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SUMMARY

The interspecies exchange of metabolites plays a
key role in the spatiotemporal dynamics of microbial
communities. This raises the question of whether
ecosystem-level behavior of structured communities
can be predicted using genome-scale metabolic
models for multiple organisms. We developed a
modeling framework that integrates dynamic flux
balance analysis with diffusion on a lattice and
applied it to engineered communities. First, we pre-
dicted and experimentally confirmed the species
ratio to which a two-species mutualistic consortium
converges and the equilibrium composition of a
newly engineered three-member community. We
next identified a specific spatial arrangement of
colonies, which gives rise to what we term the
‘‘eclipse dilemma’’: does a competitor placed be-
tween a colony and its cross-feeding partner benefit
or hurt growth of the original colony? Our experimen-
tally validated finding that the net outcome is
beneficial highlights the complex nature of metabolic
interactions in microbial communities while at the
same time demonstrating their predictability.

INTRODUCTION

Although often studied alone in well-mixed flasks, most micro-

bial organisms live in multispecies, structured, and highly dy-

namic consortia (Denef et al., 2010; Dethlefsen et al., 2007;

Lozupone et al., 2012; Ramette and Tiedje, 2007; Xavier and

Foster, 2007). Interactions of microbes with each other and
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with the environment play a fundamental role in the evolution

and dynamics of these communities. Many of these interactions

are mediated by the uptake and excretion of small molecules,

produced and degraded by the metabolic network encoded

within each organism. In turn, the ensuing spatiotemporal

changes of nutrients and by-products in the environment

continually modify the conditions sensed by individual cells,

causing transient niches and context-dependent interspecies

interactions.

Given this complexity, one may ask whether a suitable

mathematical modeling framework could help bridge the

gap between metabolic strategies of individual species and

ecosystem-level dynamics. Such a framework would be a

powerful instrument for microbial ecology, with potential impact

on research areas as diverse as biogeochemical cycles (Falkow-

ski et al., 2008), the health-balancing role of the human micro-

biome (Lozupone et al., 2012; Turnbaugh et al., 2007), and

synthetic ecology (Klitgord and Segrè, 2011; Park et al., 2011;

Shou et al., 2007). Moreover, fundamental questions on the

stability (May, 1973; Mougi and Kondoh, 2012) and diversity

(Curtis et al., 2002; Gudelj et al., 2010) of microbial ecosystems,

the evolution of cooperation (Harcombe, 2010; Xavier and

Foster, 2007), and the emergence of multicellularity (Pfeiffer

and Bonhoeffer, 2003) lie precisely at the boundary between

the metabolic requirements of individual species and the com-

munity-level implications of shared resources.

The past decade has seen the emergence of several novel

experimental systems for investigating the dynamics of struc-

tured microbial consortia. For example, spatial structure was

shown to be critical for maintaining diversity in systems with

antagonistic interactions, ranging from chemical warfare (Kerr

et al., 2002) to predator-prey behavior (Balagaddé et al., 2008),

as well as beneficial interactions (Kim et al., 2008). In terms of

metabolism, a variety of novel, engineered mutualisms between
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codependent strains have been developed (Harcombe, 2010;

Hillesland and Stahl, 2010; Shou et al., 2007). These include

a laboratory-evolved costly cooperation between Salmonella

enterica serovar typhimurium LT2 and an auxotrophic Escheri-

chia coli K12 strain (Harcombe, 2010), which we use as a starting

point in the current work.

Although some qualitative results, such as the importance of

spatial structure in a two-species system, are consistent with

theory on the evolution of cooperation (Sachs et al., 2004),

broader andmore quantitative predictions such as species ratios

or interactions between a larger number of players are unex-

plored experimentally and computationally. How predictable

are consortia compositions in spatially structured environments,

and how strongly are they affected by initial species fre-

quencies? Can stable systems be engineered with more than

two species? Can interspecies interactions in syntheticmicrobial

consortia emerge as a consequence of individual species solv-

ing their own metabolic resource allocation problem?

From a theoretical perspective, these questions bridge multi-

ple distinct scales, from individual intracellular reactions, up to

the spatial distributions of multiple species and environmental

metabolites (Gudelj et al., 2010; MacLean and Gudelj, 2006).

Classical ordinary differential equation (ODE) models have

been shown to recapitulate colony diameter and height as a

function of time (Kamath and Bungay, 1988; Pipe and Grimson,

2008; Pirt, 1967; Rieck et al., 1973). Agent-based models have

successfully shown how colony morphology arises as an emer-

gent property of the behavior of individual cells or clusters of

cells (Ben-Jacob et al., 1998; Kreft et al., 1998, 2001; Xavier

et al., 2005). However, these approaches typically assume

simple interspecies interaction rules rather than computing

thembased on detailed representations of intracellular biochem-

ical networks.

In contrast, stoichiometric modeling, a class of systems

biology methods with roots in metabolic engineering, has been

shown to provide testable predictions of metabolic activity at

the whole genome scale, with no need for the hundreds of differ-

ential equations and kinetic parameters typical of classical

kinetic models. One of the most broadly used methods, flux

balance analysis (FBA) (Orth et al., 2010) assumes steady state

and optimality to predict metabolic rates (fluxes) of all reactions

in the cell, including uptake and secretion fluxes, and the amount

of microbial growth (Harcombe et al., 2013; McCloskey et al.,

2013; Segrè et al., 2002). It is important to keep in mind that

the simplifications that make FBA efficient and useful are also

among the main reasons for its limitations, including the inca-

pacity to predict intracellular metabolite concentrations, the

reliance on a predefined metabolic objective, and the need for

prior knowledge of biomass composition. Alternative uses of

stoichiometric constrains (e.g., sampling of the feasible space

[Bordel et al., 2010]), integration with high-throughput data

(Becker and Palsson, 2008; Collins et al., 2012), and thermody-

namics or economy-inspired theory (Fleming et al., 2012; De

Martino et al., 2012; Reznik et al., 2013; Schuetz et al., 2012)

are among the new directions being sought in order to overcome

some of these limitations.

Recent efforts have shown how FBA can be extended to

model metabolite-mediated interactions between different spe-
C

cies in microbial consortia (Klitgord and Segrè, 2011), e.g., by

searching for syntrophic compositions (Stolyar et al., 2007),

interaction-inducing environments (Klitgord and Segrè, 2010),

competition/cooperation balances (Freilich et al., 2011; Winter-

mute and Silver, 2010), or multilevel optima (Zomorrodi and Mar-

anas, 2012) in multispecies joint stoichiometric models, or by

implementing dynamic flux balance modeling of cocultures

(Khandelwal et al., 2013; Salimi et al., 2010). Some of these

approaches require a priori assumptions on how two species

interact, e.g., a tunable ratio of the biomass production rates

(Stolyar et al., 2007), a minimal growth rate for each species (Klit-

gord and Segrè, 2010), or different types of joint or multilevel

objective functions (Freilich et al., 2011; Wintermute and Silver,

2010; Zomorrodi and Maranas, 2012). Most importantly, to our

knowledge, these approaches have not been extended to multi-

species communities in a structured environment, although a

single-species model has been previously coupled with reactive

transport (Scheibe et al., 2009).

