net solar
radiation aS, outgoing longwave radiation (OLR) L,
meridional heat transport in the atmosphereD=2T, and
heat flux into the model domain from the ocean below
Fb (Fig. 1). Each of these terms is discussed below. Last,
F in Eq. (2) represents a spatially uniform, seasonally
constant climate forcing that is varied during some
model runs. Increasing F can be interpreted as an

TABLE 1. Default parameter values.

Description Value

D* Diffusivity for heat transport (Wm22 K21) 0.6
A OLR when T 5 Tm (Wm22) 193
B OLR temperature dependence (Wm22 K21) 2.1
cw Ocean mixed layer heat capacity

(Wyrm22 K21)
9.8

S0 Insolation at equator (Wm22) 420
S1* Insolation seasonal dependence (Wm22) 338
S2 Insolation spatial dependence (Wm22) 240
A0 Ice-free coalbedo at equator 0.7
A2 Ice-free coalbedo spatial dependence 0.1
ai Coalbedo where there is sea ice 0.4
Fb Heat flux from ocean below (Wm22) 4
K Sea ice thermal conductivity (Wm21 K21) 2
Lf Sea ice latent heat of fusion (Wyrm23) 9.5
Tm Melting temperature (8C) 0
F Radiative forcing (Wm22) 0 (varies)
cg Ghost layer heat capacity (Wyrm22 K21) 0.098
tg Ghost layer coupling time scale (yr) 3 3 1025

FIG. 1. Schematic of the global model of climate and sea ice described in section 2, showing the
fluxes included in the model: insolation (yellow), OLR (red), horizontal heat transport (green),
ocean heating (dark blue), and vertical heat flux through the ice (blue). The temperature of the ice
is given by T at the surface and Tm at the base.
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increase in atmospheric CO2, for example, analogous to
global warming scenarios in GCM simulations.
Note that most EBMs compute only the equilibrium

climate state, ›E/›t 5 0 in Eq. (2), whereas here we
consider the time evolution of the system. Since we are
considering an aquaplanet, and the ocean mixed layer
has an effective heat capacity that is more than an order
of magnitude higher than the atmosphere (North and
Coakley 1979), we neglect the heat capacity of the at-
mospheric column. This implies that the vertical tem-
perature profile in the atmosphere at a given time and
latitude is fully determined by T.

1) SOLAR RADIATION

Following North and Coakley (1979), we use an ap-
proximate representation of the insolation,

S(t, x)5 S02 S1x cosvt2S2x
2 , (3)

where S0 is the annual-mean insolation at the equator, S1
determines the amplitude of seasonal insolation variations,
v5 2p yr21 is the annual frequency, and S2 determines the
equator-to-pole insolation gradient (Table 1).Note that the
spatial dependence of S(t, x) is written here without using
Legendre polynomials, which have often been used in the
EBM literature as they enable analytical solutions. We
choose this equivalent simpler representation because
the model presented here is solved numerically.
Some of the insolation is reflected back to space and

the rest is absorbed. The fraction of incident solar ra-
diation that is absorbed is called the planetary, or top-of-
atmosphere (TOA), coalbedo (i.e., one minus albedo).
It depends on factors including the solar zenith angle,
clouds, and the presence of reflective ice at the surface
(Lian and Cess 1977). Similar to North (1975b), we write
the planetary coalbedo as

a(x,E)5

(
a02 a2x

2 , E. 0 (open water),

ai , E, 0 (ice),
(4)

where a0, a2, and ai are empirical parameters (see Table 1).
It is the discrete jump in a(x, E) at the ice edge that in-
troduces nonlinearity and therefore the possibility of
multiple states. The addition of ice thickness evolution in
the next section, however, will add further nonlinearity.
Some studies have considered various smoothed albedo
transitions between ice andwater (e.g., Cahalan andNorth
1979; Eisenman andWettlaufer 2009), which we eschew
here for simplicity.

2) OLR

Following Budyko (1969), we represent the OLR as a
linear function of the surface temperature,

L5A1B(T2Tm) , (5)

where A and B are empirical parameters (Table 1).

3) HEAT TRANSPORT

Following North (1975b), the meridional heat flux
in the climate system is approximated to be pro-
portional to the meridional gradient of the surface
temperature, thereby influencing the surface tem-
perature evolution like a diffusive process with con-
stant diffusivity D. Because of converging meridians
on a spherical earth, meridional diffusion takes the
form (North 1975b)

D=2T5D
›

›x

"
(12 x2)

›T

›x

#
. (6)

The seasonal cycle introduces a small seasonally
varying heat transport across the equator. For both con-
ceptual transparency and computational convenience, we
approximate this cross-equatorial heat flux to be zero,
allowing us to restrict the model domain to a single
hemisphere. Neglecting this in the EBM described in this
section causes the temperature to change by no more
than 0.3K at any latitude at any time of year. Inserting
Eq. (1) withE. 0 (openwater) into Eq. (6) at x5 0 gives
the equatorial boundary condition

›2E

›x2

$$$$
x50

5 0. (7)

At the pole (x5 1), the heat transport in Eq. (6) goes to
zero for any distribution of T because of converging
meridians, and no boundary condition is necessary.

4) OCEAN HEAT FLUX

The upward heat flux (Fb) from the deep ocean into
the base of the sea ice or ocean mixed layer, which is
associated with heat flux convergence within the ocean
column below the mixed layer, is crudely approximated
to be constant in space and time. We choose a value of
Fb appropriate for the Arctic Ocean, where there is net
horizontal ocean heat flux convergence (see section 2d).
Note that while this choice helps to accurately simulate
conditions in the Arctic Ocean, and treating Fb as con-
stant retains simplicity in the model formulation, this
makes the global ocean a heat source, albeit a weak one.
This heating is ultimately compensated by increasing the
default value of A to get an observationally consistent
default climate.
Note that in the absence of sea ice, ›E/›t5 cw›T/›t on

the left-hand side of Eq. (2). Hence the model so far is a
fairly standard EBM with the addition of time
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dependence, seasonally varying forcing, and specified
ocean heat flux convergence.

c. Addition of SCM physics

Next, we add a representation of sea ice thickness
evolution to the model and compute the resulting effect
on the surface temperature. This is done by coupling Eq.
(2) to an SCM representation of thermodynamic sea ice
growth and melt (Fig. 1). Note that energy fluxes are
represented in the present model at the top of the at-
mosphere, as in typical EBMs, in contrast to typical
SCMs, which consider surface fluxes.
We approximately follow the SCM developed in

