Glacial hydrology and consequences for ice-sheet dynamics

Ian Hewitt, University of Oxford <u>hewitt@maths.ox.ac.uk</u>

Outline

Hydrological balance of ice sheets

Subglacial hydrology

Effect of subglacial hydrology on ice dynamics

Effect of subglacial hydrology on ice-ocean interactions

Hydrological balance of ice sheets

Ice sheet mass balance

Accumulation

Melt

Ice motion

Grounding line flux

Greenland

Basal melting ~ 5 mm/y

Published by AAAS

Surface melting ~ 1000 mm/y

Mernild & Liston 2012

The fate of melt water I

Some **surface** melt water refreezes in snowpack (up to ~50%), some stored temporarily in supraglacial lakes

Remaining water runs off into moulins or crevasses and most reaches the subglacial drainage system

Greenland surface runoff ~ 300 Gt/y (0.01 Sv)

The fate of melt water II

Basal melt water (from surface + geothermal, frictional) flows at the icebed interface - driven by potential gradients

Some water refreezes (depressurisation, conductive cooling), some stored temporarily in subglacial lakes

Majority of surface-derived water flows out from margin

Bell et al 2011

Subglacial hydrology

Two key concepts

Hydraulic potential $\phi = \rho_w g Z_b + p_w$

Water pressure $p_w \approx \rho_i g(Z_s - Z_b)$

Direction of water flow controlled primarily by surface slope

... but to a significant extent by basal topography too

In fact,
$$p_w = \rho_i g(Z_s - Z_b) - N$$

Effective pressure $N = p_i - p_w$

Livingstone et al 2013

Drainage system structure

Saturated sediments

'Cavity' systems

'Channel' systems

Drainage system structure

Drainage theories - steady states

Cavities

(Rothlisberger 1972, Nye 1976)

More efficient drainage networks have lower water pressure

Numerical models

Mesh of conduits (plan view)

Channel networks grow over time with sustained water input

Numerical models

Jacobshavn Isbrae (West Greenland)

Subglacial water routing sensitive to supraglacial inputs (and bed topography)

Large and spatially-localised water pressure variations

Eskers beneath Laurentide ice sheet

Storrar et al 2014

Effect of subglacial hydrology on ice dynamics

van de Wal et al 2015

Ice speed varies diurnally

How does basal water affect ice sliding?

Conventional wisdom: effective pressure controls basal shear stress τ_b

Lower effective pressure > larger cavities

$$\tau_b = C U_b^p N^q$$

Lower effective pressure > lower yield stress

$$\tau_b = \mu N$$

Observed correlations between ice speed and borehole water pressure

Model results - coupling subglacial water to ice sliding

Surface runoff varies with seasonal pattern - input to subglacial system through moulins

Friction law for ice flow model (viscous fluid)

$$\tau_b = \mu U_b N$$

Hewitt 2013, EPSL

Model results

Model results - increased surface melt

Is subglacial water pressure really what's important?

van de Wal et al 2015

Subglacial water at grounding lines

Shear stress at grounding lines controlled by subglacial water (since effective pressure low) > affects location of grounding line, and speed of advance / retreat Tsai et al 2015

Inclusion of water makes numerical computations easier! > ongoing work

Effect of subglacial hydrology on ice-ocean interactions

Subglacial discharge to ocean

Distributed subglacial discharge enhances ocean-driven melting Jenkins 2011

Models > Distribution depends quite delicately on effective pressure near grounding line

Trumpeting shape of conduits approaching the margin

Cross-sectional area at margin:

$$S_0 \approx \mathcal{C} u^{-3/14} \Psi_0^{-3/14} Q^{6/7}$$

 $C \approx 3 \text{ m}^{1/4} \text{ s}^{-27/44}$

... but intrusion of ocean water into mouth of conduit causes additional melting, so area likely bigger than this > ongoing work

Effects on ice shelves

Subglacial conduits 'seed' sub-shelf channels for focussed melting of ice shelves

Le Brocq et al 2013 (also Alley et al 2016)

Summary

Glacial hydrology plays many roles in ice-sheet dynamics:

Lubrication - complex, but no clear evidence for positive feedback
Thermal evolution - likely a small / long-term effect ('cryo-hydrologic warming')
Hydrofracturing of ice shelves - may become increasingly important
Surges & streaming - certainly a big role, still mechanistically uncertain

Understanding of ice-sheet scale hydrology significantly advanced with recent Greenland campaigns

... but understanding why individual outlet glaciers behave as they do still a challenge

Antarctic subglacial hydrology still very unknown - role of subglacial water in ice streams likely to be crucial