Here, we introduce a multiscale modeling framework that

computes ecosystem-level spatiotemporal dynamics based on

detailed intracellular metabolic stoichiometry, without any a

priori assumption on whether and how different species would

interact. Our approach, named Computation of Microbial Eco-

systems in Time and Space (COMETS), implements a dynamic

FBA algorithm on a lattice, making it possible to track the spatio-

temporal dynamics of multiple microbial species in complex en-

vironments with complete genome scale resolution. We apply

COMETS to the study of a previously built E. coli/S. enterica syn-

thetic consortium (Harcombe, 2010) and to a new three-member

consortium that incorporates Methylobacterium extorquens

AM1 into the E. coli/S. enterica system.

RESULTS

From Genome Scale to Ecosystem-Level
Spatiotemporal Models
COMETS uses dynamic flux balance analysis (dFBA) (Mahade-

van et al., 2002) to perform time-dependent metabolic simula-

tions of microbial ecosystems, bridging the gap between

stoichiometric and environmental modeling. Simulations occur

on a spatially structured lattice of interacting metabolic subsys-

tems (‘‘boxes’’), providing at the same time insight on intracel-

lular metabolic fluxes and on ecosystem-level distributions of

microbial populations and nutrients. COMETS incorporates

two fundamental steps (Figure 1; Experimental Procedures).

The first step, cellular growth, is modeled as an increase of

biomass at different spatial locations, using a hybrid kinetic-

dFBA algorithm. Each box may contain biomass for an arbitrary

number of different species. The second step consists of a finite

differences approximation of the diffusion of extracellular nutri-

ents and by-products in the environment, and of the expansion

of biomass (see Experimental Procedures). Simple diffusion sim-

ulations in absence of growth behave as expected (Figure S1,

related to Figure 1). We have incorporated multiple species

into COMETS by importing the corresponding stoichiometric

models, either from manually curated reconstructions, or from

automated pipelines that construct models from annotated

genomes and high-throughput data, such asModel SEED (Henry
ell Reports 7, 1104–1115, May 22, 2014 ª2014 The Authors 1105



Figure 1. A Schematic Representation of the Key Steps of COMETS Simulations

Schematic representation of the key steps of COMETS simulations from the level of individual boxes (top) to a whole lattice (bottom). Within each box, dFBA is

solved for each species, with uptake set by Michaelis-Menten equations (top right). These calculations amount to piecewise linear approximations of the growth

and environmental metabolites as a function of time. Classical discretization of the diffusion equation gives local rules for updating biomass and nutrients in each

box (middle). The ensuing algorithm computes ecosystem dynamics (bottom) as a function of intracellular metabolism of individual species.
et al., 2010). In addition, both spatially and molecularly complex

environments can be designed by the user through an interactive

toolbox (Figure S2, related to Figure 1) and simulation outcomes

can be analyzed through a visualization tool (Figure S3, related to

Figures 1 and 4).

COMETS Recapitulates E. coli Colony Growth on
Different Substrates
A key step toward modeling growth of spatially structured com-

munities is to make sure that the basic dynamics of colony

growth can be well captured by our computational approach,

with parameter values estimated from the literature (Table 1).

As in any FBA model, COMETS does not require intracellular

kinetic parameters. However, in analogy with previous dFBA for-

mulations, COMETS estimates the upper bounds to metabolite

uptake rates using a saturation curve, described through stan-

dard kinetic parameters Vmax and KM. In the simulations pre-

sented below, we assumed these parameters to be the same

for all metabolites. Substrate-specific values can be easily intro-

duced if known (see Experimental Procedures), though theoret-

ical considerations based on the diffusion-limited nature of

uptake kinetics suggest limited substrate-to-substrate variation

(Berg and Purcell, 1977). The effects of variations of either uni-

versal or substrate-specific uptake kinetics parameters are
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illustrated in Figure S4 (related to Figures 1 and 2), along with

sensitivity to all free parameters in COMETS. Moreover, we

show that COMETS simulations are invariant relative to small

rescaling of the space and time units (Figure S5, related to Fig-

ures 1 and 2).

As a first benchmark for COMETS, we tested its capacity to

reproduce the observation that colonies increase linearly in

diameter over time (Cooper et al., 1968; Palumbo et al., 1971;

Pirt, 1967; Wimpenny, 1979). Simulated colonies of E. coli fol-

lowed this growth pattern with only small deviations from line-

arity as result of lattice discreteness (Figure 2A). Importantly,

COMETS accurately predicted the rate of diameter increase on

a variety of carbon sources (Figure 2B) as compared to previ-

ously published data by Lewis andWimpenny (1981). These sim-

ulations with different carbon sources required only changes in

the initial environmental conditions, with no need for parameter

tuning.

Species Ratio Convergence in a Codependent Two-
Species Consortium
We next tested the ability of COMETS to predict interactions

betweenmembers of the E. coli/S. enterica synthetic consortium

mentioned above (Harcombe, 2010). In lactose medium,

Salmonella enterica Serovar typhimurium LT2 relies on carbon
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Figure 2. COMETS Predictions of E. coli Colony Growth on Various

Carbon Sources

(A) COMETS predicts that colony diameter increases linearly on glucose

(diamonds), lactate (squares), and acetate (triangles).

(B) COMETSpredictions of the rate of colony expansion (white bars) compared

to the values reported by Wimpenny (black bars, no error estimate available).

Predicted colony expansion on glucose was 16.7% slower than observed,

whereas predicted growth on lactate and acetate deviated by 2.7% and 2.2%

respectively.