Eisenman (2012). This SCM can be directly derived (cf.
Eisenman and Wettlaufer 2009) as an approximate rep-
resentation of the SCM of Maykut and Untersteiner
(1971), which represents processes including vertical en-
ergy flux between the ice and the atmosphere, vertical
conduction of heat within the ice, vertical heat flux be-
tween the ice and the ocean below (Fb), basal congelation
during the winter growth season, and surface and basal
ablation during the summer season.
Vertical heat conduction within the ice is governed

by a diffusion equation for the internal ice temperature.
Here we assume that the energy associated with phase
changes is much larger than the energy associated
with temperature changes within the ice. Equivalently,
the relevant Stefan number NS [ (LfDh)(cihDT)

21

(Eisenman 2012), satisfiesNS! 1, where ci is the specific
heat of the ice. In this approximation, the vertical dif-
fusion gives a linear temperature profile, with temper-
ature varying fromT#Tm at the top surface toTm at the
bottom surface. The heat flux upward through the ice is
then equal to k(Tm 2 T)/h, where k is the ice thermal
conductivity, which we treat as constant.
If the ocean mixed layer cools to Tm, ice begins to

grow. As long as ice is present, the temperature of the
ocean mixed layer is set to remain constant at Tm. In this
regime, the ocean heat flux Fb goes directly into the
bottom of the ice without losing heat to the ocean mixed
layer.
Hence, when ice is present, the change in energy per

unit area is equal to the change in E, and the ice thick-
ness (h 5 2E/Lf) evolves according to Eq. (2). In other
words, Eq. (2) applies equivalently for both ice-covered
and ice-free conditions. In the model results, we identify
the ice edge latitude ui as the latitude where E changes
sign, and we similarly define xi [ sinui.
There are two possible regimes when ice is present,

separated by the surface melt threshold: either (i) T ,
Tm, in which case the net surface flux must be zero, or
(ii) T 5 Tm, in which case surface melt occurs propor-
tionally to the net surface flux.We determine which case

applies by computing the surface temperature T0 that
would balance the surface energy flux and determining
whether it is above or below the melting point. Since we
treat the heat capacity of the atmosphere as negligible
compared with the ocean mixed layer, the net surface
energy flux is equal to the top-of-atmosphere energy flux
plus the horizontal energy convergence in the atmo-
sphere. Then T0 is computed from

k(Tm 2T0)/h52aS1A1B(T0 2Tm)2D=2T2F .

(8)

If T0 , Tm, then the surface flux is balanced by a sub-
freezing surface temperature, and the frozen regime
(i) applies, with T 5 T0. On the other hand, T0 . Tm

indicates that the surface flux cannot be balanced by a
subfreezing surface temperature, and surface melt
(ii) occurs. In this case the surface temperature remains
at the melting point, T 5 Tm, and the surface melt is
calculated using a Stefan condition, which states that the
ice thinning from surface melt is equal to the net surface
flux divided by Lf. Note that here the value of T0 at a
given location depends on T at other locations because
of the =2T term, making this model considerably less
straightforward to solve than a typical SCM.
Ice-free surface conditions can be concisely included

by adding a third regime for the surface temperature:

T5

8
<

:

Tm 1E/cw , E. 0 (open water) ,

Tm , E, 0, T0.Tm (melting ice),

T0 , E, 0, T0,Tm (freezing ice) .

(9)

Equations (2), (8), and (9) determine the model,
which represents the meridionally and seasonally vary-
ing global surface temperature and allows sea ice of
varying thickness to form when the ocean mixed layer
temperature reaches the melting point.

d. Default parameter values

The default values of all model parameters are given
in Table 1. Values for D, B, and cw are adopted from
North and Coakley (1979), where cw corresponds to a
75-m ocean mixed layer depth. The values of D typi-
cally used in the literature range fromD5 0.4 (Lin and
North 1990) to 0.66Wm22K21 (Rose and Marshall
2009). The insolation parameters S0 and S2 are adopted
from the Legendre polynomial coefficients in North
and Coakley (1979). Here we set the parameter dic-
tating the seasonal amplitude of the solar forcing S1 to
be 25% larger than the astronomically based value
used in North and Coakley (1979) in order to better
match the observed seasonal range of sea ice thickness
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in the central Arctic. Note that this increase in S1 may
help account for factors such as seasonally varying
cloud cover and water vapor that are not included in
the model. Since North and Coakley (1979) do not
consider an explicit albedo jump, we adopt coalbedo
parameter values (a0, a2, and ai) from North (1975b),
converting the Legendre polynomial coefficients into
our formalism.
For the heat flux upward from the ocean Fb, Maykut

and Untersteiner (1971) use a value of Fb 5 2Wm22

based on central Arctic observations. Thorndike (1992)
adopts a possible range for Fb of 0–10Wm22. Other
observations suggest an annual-mean value of Fb 5
5Wm22 (Maykut and McPhee 1995). We adopt a value
within the range of these previous estimates, Fb 5
4Wm22.
We use values for the thermal conductivity k and la-

tent heat of fusion Lf corresponding to pure ice.
Last, we let A 5 193Wm22, similar to the value in

Mengel et al. (1988), in order to simulate an annual-mean
hemispheric-mean temperature consistent with the ob-
served present-day climate when F 5 0.
In the model simulations presented in this study, we

vary the climate forcing F, as well as D and S1. For no-
tational convenience, we denote the default values of
the latter two parameters as D* and S1* (Table 1).