Table 1. COMETS Parameters

Parameter Value Reference

Uptake Vmax 10 mmol/g/hr Gosset, 2005

Uptake Km 10 mM Gosset, 2005

Death rate 1% Saint-Ruf et al., 2004

Metabolite diffusion 5 3 10�6 cm2/s Stewart, 2003

Biomass diffusion 3 3 10�9 cm2/sa Korolev et al., 2011

Max. colony height 200 mm Lewis and Wimpenny, 1981

Oxygen concentration 250 mmol/cm2 Peters et al., 1987

Like any stoichiometric model, COMETS does not require kinetic param-

eters for intracellular reactions. However, it does require a few parame-

ters associated with the processes of diffusion, nutrient uptake, and

carrying capacity of individual boxes. We set all these basic parameters

based on values found in the literature.
aThe E. coli colony growth simulations were run with a biomass diffusion

of 3 3 10�10 cm2/s because the laboratory experiments carried out by

Lewis and Wimpenny (1981) used plates made with 1.5% agar rather

than the 0.8% agarose used in all other experiments.
by-products from an Escherichia coliK12metBmutant. Recipro-

cally, this auxotrophic E. coli requires methionine from its

partner in order to grow in minimal medium. Stoichiometric

models of each partner were modified to incorporate known

genetic constraints (Figure 3A). For the E. coli strain, the metB

mutation was incorporated by constraining to zero the flux

through the corresponding reaction (cystathionine g-synthase).

In S. enterica, methionine excretion requires gain-of-function

mutations inmetA (homoserine transsuccinylase) (S.M. Douglas,

W.R.H., C.J.M., unpublished data). This excretion was modeled

as coupled to biomass, so that as cells grew they excreted

observed levels of the amino acid. These genetic alterations

created an obligate mutualistic interaction in silico consistent

with that observed in the laboratory; neither species was able

to grow in isolation on lactose minimal media, but growth was

observed when both species were present (Figure 3B).

In order to assess whether COMETS could quantitatively cap-

ture community level behavior, we tested its ability to predict the

impact of starting conditions on species ratio in our two-species

consortium grown on solid medium (Figure 3C). COMETS pre-

dicted that, following a single 48 hr growth cycle, communities

would converge in composition even when initial frequencies

differed by two orders of magnitude (1%–99% E. coli). This

convergence was indeed observed experimentally over 48 hr,

in agreement with previous observations in other model ecosys-

tems (Estrela and Brown, 2013; Shou et al., 2007). More surpris-

ingly, COMETS also correctly predicted the species ratio to

which the communities converged in the laboratory. COMETS

predicted a composition of 79% ± 4% E. coli, which is not signif-

icantly different than the experimentally observed frequency of

78% ± 6% (mean ± SD, p = 0.67 with a two-tailed t test). As illus-

trated, for example, in Kerner et al. (2012), predicting species

stability and convergence to specific ratios based on simple

kinetic models is not a trivial challenge. Furthermore, previous

implementations of constraint-based metabolic modeling have

struggled to predict which pairs of E. colimutants would coexist,

let alone their equilibrium ratios (Wintermute and Silver, 2010).
C

AnEngineered Three-Species ConsortiumConverges to
a Stable Composition
As described above, one of the strengths of COMETS is its ability

to handle arbitrarily complex ecosystems. We therefore chal-

lenged COMETS to predict the behavior of a tripartite obligate

mutualism. Toward this goal, we experimentally engineered a

synthetic consortium that incorporates M. extorquens AM1 into

the previous E. coli/S. enterica system. This represents a signif-

icant advance in complexity relative to obligate consortia that

have been previously engineered (Harcombe, 2010; Shou

et al., 2007). M. extorquens is the best-studied model system

for C1 metabolism (Chistoserdova et al., 2009; Vuilleumier

et al., 2009) and has the ability to obtain energy, carbon, and

nitrogen from methylamine. Here, we used a DhprA strain

(Marx, 2008) that lacks a key enzyme (hydroxypyruvate reduc-

tase) for assimilating carbon from methylamine. In media with

lactose and methylamine, the DhprA M. extorquens strain relies

on acetate from E. coli, while providing the other two species

with a source of nitrogen due to dissimilation of methylamine

(Figure 4A). We identify a metabolically engineered obligate

mutualism between three species (but see Miller et al., 2010

and Kim et al., 2008 for systems that were not metabolically

engineered and Hernández-Sánchez et al., 2013 for a nonobli-

gate system).

COMETS again made accurate predictions about the obligate

nature of species interactions in the consortium (Figure 4B).

Similarly to the E. coli mutant, a model of the engineered

M. extorquens was created by constraining flux through HprA

to zero. COMETS correctly predicted that no species—nor spe-

cies pair—was capable of growth in lactose-methylaminemedia.

Only when all three species were present was sustained growth

observed both in the laboratory and in simulations.

Extending the analysis presented above for the two-species

system, we investigated the ability of COMETS to predict the

stability and steady-state community composition in our three-

species mutualism. COMETS predicted that the community

would converge to very similar species ratios from different start-

ing conditions (Figure 4C); after five growth cycles each lasting
ell Reports 7, 1104–1115, May 22, 2014 ª2014 The Authors 1107
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C Figure 3. COMETS Predictions of Growth for

a Two-Species Synthetic Consortium

(A) The consortium consists of a mutant S. enterica

that provides methionine to an auxotrophic E. coli,

obtaining carbon by-products in return.

(B) COMETS correctly predicts that coculture is

necessary for growth on lactose minimal medium.

(C) Predicted and observed species frequencies

before and after 48 hr of growth. Blue bars corre-

spond to E. coli, red bars to S. enterica. COMETS

ratios (left) represent biomass; observed values

(right) are based on cfu.

Error bars are SDs.
96 hr, there was no significant difference between species ratios

(E. coli p = 0.48, S. enterica p = 0.91,M. extorquens p = 0.50 with

a two-tailed t test). Interestingly, COMETS predicted that

M. extorquens would dominate the community despite having

the lowest maximal growth rate. Experimental observation sup-

ported the predicted convergence of community composition

over five growth cycles, and the dominance of M. extorquens

(see also Figure S3, related to Figures 1 and 4).

TheMetabolic Eclipse Dilemma: Benefit of a Competitor
in Spatially Structured Mutualism
We used the two-species consortium to investigate the influence

of spatial structure on competition in mutualistic systems. As a

first step, we tested the growth of each partner as a function of

increasing distance between them. Consistent with expecta-

tions, both the modeled colonies and the observations of the

pair exhibited decreased growth as they were initiated further

apart (Figure S6, related to Figure 5).

As growth of communities will rarely be as simple as pairwise

interactions between microcolonies, we then asked how addi-

tional colonies influence pairwise interactions. When essential

metabolites diffuse from a point source one might expect that

colonies have an ‘‘eclipse’’ effect, casting a resource shadow

that reduces the metabolites available to more distant colonies.

Based on this logic, one would expect that the growth rate of a

colony would be reduced if a competitor colony is placed be-

tween the colony and a mutualistic partner (Figure 5A). The

extent of negative impact should scale with the rate at which

the intermediate colony removes metabolites from the environ-

ment. On the other hand, one could argue for an opposite

outcome, i.e., that the newly interposed colony, by helping the

mutualistic partner, will ultimately benefit the original colony.

Intuition alone cannot provide an answer to this conundrum,

because its solution depends on the balance among the meta-

bolic rates of the different species, the spatial organization of

the colonies, and the diffusion rates.
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We used COMETS to simulate the

outcome of this gedanken experiment.

COMETS predicted that a colony of wild-

type S. enterica (whose model lacks the

imposed methionine excretion of the

mutualistic strain) would rapidly remove

carbon from its surroundings and diminish

the growth of a more distant colony of
mutualistic S. enterica (Figure 5B). However, if the intermediate

colony were another mutualistic S. enterica, then, based on

COMETS, the growth of the distal colony would end up being

larger than in the absence of an interfering colony. Though this

effect is predicted to be time dependent, it holds over a substan-

tial temporal window (Figure 5B).

We then tested the computational predictions experimentally

and found that after 10 days a colony of S. enterica eclipsed

by a methionine-excreting competitor produced more biomass

than in the absence of a competitor (Figure 5C, p = 0.02 with a

two-tailed t test). The intermediate colony increased the growth

and excretion of a mutualistic partner, and this amplifying effect

outweighed the influence of competition for carbon. In addition

to correctly predicting these qualitative behaviors, COMETS

also predicted the ratio of distal colony biomasses in the three

scenarios (Figure 5C). The difference in the timing at which these

ratios were observed (experiment, 240 hr; model, 110 hr) may be

partially ascribed to the fact that COMETS does not take into

account lag time nor changes in diffusion due to plate drying

over this long period.

Thus, based on both the model and the experiment, the meta-

bolic eclipse has the nonintuitive outcome of benefiting the

colony that is being eclipsed. Additional insight on the details

of this phenomenon would require experimental measurements

of metabolite concentrations at different points in space and

time, e.g., using imaging mass spectrometry (Louie et al.,

2013; Watrous and Dorrestein, 2011). Although this is beyond

the scope of the current work, we can use COMETS to provide

some preliminary theoretical insight, by taking advantage of

its capacity to record simulated fluxes and metabolites at any

given time and location for all organisms. This is best illustrated

in the heatmaps of Figure 6, which display snapshots of

key intracellular transport fluxes (for acetate, methionine, and

oxygen), and of the corresponding environmental metabolite

concentrations, across different organisms, spatial locations,

and time points. Themaps provided putative mechanistic insight
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Figure 4. COMETS Predictions of Growth

for a Three-Species Consortium

(A) A mutantM. extorquens AM1 was added to the

two-species system. The M. extorquens lacks

hprA, so it relies on carbon from E. coli, while

providing the other two species with a source of

nitrogen.

(B) COMETS correctly predicts that all three

members of the consortium are necessary for

growth on lactose/methylamine minimal medium.

(C) Species frequencies before and after five

transfers. Blue bars correspond to E. coli, red bars

to S. enterica, and green bars to M. extorquens.

COMETS ratios (left) represent biomass; observed

values (right) are based on cfu. Error bars are SDs.
into how heterogeneity in metabolic phenotypes determined

local community composition and function, ultimately driving

ecosystem-level dynamics. For example, is it possible to see

how acetate uptake/secretion rates diverge over time, matched

by methionine fluxes in the opposite directions, and rising levels

of oxygen consumption. Helpful insight on the eclipse dilemma

can be obtained by further elaboration of the computational

data illustrated in Figure 6. In particular, by using the flux values

across the different colonies and time points, we were able to

determine that the distal S. enterica colony took up a lower

percentage—but a greater amount—of the acetate excreted by

its partner when a competitor was present (Figure 5D).

DISCUSSION

Our results demonstrate that interspecies interactions and

microbial community dynamics can emerge as the conse-

quence of individual species locally optimizing intracellular

resource allocation. We have used synthetic two- and three-

species consortia whose growth depends upon metabolic

exchange to experimentally test the predictions of a computa-

tional framework that is based entirely on this individual

optimality postulate. This approach requires very few free

parameters and no a priori assumptions on whether or how

species would interact. One notable exception is the need to

impose that S. enterica secretes methionine as it grows. This

requirement, not unlike other flux constraints added in FBA

models to match empirical knowledge (such as the mainte-

nance flux), is a consequence of the fact that the specific strain

used in the experiment has evolved this secretion capacity as a

new trait. Such a trait could not possibly be captured by the

standard S. enterica FBA model. This current limitation could

be addressed by adding in COMETS the capacity for organ-

isms to evolve, i.e., undergo mutations (e.g., in the form of

random changes in constraints) and selection (competition

between newly emerged variants).
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Data from both two- and three-species

consortia confirmed predictions that they

would repeatedly converge to a steady-

state composition even from different

starting conditions. The convergence of

the two-species consortium is similar to
observations with auxotrophic yeast (Shou et al., 2007); our re-

sults indicate that this robust behavior extends to the three-

species consortium. Here, there was a potential tension between

mutualistic interactions and direct competition for limiting nutri-

ents, such as S. enterica and M. extorquens competing for

acetate, and E. coli and S. enterica competing for ammonia.

Particularly surprising was the accuracy of the prediction

that the three-species consortium would be dominated by

M. extorquens—the strain with the slowest maximal growth

rate. Whereas the potentially rapid E. coli and S. enterica faced

dual limitations (methionine and N or acetate and N, respec-

tively), M. extorquens could access N and energy from

methylamine, and the limiting acetate was only required for

assimilation. These results are noteworthy in light of the exciting

possible opportunities of using synthetic ecology to design

microbial consortia for biomedical and metabolic engineering

applications. For this goal to come to fruition, it is critical to be

able to predict how synthetic communities behave through

time, even in heterogeneous environments, such as the lining

of a human gut, or the architecture of a leaf. We demonstrated

here that the dynamics are repeatable not only within replicates,

but between treatments with different starting conditions.

Our experiment on the metabolic eclipse provided a specific,

subtle example of COMETS arbitrating between the positive

and negative effects that arise from the spatial organization

of colonies at a given scale. That proximity of a conspecific

competitor could be an advantage due to the stimulation of a

shared mutualistic partner highlights the utility and importance

of spatially explicit experiments when investigating the nature of

interactions in microbial communities. More broadly, the balance

between positive and negative effects that arise from local inter-

actions determines changes in community properties such as

composition and function and has important implications for the

evolutionary dynamics of microbial systems. For example,

whether cooperation is selected in structured environments criti-

cally depends not only on thequalitative existence of benefits and
5, May 22, 2014 ª2014 The Authors 1109



Figure 5. Setup and Results of the Meta-

bolic Eclipse Simulations and Experiments

(A) Setup of the eclipse experiment. The diagram

illustrates the positions of the colonies, and the

naive expectation that growth of distal S. enterica

colonies (red circles next to numerals) would be

reduced by placement of a competitor between

the distal S. enterica and its obligate mutualistic

partner E. coli (blue circles). Relative anticipated

growth is represented by gray arrows, methionine

diffusing from S. enterica colonies is displayed in

red, and carbon by-products diffusing from E. coli

are displayed in blue. Here, S* represents the

methionine-excreting S. enterica, whereas S rep-

resents the wild-type S. enterica.