e. Numerical solution

Numerically solving the system of Eqs. (2), (8), and (9) is
not straightforwardbecauseof the implicit representationof
T0 in Eqs. (8) and (9). This represents a nonlinear ordinary
differential equation in x that involves a free boundary be-
tween melting and freezing ice surfaces that would need to
be solved at each time step in a standard forward Euler
time-stepping routine. Furthermore, using forward Euler
time-stepping for this diffusive system would require very
high temporal resolution for numerical stability.
To efficiently integrate the model, we instead employ a

numerical approach that solves a system of equations that
can be visualized in terms of two separate layers. Hori-
zontal diffusion occurs in a ‘‘ghost layer’’ with heat ca-
pacity cg, all other processes occur in the main layer, and
the temperature of the ghost layer is relaxed toward the
temperature of the main layer with time scale tg. This
method bypasses the need to solve a differential equation
in x at each time step and allows us to use an implicit time-
stepping routine with coarse time resolution in the ghost
layer. We emphasize that the ghost layer does not rep-
resent a separate physical layer such as the atmosphere,
which would add physical complexity to the model. This
‘‘two layer’’ system reduces to the system of Eqs. (2), (8),
and (9) above in the limit that cg / 0 and tg / 0. In the
model simulations, cg and tg are chosen to be sufficiently

small that further reducing their values does not sub-
stantially influence the numerical solution (values given in
Table 1). Further details are given in appendix A.
Themodel is solved numerically in 0# x# 1 using 400

meridional grid boxes that are equally spaced in x and
1000 time steps per year. The spatial resolution is re-
quired to sufficiently resolve the evolution of the sea ice
cover, especially in parameter regimes where the SICI
region is small. The temporal resolution is chosen to
ensure numerical stability of the solution.
Code to numerically solve the presentmodel, as well as

the standardEBMdescribed in section 2bbutwithS15 0,
is available online at http://eisenman.ucsd.edu/code.html.

3. Model results in the default parameter regime

In this section we discuss the simulated climate in the
parameter regime (D5D* and S1 5 S1* ), first with F5
0, then in the case where the climate is warmed by in-
creasing F, and finally when F is ramped back down.

a. Simulated modern climate (F 5 0)

The simulated climate with all parameters at their
default values (Table 1) and F5 0 is illustrated in Fig. 2,
where the seasonal cycle of the equilibrated climate is
plotted. Figure 2a shows the seasonal cycle of E(t, x),
which fully represents the model state sinceE is the only
prognostic variable and the forcing varies seasonally.
The associated surface temperature (Fig. 2b) and ice
thickness (Fig. 2c) are roughly consistent with present-
day climate observations in the Northern Hemisphere.
The simulated surface temperature varies approxi-
mately parabolic with x from an equatorial temperature
of about 308C throughout the year to a polar tempera-
ture of 2108C in winter and 238C in summer (Fig. 2d).
There is perennial sea ice around the pole (Fig. 2e) with
ice thickness at the pole varying seasonally between
3.1 and 3.4m (Fig. 2f). The edge of the sea ice cover
ranges from ui5 588 in winter to 768 in summer (Fig. 2g),
which can be compared with the observed zonal-
mean ice edge latitude in the Northern Hemisphere
(Eisenman 2010).
The presence of a substantial seasonal sea ice cover in

the simulated climate (Fig. 2c), which is qualitatively
consistent with observations, stands in contrast with
typical SCM results. It has been a conundrum in SCM
studies that they have often struggled to simulate a
stable seasonal sea ice cover. The SCM in Thorndike
(1992) was forced by a square-wave seasonal cycle,
with insolation and longwave radiation switching
between a constant summer value for half the year and a
constant winter value for the other half. It did not fea-
ture any stable seasonal ice. The SCM in Eisenman
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and Wettlaufer (2009), which had smoothly varying in-
solation and longwave radiation, did feature stable
seasonal ice, but only in a relatively small range of cli-
mate forcings. In Eisenman and Wettlaufer (2009, see
their Fig. S5), this stable seasonal ice was hypothesized
to arise because of a larger seasonal amplitude in the
longwave forcing than was used by Thorndike (1992).
Moon and Wettlaufer (2012) proposed the contrasting
hypothesis that the square-wave seasonal cycle in solar
forcing was the essential factor preventing the Thorndike
(1992) SCM from simulating a stable seasonal ice cover.
They suggested that resolving the seasonal cycle in solar
forcing with at least two different values during summer
was necessary for stable seasonal ice.
The results presented here suggest an alternative

resolution, namely that the inclusion of a horizontal di-
mension is an essential ingredient for accurately
simulating a stable seasonal ice cover. In contrast with
Moon and Wettlaufer (2012), who found that square-
wave solar forcing did not allow seasonal ice, the model
developed here still simulates a large seasonal migration
of the ice edge when the cosvt factor in Eq. (3) is re-
placed with a square wave (not shown). In contrast with
Eisenman and Wettlaufer (2009), who found a narrow
SCM forcing range that allowed for stable seasonal ice,

seasonal ice occurs in this spatially varied model over a
wide range of latitudes.

b. Forced warming (increasing F)

Next, we numerically simulate the equilibrium re-
sponse of the model to changes in the climate forcing by
slowly ramping up F. Beginning with a 200-yr spinup
simulation at the initial forcing value (F5210Wm22),
we increase F in increments of 0.2Wm22 and integrate
the system for 40 years at each value of F. This approach
is used in all of the following simulations of the model
response to increasing or decreasing climate forcing.
As shown in Fig. 3, the climate steadily warms and the

seasonally varying sea ice cover steadily recedes until
the pole is ice free throughout the year. The summer ice
disappears at F 5 2.5Wm22 and the winter ice at F 5
11Wm22 (see also Fig. 4a).

c. Test for hysteresis

It is noteworthy that the sea ice declines smoothly,
with no jumps occurring during the transition from
perennial sea ice to seasonally ice-free conditions and
then to perennially ice-free conditions. Rather, the
summer and winter sea ice edges both respond fairly
linearly to F (dashed lines in Fig. 3). This can similarly

FIG. 2. Simulated climate in the default parameter regime. Contour plot of the seasonal cycle of (a) surface enthalpyE(x, t), (b) surface
temperatureT(x, t), and (c) sea ice thickness h(x, t). The black curve in (a)–(c) indicates the ice edge. (d) Surface temperatureT in summer
and winter, corresponding to dashed and solid vertical lines in (c). (e) Ice thickness h in summer and winter where x . 0.7. (f) Seasonal
cycle of ice thickness at the pole hp. (g) Seasonal cycle of the latitude of the sea ice edge ui.
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be considered in terms of the ice area, given by Ai 5
AH(1 2 xi), where AH is the surface area of the hemi-
sphere (Fig. 4a).
Figure 4b shows that the loss of summer andwinter ice

also relates linearly to the annual-mean hemispheric-
mean temperature. The model becomes seasonally ice
free at 28C of warming, and it becomes perennially ice
free at 68C (Fig. 4b). These values compare with com-
prehensive GCM results fromArmour et al. (2011), who
find the complete loss of summer and winter ice to occur
at 48 and 78C, respectively.
After the climate has become perennially ice free, we

slowly ramp F back down again. We find that the ice
recovers during cooling along the same trajectory as the
ice retreat during warming, with no hysteresis (Fig. 4).
The linearity and reversibility of the response in the
present model is consistent with results from most
comprehensive GCMs (e.g., Winton 2006; Armour et al.
2011; Winton 2011), and it is in contrast with previous
results from EBMs and SCMs.