(B) COMETS predicted that wild-type S. enterica

between E. coli and the distal colony would reduce

its growth (line (ii)) as compared to the no

competitor scenario (line (i)). However, if a second

colony of the same methionine-excreting

S. enterica is placed in the middle, it increases

growth of the distal colony (line (iii)).

(C) Growth of the distal colonies standardized

to scenario (i) for the case with no competitor (i),

wild-type competitor (ii), and mutualistic compet-

itor (iii). COMETS ratios (left three bars) represent

biomass; experimental values (right three bars) are

based on cfu. Error bars are SDs.

(D) Acetate uptake of distal colonies (i) and (iii)

in COMETS. The fraction of acetate is the total uptake of the distal colony divided by the total acetate excretion of its partner. The amount of acetate is

the total moles taken up by each colony during the first 89 hr (i.e., before any E. coli start to utilize acetate).
costs, but on the quantitative balance between these interactions

(Bull andHarcombe, 2009).COMETShas thecapacity to evaluate

the impact of conflicting types of interactions. For example,

the observed dichotomy between fractions and amounts of

exchanged nutrients between different species (Figure 5D) may

provide a useful starting point for studying the complexity of

cross-feeding interactions in natural ecosystems. Moreover,

although in this work we focus on interspecies interactions,

COMETS can be used to study phenotypic diversity and meta-

bolic heterogeneity within individual colonies. The 3D version of

COMETS (under development) will enhance this type of analysis,

because it will explicitly account for changes in diffusivity for

different molecules (including oxygen) through the colony itself.

The prominent role of optimization in flux balance in general,

and in COMETS in particular, deserves further reflection. In

COMETS, each organism operates based on its own objective

(maximizationofbiomass, in thecurrentwork) given thesurround-

ing nutrient availability. Note that the same species in different

spatial locations (in the same in silico experiment) may utilize re-

sources differently (e.g., oxygen-limited biomass in one location

will have different physiology than carbon-limited biomass in

another). This is an important difference from approaches that

optimize the interests of the group and is a central component

of COMETS’ ability to accurately predict species ratios. However,

even the assumption that evolution has acted on a population to

optimize a simple objective has been challenged by new data

and analyses (Harcombe et al., 2013; Schuetz et al., 2012).

Indeed, it is unlikely that any single objective function could faith-

fully represent the possible spectrum of metabolic strategies

across many different conditions. Future work could explore
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howCOMETSpredictions change upon implementing alternative

condition-dependent objective functions. Such objective func-

tions could be linear or quadratic (Segrè et al., 2002) and could

include constraints associated with genetic regulation (Becker

and Palsson, 2008; Collins et al., 2012).

Future elaborations of COMETS can be envisioned to incorpo-

rate additional aspects of microbial physiology that play an

important role in microbial ecosystems, such as chemotaxis,

quorum sensing, and antibiotic warfare. For example, chemo-

taxis could be modeled using nonisotropic diffusion, as a func-

tion of specific metabolite gradients. Toxins or antibiotics could

be modeled as additional diffusible molecules that affect the

death rate of specific organisms. The fact that COMETS per-

formed so well despite lacking these important components is

likely a consequence of our use of communities designed to

strongly rely on metabolic-based interactions. At the same

time, metabolism plays a fundamental role in many microbial

systems, and it will be interesting to use COMETS as a null model

to explore whether metabolic interactions are sufficient to

explain ecosystem dynamics. Although no preliminary assump-

tion needs to be made about which nutrients may mediate an

interaction, COMETS can be extended to arbitrarily complex

metabolic interdependencies. For example, as shown here, ex-

tending a consortium from two way to three way requires no

additional assumptions or effort, other than modifying the initial

conditions. Along the same line, COMETS can be extended to

any number of species (including genetically modified strains),

while increasing at most linearly in computational complexity.

The increasing flow of metagenomic sequencing data pro-

vides top-down observational insight into the taxonomic and



Figure 6. COMETS Predictions of Metabo-

lites and Fluxes during the Metabolic

Eclipse

Heatmaps of the spatial distributions of exchange

fluxes (left side, 3 by 5 set of heatmaps), metabo-

lite concentrations (right-side, copper-toned, 3 by

5 set of heatmaps) and growth rates (top-right,

gray-shaded heatmaps) are shown at different

time points during the ‘‘metabolic eclipse’’ simu-

lation described in Figure 5. The legend in the top-

left corner shows the relative positions of the

simulated colonies, as in Figure 5A (E = E. coli; S =

S. enterica). Fluxes (left) are scaled from excretion

(blue) to uptake (red) for each lattice box at each of

five time points for three key metabolites (acetate,

methionine, and oxygen). Metabolite concentra-

tions scale from low (dark) to high (bright). Fluxes

are normalized across all time points; metabolites

are normalized within each time point (to make

early low concentration levels visible).
functional dynamics of microbial communities in different envi-

ronments. Our work shows that there is a complementary, mech-

anistic, bottom-up way of studying how ecosystem dynamics

may be ultimately understood in terms of its constituents’

genomes. This approach is directly amenable to experimental

testing and paves the way for new computationally driven direc-

tions in synthetic ecology. Despite the fact that our current work

has been focused on small engineered communities, the con-

cepts and algorithms we developed should be applicable and

relevant to natural microbial consortia as well.

EXPERIMENTAL PROCEDURES

COMETS Variables

COMETS simulates the biomass andmetabolite dynamics of multiple microbi-

al species in physical space. Physical space (in 2D) is discretized into

what could be thought of as an N by M grid of ‘‘boxes’’ whose location is

defined by a pair of coordinates (x,y), with x = 1,.,N and y = 1,.,M. Each

box corresponds to a square of size L by L, where L is theminimal length scale,

or the spatial resolution of COMETS (see Supplemental Experimental

Procedures).

Each box can contain different microbial species and extracellular metabo-

lites. Microbial species’ abundances are described as the amounts of the cor-

responding biomass in each box. We denote with Ba
(x,y) the amount (in g dry

cell weight) of biomass of species a present in a box at position (x,y), and

with Qm
(x,y) the amount (in mmol) of metabolite m present in a box at

position (x,y). Note that both biomass and metabolite abundances are time-

dependent variables, i.e., Qm
(x,y) = Qm

(x,y)(t) and Ba
(x,y) = Ba

(x,y)(t). For each

metabolite in each box, we can define a concentration Cm
(x,y) = Qm

(x,y)/V in

mmol/ml.

Biomass in each box can increase due to cellular growth, or decrease due to

microbial death. In addition, upon growth, biomass can expand from a given

box to a neighboring one, a process that we currently model as slow diffusion.

Metabolite levels in each box can change due to secretion or uptake by the

microbial biomass present in the same box, or due to diffusion in/from neigh-

boring boxes. The details of how biomass and metabolite levels change are

described next.
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COMETS Biomass Dynamics

The amount of biomass produced by a given pop-

ulation of microbes per unit time is estimated

based on the nutrients available in the environ-

ment, and on the capacity of the organism’s meta-
bolism to transform such nutrients into biomass. Toward this goal, we employ

a pseudodynamic version of FBA known as dynamic FBA, or dFBA (Mahade-

van et al., 2002; Orth et al., 2010).

Following a standard notation, we call Sa the stoichiometric matrix of a spe-

cies a. Matrix element Sa
i,j denotes the number of molecules of intracellular

metabolite i that participate in reaction j (positive if metabolite i is a product,

negative if it is a reactant). Each reaction is associated with a flux vaj (measured

in mmol/(gDW*hr), giving rise to a vector va. The basic linear programming

problem of FBA (for species a) can be written as follows:

Maximize ZTva

Subject to Sava = 0
LBa

j %vaj %UBa
j j = 1;.; n

Equation 1

where Z defines the objective function, taken to be by default maximization of

biomass production (see Discussion). The vectors LBa andUBa correspond to

the lower and upper bounds to all fluxes respectively. As detailed below, the

dynamic calculation of these bounds is an important aspect of COMETS.

In the dFBA formulation of COMETS, each step, for each species, consists

of two main processes:

(1) Calculation of upper bounds for uptake rates. In line with previous FBA

computations, exchange fluxes balance flow in and out of each model

(see Orth et al., 2010 for additional discussion). What is unique to the

dFBA formulation of COMETS is the implementation of additional envi-

ronment-dependent constraints on these uptake/secretion fluxes.

Upper bounds on uptake fluxes for the dFBA calculation are estimated

based on a concentration-dependent saturating function, in analogy

with Michaelis-Menten kinetics (Feng et al., 2012). Given an environ-

mental concentration Cm of m (in a given box), the upper bound to

um is given by the following saturation curve:

UBa
m =

Va;m
max½Cm�n

½Cm�n +Ka;m
M

; Equation 2

where n is a Hill coefficient (currently set to 1), Va;m
max is the maximal rate,

and Ka;m
M is a binding constant.

(2) Solution of FBA problem and update of biomass and extracellular

metabolite levels. Upon setting all upper bounds based on the
5, May 22, 2014 ª2014 The Authors 1111



dynamically changing environmental concentrations, an FBA problem

is solved for each species in each box, as described in Equation 1.

Next, the abundances of biomass (for all species) and environmental

metabolites are updated in each box, according to the following

discrete update rules:

Ba
ðx;yÞðt +DtÞ=Ba

ðx;yÞðtÞ+Ba
ðx;yÞðtÞ,vagrowth,Dt

Qm
ðx;yÞðt +DtÞ=Qm

ðx;yÞðtÞ+ ua
m,B

a
ðx;yÞðtÞ,Dt;

where vagrowth is the growth rate of the corresponding species (in that

specific box, [x,y]), and uam is the rate of uptake/secretion of metabolite

m by species a.

Thus, starting with a user-defined initial condition, a dFBA time step is per-

formed on each box in the grid. Each box is updated independently. If there are

multiple species present in a single box, they compete for media and space

(i.e., a preset total carrying capacity per box). In this case, the order in which

FBA is done is randomized among the species in each box.

In addition to biomass increase due to cellular growth, at each time cycle

COMETS evaluates the extent of biomass reduction, due to dilution or cell

death.

Diffusion

Diffusion steps are alternated with growth steps, predicting how biomass and

extracellular metabolites propagate across the lattice. COMETS numerically

computes approximate solutions to the standard two-dimensional diffusion

equation on a 2D lattice, by using an alternating direction implicit (ADI) scheme

with a central difference formulation (Peaceman and Rachford, 1955) as used

in similar individual-based models (Chung et al., 2010; Gerlee and Anderson,

2008) (see Figure S1). This diffusion step is applied to biomass and media

with substantially different diffusion coefficients. If the different species in

the model are not allowed to exist in the same box (an option set by the

user), then they undergo diffusion in random order; all boxes occupied by other

species are treated as Neumann boundaries. Diffusion is applied separately to

each medium component. Although metabolite-specific diffusion constants

may be introduced if known, here we use the same value for all metabolites.

Some boxes may represent physical barriers, which could be used to model

different environmental topologies (e.g., Petri dish or a microfluidic device).

COMETS Download

COMETS executables, code, instructions, and examples can be downloaded

at http://comets.bu.edu (see also Figure S2, related to Figure 1).

In Silico Experiments

We tested the predictive power of COMETS with metabolic models of E. coli

(iJO_1366) (Orth et al., 2011), S. enterica (iRR_1083) (Raghunathan et al.,

2009), and M. extorquens AM1 (Klitgord and Segrè, 2010). Standard FBA

models were converted to COMETS format with the script provided on the

COMETS website. Mutant E. coli andM. extorquensmodels were constructed

by constraining flux through knocked out reactions to zero. A mutant

S. enterica model was constructed that excreted methionine at a rate consis-

tent with empirical observations. To achieve this, we added on the right side of

the growth reaction 0.5 mmol/gDW of excreted extracellular methionine,

balanced by an equal amount of intracellular methionine consumed (at the

left side of the reaction equation). A DhprA M. extorquens model was con-

structed by constraining flux through the knocked out reaction to zero.