4. Reduction to EBM and SCM

The two standard types of idealized models discussed
above, EBMs and SCMs, both exhibit bistability of the
sea ice cover in ostensibly realistic parameter regimes.
These results can both be reproduced in the present
model. As we show in this section below, the present

model reduces to a standard EBM in the limit of no
seasonal cycle (S1 5 0), and the present model reduces
to standard SCMs at each spatial grid point in the limit of
no horizontal heat transport (D 5 0).

a. EBM regime (S1 5 0)

When the seasonal amplitude is set to zero in the
present model (S1 5 0), the steady-state solution is
equivalent to the solution of a standard annual-mean
EBM. In this limit, the equilibrium state of the system
becomes time independent, with Eq. (2) reducing to

05 aS2A2B(T2Tm)1D=2T1Fb 1F . (10)

Here, the time evolution of the enthalpyE is no longer
included, so the surface temperature can be determined
directly from this ordinary differential equation in x,
without consideration of the vertical heat conduction
within the ice.
Equation (10) is equivalent to the formulation of a

standard annual-mean EBM [e.g., Eq. (22) in North
et al. (1981)]. Analytical solutions can be found by
making use of the property that Legendre polynomials
are eigenfunctions of the diffusion operator Eq. (6).
They are, however, complicated by the dependence of
the coalbedo on T. Following Held and Suarez (1974),
we approximately solve Eq. (10) for F as a function of xi
[e.g., Eqs. (28), (29), and (37) in North et al. (1981)],
rather than vice versa. The approximate analytical so-
lution involves a sum of even Legendre polynomials,
and we retain terms up to the 40th degree, similar to
previous studies (e.g., Mengel et al. 1988).
Figure 5a shows both the analytical solution and nu-

merical model results. It illustrates the evolution of the sea

FIG. 3. Simulated warming and sea ice loss in the default pa-
rameter regime with increasing climate forcing, F. Shown are the
annual-mean (a) surface temperature T, (b) surface enthalpy E,
and (c) ice thickness h, as functions of location x and forcing F.
Black dashed lines show the summer (above) and winter (below)
locations of the sea ice edge.

FIG. 4. Simulated sea ice loss and recovery in the default pa-
rameter regime with increasing and decreasing climate forcing, F.
Shown are the ice area Ai vs (a) the forcing F and (b) the annual-
mean hemispheric-mean surface temperature anomaly. The solid
thick red and thin blue lines represent the annual-mean ice area in
the warming and cooling scenarios, respectively; note that they
coincide, implying no hysteresis. The faint solid and dashed lines
show the winter and summer ice areas in the warming scenario.
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ice edge xi under varied climate forcing F with S1 5 0 and
D 5 D*. The figure illustrates sea ice retreat in the nu-
merical simulation as F is increased (red) until an ice-free
state is reached, followed by the onset and advance of the
sea ice cover when F is subsequently decreased (blue).
The hysteresis loop corresponds to the SICI. Note

that a second hysteresis loop corresponding to the
snowball earth instability occurs in substantially colder
climates, as in standard EBMs. Figure 5a highlights the
close agreement between numerical results (blue/red)
and the analytical solution (black). It can be shown that
the climates indicated in Fig. 5 are stable where the slope
is positive (solid black) and unstable where the slope is
negative (dashed black) (North 1975a). The system
therefore does not support an ice cover with an equi-
librium ice edge poleward of xi 5 0.98, or 798 latitude.
Ameasure of the extent of bistability in the system can

be obtained by considering the width of the hysteresis
loop.We define two critical values of the forcingF: (i)Fw

is the value at which the system first transitions to a
perennially ice-free pole in a warming scenario, and (ii)
Fc is the value at which the wintertime ice cover first
reappears in a cooling scenario. These two values of F
are indicated in Fig. 5 by a red square and a blue square,
respectively. A saddle-node bifurcation occurs at each of
these values in the parameter regime shown in Fig. 5.
The width of the hysteresis loop is then defined as

DF[Fw2Fc . (11)

Note that DF may be seen as a societally relevant mea-
sure of instability and associated irreversibility, since it
indicates how much the radiative forcing would need to
be reduced for the sea ice to return after crossing a
tipping point during global warming, although it should
be noted that this requires long time scales for the cli-
mate system to equilibrate.
It is useful to also consider the hysteresis loop in terms

of the enthalpy at the pole Ep. Computing Fc and Fw

fromEp (as defined in Fig. 5b) gives equivalent results to
using xi (as defined in Fig. 5a), since the bifurcations are
associated with a transition between an ice-covered pole
and an ice-free pole. Here we use both methods in-
terchangeably to compute the bifurcation points, for
example using Ep in the numerical results when D 5 0.

b. SCM regime (D 5 0)

The present model reduces to an array of in-
dependent SCMs when meridional heat transport is
turned off by setting D 5 0. In this case no communi-
cation occurs between individual locations and the
state of each grid point is determined by the balance of
vertical heat fluxes alone. For a given value of x, Eq. (2)
reduces to an ordinary differential equation in time
representing a standard SCM [e.g., Eq. (2) in Eisenman
(2012)]. As in typical SCMs, we find bistability in the
parameter regime (D 5 0, S1 5 S1*), with DF 5
7.0Wm22.

5. Dependence of bistability on parameter values

In the previous section, we showed that the present
model reduces to an EBM when S1 5 0 and to an SCM
when D 5 0, exhibiting bistability during global warm-
ing in both regimes. However, the results in section 3b
show that there is no such bistability when D 5 D* and
S1 5 S1*. This raises the question of how spatial and
seasonal variations impact the stability of the system
when varying amounts of both are included in the model.

a. Full (D, S1) parameter space

To address this, we performed 441 model simula-
tions that explore how the hysteresis width DF varies
in the (D, S1) parameter space. We use 21 evenly
spaced values for D in the range [0, 0.76] Wm22 K21

and 21 evenly spaced values for S1 in the range [0, 351]
Wm22. In each simulation, F is ramped up and then
down, and DF is computed. The results are shown in
Fig. 6.
Figure 6 indicates how the inclusion of both spatial

and seasonal variations influences the presence of
bistability. Beginning in the EBM regime (D5 0, S1 5 S1*)
and adding a diffusivity of just D 5 0.1D* suffices to