In silico environments were consistent with carbon limited minimal media

(Table S1). Square lattices were constructed with individual boxes either

0.02 (Figure 2) or 0.05 cm a side (Figures 3, 4, 5, and 6). The amount of carbon

under each box was calculated based on standard 25 ml plates (for example,

5 g/l glucosemediawas implemented as 0.0088mmol/cm2). Oxygen depletion

has been observed inside colonies (Peters et al., 1987; Wimpenny and

Coombs, 1983) so oxygen concentrations were constrained to 0.25 mmol/

cm2. Trace metals and other minor components of media were provided at a

concentration of 1,000 mmol/box so that they were not limiting.
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Simulations were executed with parameters based on published values (see

also Table 1). Metabolite diffusion was set to 53 10�6 cm2/s in agreement with

sugar diffusion in Stewart (2003). Biomass diffusion was set to 33 10�9 cm2/s

for most simulations based on Korolev et al. (2011). The colony expansion sim-

ulations were run with a biomass diffusion of 3 3 10�10 cm2/s because they

were carried out on 1.5% agar plates rather than the 0.8% agarose used in

all other experiments. Michaelis-Menten parameters were set to canonical

values of Km = 0.01 mM and Vmax = 10 mmol g�1 hr�1 for all metabolites,

well within the range of observed values (Gosset, 2005). An upper bound on

biomass per box on the lattice was set based on the observation that E. coli

colonies do not exceed a height of approximately 0.2 mm (Lewis and Wim-

penny, 1981). Cell death rate was set to 1% per time step (Saint-Ruf et al.,

2004). The time step for all simulations was 0.1 hr.

Strains Used Experimentally

The experimental data we collected involved strains of E. coli K-12, S. enterica

LT2, and M. extorquens AM1. The E. coli was an isolate from the Keio collec-

tion (DmetB CGSC# 10824, [Baba et al., 2006], erroneously referred to as

DmetA in Harcombe, 2010) with the lac operon replaced via conjugation

with E. coli HfrH PO1 relA1 thi-1 spoT supQ80 nad57::Tn10. The methionine

excreting S. enterica LT2 mutant was created through a combination of

engineering and selection (Harcombe 2010). The DhprA M. extorquens was

created previously (Marx, 2008).

Colony Expansion Comparisons

The E. coli colony growth dynamics were compared to results from Lewis and

Wimpenny (1981). Theymademinimal media plates with 15 g/l bacto-agar and

0.5% (w/v) of glucose, lactate, or acetate. Plates were inoculated with a glass

needle technique, incubated at 37�C, and measured microscopically. Average

profiles were determined and used to calculate the radial growth rate. These

data were compared against COMETS by simulating growth of a colony on

each of the carbon sources. Colonies were initiated with 3 3 10�7 g biomass

in the center of a 50 3 50 lattice with a box width of 0.02 cm. The diameter at

various time points was based on the number of boxes with more than 10�7 g

biomass/box along a horizontal line through the center of the colony.

Two-Species Consortium

The two-species ratio tests involved mixed cultures grown as a lawn on petri

dishes or in simulations. Experimentally, E. coli and S. enterica were grown

overnight in permissive media and then mixed at a ratio of 1:99 and 99:1.

Five microliters of thesemixtures was spread on 5mmplates of lactose Hypho

minimal media (2.92 mM lactose, 7.26 mM K2HPO4, 0.88 mM NaH2PO4,

1.89 mM [NH4]2SO4, 0.41 mM MgSO4, 1 ml of a metal mix based on Delaney

et al., 2013 [recipe in Table S2]). The plates were allowed to grow for 2 days

at 37�C. At the end of this time, colony-forming units (cfus) were determined

by washing and scraping plates with 720 ml of minimal media and then

spreading dilutions on LB plates. On LB, both E. coli and S. enterica can

grow independently, and X-gal (5-bromo-4-chloro-3-indolyl-b-D-galactopyra-

noside) was included in the plates so that blue E. coli colonies could be distin-

guished from white S. enterica colonies. Comparison to COMETS was carried

out by randomly distributing 100 boxes in the relevant species ratios each with

33 10�7 biomass across a 253 25 lattice (individual box width = 0.05 cm). Cell

overlap was allowed and the total biomass of each type was determined after

48 hr of simulated growth. Three replicate simulations were carried out for

each treatment.

The impact of space and orientation on the consortium involved detailed

placement of cells. Wet lab experiments were carried out with overnight

cultures of E. coli and S. enterica that were washed and concentrated to

�109 cells/ml. Cells were added to wells in a 384-well plate in the desired

layout. A 384-pin head was then used to stamp the cells onto a petri dish so

that E. coli was inoculated 10 mm from distal S. enterica, and when relevant

intermediate S. enterica was exactly halfway between. Different treatments

were separated by 30 mm. These plates were grown at 37�C with high

humidity for 10 days. The biomass produced in the eclipse experiment was

assayed by cutting colonies out of the plate, breaking up the agar, vortexing

extensively, plating on permissive LB plates, and counting colonies. COMETS

http://comets.bu.edu


comparisons were carried out in a 50 3 140 lattice of 0.05 cm boxes. Boxes

were inoculated with 2 3 10�6 g of biomass at the appropriate distances.

Three-Species Consortium

Experiments with the three-species consortium involved very similar protocols

to those with the two-species consortium. Each species was grown in permis-

sive media, and then the species were combined volumetrically at ratios of

1:100:100 or 100:1:100 E. coli:S. enterica:M. extorquens. Ten microliters of

one of the mixtures was added to each of three replicate methylamine-lactose

minimalmediumplates ([NH4]2SO4 replacedwith1.9mMNa2SO4, and2.51mM

methylamine3HCl added). After 96 hr incubation, the surface of the plateswas

scrubbedwith720ml ofminimalmedia.Analiquotof 5ml of the resultant suspen-

sion was then transferred to a fresh plate, spread, and incubated for 96 hr. A

total of five transfers were completed, and at each transfer the ratios of the

three species were determined from their cfu concentrations.

This process was emulated in COMETS by randomly distributing 100 boxes

in the relevant species ratios each with 33 10�7 biomass across a 153 15 lat-

tice (individual box width = 0.05 cm). The initial ratios based on cfu data were

1:8:92 and 16:1:83 E. coli:S. enterica:M. extorquens. The simulations were

carried out for 96 hr at which point the species ratios were calculated. A

new lattice was then randomly populated with the initial amount of biomass

in the new ratios to mimic the laboratory transfer regimen. Three replicate

simulations were carried out for each of the treatments.
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Figure S1 – Diffusion tests for glucose and biomass.  The expected change in 
concentration over time is governed by 

where D is the desired diffusion coefficient, r is the radius of area with diffusing 
compound, and t is time.  On a log-log (base 10) plot a straight line is expected with a 
slope of -1.  Furthermore, a simulated diffusion coefficient can be calculated from  
 

and compared against the diffusion coefficient that was provided. Figure S1A shows 
glucose diffusion over 50 time steps from 0.2 to 10 hrs. The extracted slope has 0.2% 
error while the extracted diffusion coefficient has 1.2% error. Figure S1B shows 
biomass flow diffusion over 50 times steps from 10 hrs to 20 hrs. Since the biomass 
flow has a diffusion coefficient three orders of magnitude smaller, the delta function 
approximation breaks down for the same mass at a shorter time scale. However, on 
the longer time scale, the slope was within 2.4% and the diffusion coefficient was 
correct to 5.9%. For all subfigures, the initial condition was one pixel of 100g on a 
100x100 grid of 0.2 cm2 and a flux balance time step of 0.2 hours with 10 diffusion 
steps per flux balance time step. 