FIG. 5. (a) Steady-state locations of the simulated ice edge (xi)
under varied climate forcing (F) in the parameter regimewhere the
model reduces to an EBM (D 5 D*, S1 5 0). The numerical so-
lution is indicated for F being slowly ramped up (red) and then
back down (blue). Stable and unstable states from the analytic
EBM solution are also shown as solid and dashed black lines, re-
spectively. (b) As in (a), but in terms of the enthalpy at the pole
(Ep) rather than the ice edge location. The vertical axis on the right
indicates corresponding values of the surface temperature at the
pole Tp (for E. 0; green) and ice thickness at the pole hp (for E,
0; orange). Both panels also indicate DF that is defined as the dif-
ference between the bifurcation pointsFc (blue square) andFw (red
square).
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eliminate any hysteresis in the model. Beginning in the
SCM regime (D5D*, S1 5 0) and adding a seasonality
of just S1 5 0.2S1* similarly eliminates any hysteresis.
Last, if both parameters are reduced by equal factors
from their default values (D 5 D*, S1 5 S1* ), bistability
does not occur until (D, S1) , 0.3(D*, S1* ). In other
words, including even a relatively small amount of
both meridional and seasonal variations destroys the
bistability that occurs in SCMs and EBMs.
The results in Fig. 6 summarize themain finding of this

study. In the following subsections we discuss the un-
derlyingmechanisms.We begin by considering the value
of DF at the origin in Fig. 6, followed by the limiting
cases along the horizontal axis (S1 5 0) and vertical axis
(D 5 0).

b. No seasonal cycle and no heat transport (D 5 0,
S1 5 0)

In the simplest version of the model there is no seasonal
cycle (S1 5 0) and no heat transport (D5 0). In this case,
Fc is the forcing associated with the pole being ice free at
T 5 Tm, and Fw is the forcing associated with the pole
being ice covered at T 5 Tm. Hence the width of the
hysteresis loop (DF) is equal to the jump in solar forcing
between ice-covered and ice-free conditions at the pole,

DF5 (a02 a2 2 ai)(S02 S2)5 36Wm22 , (12)

as can be seen from Eqs. (2)–(4). It is interesting to note
in Fig. 6 how the region of bistability connects this point
(D 5 0, S1 5 0), the standard EBM regime (D 5 D*,
S1 5 0), and the standard SCM regime (D5 0, S1 5 S1*).
This may be taken to imply that these three limiting
cases of bistability all effectively represent the same
physical process, namely multiple stable states due to
the ice–albedo feedback.

c. Stabilization from horizontal transport (S1 5 0)

Here we consider how DF varies along the horizontal
axis of Fig. 6 (i.e., in the EBM regime). Polar tempera-
tures are typically higher for larger meridional heat
transport. As D increases, the sea ice cover therefore
disappears and also reappears at lower values of F (i.e.,
Fw and Fc both decrease). This is illustrated in Fig. 7a,
where the critical forcings, Fw and Fc, are plotted versus
D for both the numerical solution and the analytical
solution discussed in section 4a. For the range of forcings
F, Fc, the model does not feature SICI bistability, with
the only stable state being a finite ice cover. Similarly, the
range F . Fw only allows stable states with an ice-free
pole. In the range Fc , F , Fw both ice-covered and ice-
free conditions are stable, resulting in SICI bistability.
These three regimes are illustrated in the inset of Fig. 7a.
The dependence of DF onD is shown in Fig. 7b. Note

that the numerical results approach the analytical results

FIG. 6. Dependence of the extent of bistability DF on horizontal communication D and
seasonal amplitude S1 summarizing the main result of this study. Parameter values associated
with typical SCMs and EBMs are indicated, as well as the default parameter values in the
present model.
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when the spatial resolution increases. We find that DF
typically decreases with increasing D, with the greatest
sensitivity of DF occurring when D is small. This in-
dicates that the introduction of diffusive communication
between different latitudes has a stabilizing effect on the
polar sea ice cover.
At a critical diffusivity Dmax (marked by a solid ver-

tical line in Fig. 7), the small ice cap instability merges
with the snowball earth instability. ForD.Dmax, there
is no stable climate with 0 , xi , 1. This property of
EBMs for large values of D has been noted previously
(Lindzen and Farrell 1977). For these values of D the
global surface temperature becomes relatively iso-
thermal, allowing stable solutions only with T , Tm

everywhere or T . Tm everywhere.
The stabilizing effect of increased diffusivity when

D,Dmax can be visualized by considering a potentialV
associated with the model evolution. We identify the
model state by the surface temperature at the pole Tp

and we define the potential such that dTp/dt52dV/dTp.
Hence valleys in V are stable equilibria and peaks in V
are unstable equilibria. The computation of V is de-
scribed in appendix C.
We compare two potentials in Fig. 8. One has a

smaller diffusivity (D 5 0.12Wm22K21) and the other
has a larger diffusivity (D 5 0.14Wm22K21). We
choose values of F such that the unstable equilibria oc-
cur at the same value of Tp, using F5 55 and 51Wm22,
respectively. As one might expect intuitively from the
effect of diffusion, the higher diffusivity is associated
with a smoother potential. In other words, there is a
smaller barrier between the two stable equilibria, which

suggests that a smaller change in forcing is necessary to
transition between the states (i.e., DF is reduced).
Note that explanations involving the diffusive length

scale associated with Eq. (10) have also been suggested
for the influence ofD on the extent of the SICI (Lindzen
and Farrell 1977; North 1984). Furthermore, the quali-
tative relationship we find between D and DF is consis-
tent with the conclusion in Eisenman (2012) that that
parameter changes in climate models that give rise to
thinner ice and warmer ice-free ocean surface temper-
atures make the system less prone to bistability.

d. Stabilization from seasonal cycle (D 5 0)

The influence of the amplitude of the seasonal cycle
(S1) in the SCM regime (D5 0) is illustrated in Fig. 9. In
this regime, Fc can be readily obtained analytically be-
cause it is the point of transition from a perennially ice-
free state, in which case the model equations are linear.
We find

Fc 5A2 [Fb 1 (a02 a2)(S02 S22 kS1)] , (13)

where k [ [1 1 (vcw/B)
2]21/2 (blue line in Fig. 9a).

The analogous relationship between Fw and S1 is
nonlinear, since Fw represents the transition from the
ice-covered regime, in which the equations are nonlinear.
However, we can consider the model as developed in
section 2a, neglecting the nonlinear ice thickness evolu-
tion added in section 2b. In this case, only the surface
albedo changes when T drops below Tm, and Fw (red line
in Fig. 9a) takes a form similar to Fc. This leads to a
hysteresis width (black line in Fig. 9b) of

DF(no ice thickness)5 (a02 a22 ai)(S0 2S2)

2 (a02 a21 ai)kS1 . (14)

FIG. 7. Dependence of the critical forcing values on D in the
EBM regime (S15 0). (a) Fc (blue) and Fw (red) vsD for numerical
results (squares) and analytical results (solid line). The inset in-
dicates the bistable regime. (b) Hysteresis width DF vs D for nu-
merical (squares) and analytical (solid line) approximate solutions.
Also indicated are the default valueD5D* (dashed vertical line)
and the value at which the SICI merges with the snowball earth
instability D 5 Dmax (solid vertical line).

FIG. 8. Potential (V) in the EBM regime (S1 5 0) with D 5
0.12Wm22K21, F[ 55Wm22 (solid) and withD5 0.14Wm22K21,
F [ 51Wm22 (dashed), illustrating how increasing D reduces
the barrier between stable equilibria by smoothing the potential
wells.
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We therefore find that even in the simple case with no
ice thickness evolution, increasing S1 reduces the pres-
ence of instability. The derivation of Eqs. (13) and (14) is
given in appendix B.
Including the ice thickness evolution enhances this

stabilizing effect. In this case Fw, and hence DF, is more
sensitive overall to S1 (red squares in Fig. 9a and black
squares in Figs. 9b). Note that the diminished slope
when S1 . 220Wm22 in Figs. 9a and 9b is associated
with the onset of seasonally ice-free conditions,
analogous to Fig. 9d of Eisenman (2012). Since there is
no smoothing of the albedo transition in the present
model, further bifurcations associated with the transi-
tions to and from seasonally ice-free conditions also
occur (not shown), as in Fig. 9h ofEisenman (2012). There
the presence of such bifurcations was suggested to be an
artifact of a single-column representation. Consistent
with this, they cease to occur whenD. 0.05Wm22K21

(not shown). However, since Fc and Fw are defined in
terms of the presence of ice in winter, seasonally ice-
free conditions do not influence the analysis here.
Equation (13) indicates that Fc increases linearly with

S1 (Fig. 9a). This can be understood by considering that
F 5 Fc is defined to be the point during a cooling sce-
nario when ice first appears at the pole. This occurs when
the winter minimum surface temperature crosses the
freezing point (i.e., when ice appears on the coldest day
of the year), at which point the ice–albedo feedback
causes an abrupt transition to a perennially ice-covered
state. In the perennially ice-free regime, the annual-mean

value of E is linearly related to F and the seasonal
amplitude of E is linearly related to S1 because the
governing equations are linear. The larger the seasonal
amplitude of E, the warmer the annual-mean value of E
can be and still have the winter minimum satisfy E , 0.
Hence, larger values of S1 are associated with larger
values of Fc. This point is illustrated schematically in
Fig. 10 (blue shading).
An analogous argument applies to Fw (red shading

in Fig. 10), which indicates the transition point when an
initially ice-covered pole is subjected to increasing F.
When the seasonal amplitude (S1) increases, the
warmest day of summer becomes ice free at an earlier
point, that is, at a smaller value of F (red shading in
Fig. 10). This argument for Fw applies exactly when ice
thickness evolution is neglected. When it is included,
the relationship becomes more complicated but the
monotonic dependence remains (red squares in Fig. 9a).
Thinking in terms of the potential as in Fig. 8, one can

visualize that a larger seasonal amplitude in forcing
causes the system to climb higher onto either side of the
well around a stable equilibrium. If the seasonal ampli-
tude is sufficiently large, then the system will cross back
and forth over the hump that separates the two stable
equilibria during the course of each year, thereby having
only a single seasonally varying equilibrium solution. A
caveat with this explanation, however, is that the po-
tential well associated with the time evolution of the
system actually varies seasonally when S1 . 0 and

FIG. 9. Dependence of the critical forcing values on S1 in the
SCM regime (D 5 0). (a) Numerical results for Fw (red squares)
and Fc (blue squares) vs S1 and the exact analytical solutions for Fc

(blue line). The exact analytical solutions for Fwwhen ice thickness
evolution is neglected is also included (red line). (b) Hysteresis
width DF vs S1 for numerical results (squares), as well as the ana-
lytical solution that neglects ice thickness evolution (solid line).
The default parameter value S1 5 S1* is indicated in both panels by
a dashed vertical line.

FIG. 10. Schematic illustrating the dependence of DF on S1 in the
SCM regime (D 5 0). Turning on the seasonal cycle causes Fc

(critical value of F in a cooling scenario; blue) to increase and Fw

(critical value of F in a warming scenario; red) to decrease. The
solid blue and red lines represent the enthalpy at the pole when
S15 0 and the colored shading represents the seasonal range at the
pole when S1 . 0. Ice is present when E , 0. The decrease in
hysteresis width associated with the inclusion of seasonal variations
is also indicated (from dark gray DF to light gray DF).
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cannot strictly be visualized as remaining constant
throughout the year.
Another feature of the climate system that is repre-

sented in comprehensive GCMs but not in idealized
models is high-frequency weather variability, which
could be viewed as noise in the context of the model
presented here. Although not included in this analysis
(cf. Moon and Wettlaufer 2013), it is likely that the ad-
dition of a simple representation of noise would stabilize
the model in a manner similar to increasing S1, further
diminishing the presence of bistability.

e. Constructing full DF(D, S1) space from limiting
cases

We can consider the influence of bothD. 0 and S1. 0
together by visualizing the combined influence of D and
S1 on the potential, adopting the crude approximation that
the potential remains constant throughout the year when
S1 . 0, as discussed above. In this picture, larger values of
S1 will remove bistability in the presence of a larger hump
in the potential well. This indicates that the influence of
increasing D (decreasing the height of the hump) and in-
creasing S1 (increasing how large a hump the system can
cross seasonally) can be added together to estimate DF.
Hence we simply add the dependence on D shown in
Fig. 7b to the dependence onS1 shown inFig. 9b to create a
conceptually more tractable estimate of the main result
of Fig. 6.
In other words, using the functional notation DF(D, S1)

as a shorthand, we approximate that

DF05DF(D, 0)1DF(0, S1)2DF(0, 0) and

DF(D, S1)5

(
DF0 , DF0$ 0,

0, DF0, 0.
(15)