Figure S2 – A snapshot of the main graphic user interface of COMETS. In addition to 
visualizing the current spatial distribution of any species or metabolites, this interface 
makes it possible to upload, save or set initial conditions for in silico experiments. The 
initial conditions (abundance of organisms or metabolites) can be initialized at any 
individual discrete point in space, either using appropriate text files (see 
http://www.bu.edu/segrelab/comets/), or a phostoshop-like set of tools. Using these 
tools the user can literally “paint” the initial amounts of biomass for different species on 
the screen, as if this was a virtual Petri dish.  

http://www.bu.edu/segrelab/comets/


Figure S3 – The output data of a COMETS simulation can be very large, as it 
includes multiple variables (amount of biomass and complete flux vectors for 
different species, extracellular metabolite concentrations) for every discrete 
point in time and space.  Thus, we have developed a set of scripts that allow 
users to explore this data in an efficient way, through an html-based 
visualization interface. The example shown here pertains to one of the 
simulations performed for the 3-species consortium. The corresponding 
interactive tool can be accessed at http://comets.bu.edu/viewer/. 



A 

B 

Figure S4 – Parameter sensitivity for the rate of E. coli colony expansion on glucose.  A Lines 
connect the predicted rate of colony expansion as each parameter was individually multiplied 
by the listed perturbation factor.  Unperturbed parameters were maintained at the values 
listed in Table 1.  Changes of 2-fold had little impact on results across parameters.  A 10-fold 
increase in diffusion led to less than a 2.5-fold change in rate of colony expansion. Colonies 
did not expand if Vmax was dropped to 1 (while Km remained at 0.01), or if death rate was 
increased to 10%. B Sensitivity of the initial growth rate of the total biomass as a function of 
the exchange parameter Vmax for glucose (black), nitrogen (red) and oxygen (blue) uptake. The 
growth rates were calculated as the slope of the semilog plot of the total biomass vs. time. 
The figure indicates that the values of Vmax for glucose and nitrogen are at their maximums 
beyond which the model is insensitive to their change. This is not the case for oxygen. 
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Figure S5 – Sensitivity of COMETS to spatial and time scales.  A The total biomass growth curves 
display minor changes for increasing size of the finite spatial grid, and scale monotonically. The 
linear size of the simulation square was 0.6 cm in all three cases shown here. The growth curves 
correspond to simulations with the spatial area divided into grid of 30 by 30(blue), 60 by 60(red) 
and 90 by 90(green) squares, each with uniform biomass. The figure indicates that the difference 
between the curves becomes smaller with increasing grid size and would converge for an 
infinitely fine grid. B The total biomass growth curves display minor changes for decreasing finite 
simulation time step, and scale monotonically. The total simulation time was 20 hours. The 
growth curves correspond to simulations with discrete unit time step of 0.05 hours (blue), 0.1 
hours (red) and 0.2 hours (green). The figure indicates that the difference between the growth 
curves becomes smaller with decreasing unit time step and would converge for an infinitesimally 
small time step. 



Figure S6 - Comparison of predictions and experimental results for the growth 
impact of increasing distance between mutualistic S. enterica (white colonies 
observed, red colonies predicted), and E. coli (blue colonies observed, and 
predicted – the blue on observed plates is the result of X-gal). Predicted 
metabolite gradients are displayed as insets for methionine (red) and acetate 
(blue).  



Table S1 – Metabolite concentrations used to simulate minimal medium in COMETS. 
Lactose (lcts) was replaced with alternative carbon sources for individual E. coli 
colony simulations (glc = 3.5e-6, lac-L = 7.1e-6, or ac = 1.1e-5).  Oxygen was lowered 
to maintain the same concentration with smaller pixel size (i.e. if box length (L)= 0.2 
mm then o2 = 1e-5).  For the 3-species consortium methylamine was added (mea = 
2.0e-6). 
 

Compound mM per box 
ca2[e]  1000.0 
cl[e]  1000.0 
cobalt2[e] 1000.0 
cu2[e]  1000.0 
fe2[e]  1000.0 
fe3[e]  1000.0 
k[e]  1000.0 
lcts[e]  1.2e-5 
mg2[e] 1000.0 
mn2[e] 1000.0 
mobd[e] 1000.0 
nh4[e]  1000.0 
ni2[e]  1000.0 
o2[e]  6.2e-5 
pi[e]  1000.0 
so4[e]  1000.0 
zn2[e]  1000.0 

 



Table S2 - Metal Mix used in Hypho minimal media for lab experiments 
 

Metal   1000x concentration (mM) 
ZnSO4    0.60 
CaCl2    9.98 
MnCl2    0.51 
(NH4)6Mo7O24   1.00 
CuSO4    0.50 
CoCl2    1.00 
Na2WO4   0.17 
FeSO4    8.88 

 



Supplemental Experimental Procedures 
 
Time scales 
COMETS exploits a natural separation of time scales between growth and the diffusion 
of small molecules to efficiently model the complex dynamics in a computationally 
tractable manner that is physically consistent. The typical time scale associated with 
growth, tgrowth, is set by cell doubling times and is of order 103-104 seconds. Importantly, 
the time step for simulating the diffusion of small molecules, tD ~10 seconds, is chosen 
to be two to three orders of magnitude smaller than the doubling time. The diffusion 
time scale, tD, can be thought of as the time it takes a small molecule to diffuse one 
lattice spacing. For this reason, fixing tD associates a length scale l with each point in our 
lattice. This length scale is related to the diffusion constant, D, of small metabolites and 
is given by l2 ~ DtD. For small metabolites, D ~ 10-5 cm2/s, implying that we have a spatial 
resolution of about 10-2 cm per grid point.  
 
COMETS performance 
A COMETS simulation of a 100 by 100 grid, partially filled with biomass from a single 
species requires solving of the order of 1000 FBA problems per time cycle. Considering 
a time step of 0.1 h, COMETS performs approximately a 104 FBA cycles for 1h of real 
time simulation. On 32 CPUs (using a multi-thread version of COMETS), this will take 
approximately a minute. 
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