Negative values of DF0 are treated as zero, because they
imply that S1 is more than large enough for the system to
cross the potential hump seasonally and hence that no
bistability occurs. The first term on the right-hand side of
Eq. (15) is given by the analytical solution fromEq. (10),
the second term is the numerical result because no an-
alytical solution of the nonlinear ice thickness evolution
was obtained for FwwithD5 0, and the third term is the
analytical expression Eq. (12). The result is shown in
Fig. 11.
It is not surprising that Fig. 11 does not exactly match

Fig. 6, giving the approximation that was made by add-
ing the two limiting cases, but the resemblance between
the two suggests that the dependence of DF onD and S1
can be qualitatively explained by considering the EBM
and SCM limiting cases in isolation. Note that this ap-
proximation to DF (Fig. 11) is smaller than the full nu-
merical solution for DF (Fig. 6) at all (D, S1) points,
which suggests that the two effects reinforce each other
in reducing the bistability.

6. Conclusions

Previous studies using seasonally varying SCMs and
spatially varying EBMs have found instabilities in the sea
ice cover associated with the ice–albedo feedback. Stud-
ies using comprehensive GCMs, however, have typically
not found such instabilities. Here we developed a model
of climate and sea ice that includes both seasonal and
spatial variations. The model accounts for the evolution
of a spatially varying surface temperature and sea ice
thickness as well as a diffusive representation of meridi-
onal heat transport. The governing equation is a partial
differential equation in time and latitude.
When the diffusivity was removed (D5 0), we showed

that themodel reduced to a standard SCM represented as
an ordinary differential equation in time with no spatial
dimension. When seasonality was removed (S1 5 0), we
showed that the model reduced to a standard EBM rep-
resented as an ordinary differential equation in latitude
with no temporal dimension. When we varied the pa-
rameters, we found that including representations of both
seasonal and spatial variations causes the stability of the
system to substantially increase; that is, any instability
and associated bistability was removed (Fig. 6).
Understanding of the underlying physical mecha-

nisms was developed by considering the effects of spatial
and temporal variations separately. To this end, we
studied the parameter regimes for which the model re-
duces to a traditional EBM and SCM, respectively. We
constructed a potential for the system with two wells
separated by a hump, and we showed that horizontal

FIG. 11. Approximation to DF(D, S1) generated by adding the
results from Figs. 7b and 9b.
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diffusion smooths the potential, reducing the height of
the hump.Meanwhile, we argued that the seasonal cycle
in the forcing can be approximately visualized as peri-
odically pushing the system up the sides of the well. The
larger the seasonal cycle, the higher the system is
pushed, and at a critical value of the seasonal amplitude
the ball will pass over the hump and seasonally transi-
tion between the two wells, thus creating a single sea-
sonally varying stable equilibrium. The combination of
smoothed potential wells and seasonal variations elim-
inates the possibility of any bistability when both pa-
rameters are increased to even relatively small values.
This result may help to reconcile the discrepancy be-

tween low-order models and comprehensive GCMs in
previous studies. Specifically, it suggests that the low-
order models overestimate the likelihood of a sea ice
‘‘tipping point.’’
It is worth emphasizing that the present model con-

tains substantial nonlinearity, including the ice–albedo
effect and factors associated with sea ice thickness
changes. Such nonlinearity has been shown in SCMs to
lead to both accelerating sea ice loss and bifurcations.
Nonetheless, the present model simulates sea ice loss
that is not only reversible but also has a strikingly linear
relationship with the climate forcing as well as with the
global-mean temperature. This is in contrast with SCMs
and EBMs, and it is consistent with GCMs. The results
presented here indicate that the nonlinearities in the
model are essentially smoothed out when latitudinal and
seasonal variations are included.
These results may have bearing on other processes in

the climate system. Previous studies have found other
phenomena that feature bifurcations in low-order
models but not in most comprehensive GCMs, such as
the Atlantic Ocean meridional overturning circulation
(e.g., Stommel 1961; Stouffer et al. 2006). The findings
presented here raise the possibility that these disparities
may be reconciled by similar mechanisms.

Acknowledgments.Weare grateful toKyleArmour and
two anonymous reviewers for helpful comments on an ear-
lier version of this article. The authors acknowledge ONR
Grant N00014-13-1-0469 and NSFGrant ARC-1107795.

APPENDIX A

Numerical Integration of Model

Here we discuss the numerical approach that we employ
to solve the model described by Eqs. (2), (8), and (9). As
mentioned above in section 2e, in order to address the issue
of diffusive heat transport between different surface

temperature regimes in Eq. (9), we create a system of
equations that can be visualized as representing two sepa-
rate layers.
Diffusion takes place in a ‘‘ghost’’ layer with tem-

perature Tg that evolves according to

cg
›Tg

›t
5

cg
tg

(T2Tg)1D=2Tg , (A1)

where cg is the heat capacity of the ghost layer, and the
first term on the right-hand side causes Tg to relax to-
ward T with time scale tg. All other processes occur in
the main layer, whose surface enthalpy evolves as

›E

›t
5 aS2A2B(T2Tm)2

cg
tg

(T2Tg)1Fb 1F.

(A2)

The temperature of the main layer T is as defined in Eq.
(9), with Eq. (8) replaced by

k(Tm 2T0)/h52aS1A1B(T0 2Tm)

2F1
cg
tg

(T02Tg) . (A3)

Note that unlike Eq. (8), which involves =2T, Eq. (A3)
can be readily solved for T0.
To demonstrate the approximate equivalence be-

tween this two-layer system and the model described in
section 2a, we begin by defining a diffusive length scale
associated with the diffusion operator in Eq. (A1), dxD
(cf. Lindzen and Farrell 1977; North 1984), and a time
scale associated with changes in T, dtT. If tg "
cgdx

2
DD

21, then the second term on the right-hand side
of Eq. (A1) can be neglected, and furthermore if tg "
dtT, then the relaxation time scale is sufficiently short
that Eq. (A1) can be approximated by Tg 5 T.
Next, we add Eqs. (A1) and (A2) to get

›E

›t
1 cg

›Tg

›t
5 aS2A2B(T2Tm)1D=2Tg1Fb 1F .

(A4)

Inserting Tg 5 T and the definition of E from Eq. (1), we
see that the second term on the left-hand side of Eq. (A4)
can be neglected as long as cg " cw in ice-free locations
and cg"Lf dh/dTg in locations with ice, where dh and dTg

are scales of the variations of h and Tg. However, the first
constraint on tg imposes a lower limit on cg, as can be seen
more clearly when the constraint is rewritten as tg/cg "
dx2DD

21. Hence in the limit of small cg, small tg, and small
tg/cg, the two-layer system described in this section re-
duces to the model comprised of Eqs. (2), (8), and (9).
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The two-layer system is considerably more amenable
to numerical integration, so we use this for numerical
solutions of themodel after verifying that our values of tg
and cg (see Table 1) are sufficiently small that reducing
them does not substantially influence the solution.
We solve the two-layer system by integrating Eq. (A1)

using the implicit Euler method, since it is effective for
solving the diffusion equation, and integrating Eq. (A2)
using the forward Euler method, since it is more straight-
forward for nonlinear systems. We use the same time step
Dt for both equations, which simplifies the coupling.
Numerically, Tg is given as a vector of length n, com-

puted at each point in the domain x 5 [Dx/2, 3Dx/2, . . . ,
1 2 Dx/2], where Dx 5 1/n. The diffusive term D=2Tg is
computed using the finite difference operator d for the
Laplacian, where d is a matrix with nonzero elements

dj, j215 lj21 , j5 [2,n] (subdiagonal) ,

dj, j52(lj211 lj) , j5 [2,n2 1] (diagonal), and

dj, j115 lj , j5 [1,n2 1] (superdiagonal) ,

and diagonal end terms

d1,152l1 and dn,n52ln21 ,

with lj [ (12 ~x2j )/Dx
2 and ~xj [ [0, Dx, . . . , 12 Dx] (Bitz

and Roe 2001). Note that d is a tridiagonal matrix and
hence rapidly invertible, which allows for efficient im-
plicit Euler time stepping of Eq. (A1). Note that the
inverted matrix used to solve Eq. (A1) for Tg contains
not only d but also T and therefore needs to be com-
puted at each time step.
We further verified the numerical validity of this two-

layer approach by removing the melting ice condition
from Eq. (9). This creates an unphysical situation where
the ice surface temperature is allowed to be greater than
Tm, but it makes the system of Eqs. (2), (8), and (9) more
amenable to numerical integration. In this case, the one-
layer system of Eqs. (2), (8), and (9) can be directly
solved by a single equation that represents an implicit
Euler time stepping of T where E . 0 and a forward
Euler time stepping of h where E , 0 (cf. Bitz and Roe
2001). We found that numerical integrations of the one-
layer and two-layer representations of the system with
this adjustment to Eq. (9) were consistent.

APPENDIX B

Analytic Solution for Fc when D 5 0

Here we derive the analytic expression Eq. (13), giving
the critical forcing at which ice first appears at the pole

in a cooling scenario in the limit of no heat transport (D5
0). At the pole (x5 1), the evolution of the system ofEqs.
(2), (8), and (9) under ice-free conditions is given by

cw
dT

dt
5A11A2 cosvt2B(T2Tm) , (B1)

where

A1[ (ao 2 a2)(S02 S2)2A1Fb 1F and

A2[2(ao2 a2)S1 .

Note that there is no spatial derivative in this case, since
heat transport is set to zero. The solution to this linear
system is

B(T2Tm)5A1 1A2k cos(vt2f) , (B2)

with k [ [1 1 (vcw /B)
2]21/2 and f [ tan21(vcw/B) 5

2.94 months. A transient term associated with the ini-
tial condition is not included in the solution Eq. (B2)
since we are interested in the spun-up model behavior.
Ice appears when the winter minimum value of T drops
below Tm. This minimum occurs at t 5 f/v. Substitut-
ing this into Eq. (B2), setting T 5 Tm, and solving for
the critical forcing F5 Fc, leads to Eq. (13) in section 4.
In the model without ice thickness evolution, Fw is ob-
tained in the same way, but with A1 5 ai(S0 2 S2)2 A1
Fb 1 F and A2 5 aiS1. Equation (14) is then given from
Fw 2 Fc.

APPENDIX C

Calculation of Potential Wells

The potential (V) in the EBM regime is calculated
from the definition dV/dTp 5 2dTp/dt. Since we are
considering the EBM regime, we consider solutions of
the time-varying system discussed in section 2b, in which
Tp is proportional to Ep. A complication is that the state
of the EBM requires the full temperature field T(x),
rather than just Tp [ T(1), to be uniquely determined.
Here we take the crude approach of considering only
temperature fieldsT(x) that are the equilibrium solution
for some value of the forcing F.
For notational convenience we define the net energy

flux at the pole (x 5 1) when F 5 0 as

fp(T)[ (aS)x512 (A1BTp)1 (D=2T)T5T
p
1Fb .

(C1)
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From Eqs. (1), (2), and (C1), since we are not including
ice thickness, we then have

cw
dTp

dt
5F1 fp(T) . (C2)

The potential depends on the rate at which a transient
or initial value of Tp 5 Ti

p relaxes toward equilibrium
for a given value of F. Defining Fi as the forcing for
which Ti is the equilibrium temperature field with Ti

p at
the pole, we can write 0 5 Fi 1 fp(T

i), or

fp(T
i)52Fi . (C3)

When this temperature field is subjected to the forcingF,
the polar temperature initially evolves as

cw
dTp

dt
5F1 fp(T

i)5F2Fi . (C4)

The potential V(Tp) for a given forcing F is then
computed by integrating

dV

dTp

52
dTp

dt
5

1

cw
(Fi 2F) (C5)

over a range of initial values of Ti
p with associated

equilibrium forcing values Fi. This gives

V(Tp)5
1

cw

ðT
p

T
r

(F2Fi) dTi
p1 c , (C6)

where Tr is an arbitrary reference temperature and c is a
related constant of integration. The analytical EBM
solution [Eq. (10)] discussed in the main text is ex-
pressed in terms of F as a function of xi using Legendre
polynomials to the 40th degree. The field T(x) associ-
ated with xi can be computed [Eqs. (25)–(31) in North
et al. (1981)]. Here we consider only the value at the pole
Tp[ T(1) and the analytical solution is used to express a
complicated function for F(Tp). We insert this for Fi 5
F(Ti

p) in Eq. (C6) and calculate the integral numeri-
cally. The resulting potential V(Tp) is shown in Fig. 8
for two different values of D and F.
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