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[1] Very precise measurements of the lunar gravity field
could detect a solid inner core. For synchronous rotation,
the equator planes of the inner core and mantle should be
tilted with respect to the ecliptic plane and precess along
that plane with the same 18.6 yr period. Generally, two
different tilts would cause a static inner core gravity field to
appear as small periodic (27.212 d) variations in the mantle-
referenced C21 and S21 coefficients. Tidal variations also
contribute to the C21 variation so a much improved k2 Love
number would be required. Model computations suggest
that the inner core signature is likely to be very small
requiring sensitive gravity measurements. In principle, a
signature analogous to the Moon’s should be present for
other synchronous satellites with interior liquid layers and
also Mercury. Citation: Williams, J. G. (2007), A scheme for

lunar inner core detection, Geophys. Res. Lett., 34, L03202,

doi:10.1029/2006GL028185.

1. Introduction

[2] The free precession of the Earth’s equator plane along
the ecliptic plane is a familiar concept, but there is a
fundamental difference for the precession of the Moon’s
equator. The precession of the Moon’s equator is a forced
precession. On the ecliptic plane, the descending node of
the equator matches the ascending node of the orbit plane so
that the orbit and equator planes precess together with the
same retrograde 18.6 yr period. This arrangement, a Cassini
state, depends on the synchronous rotation of the Moon.
The amplitude associated with the lunar free precession
damps by 1/e in 1.5 � 105 yr [Williams et al., 2001] and has
a small value [Newhall and Williams, 1997; Chapront and
Chapront-Touzé, 1997] while the forced precession ampli-
tude does not damp.
[3] The Moon has a large solid mantle capped by the

crust plus a small liquid core [Williams et al., 2001]. A solid
inner core has not been detected, but cooling of the
fluid could lead to an inner core. It was predicted early
[Goldreich, 1967] that the coupling between the mantle and
fluid core would be insufficient to cause the fluid’s orienta-
tion to closely follow the precessing mantle. The lunar laser
results ofWilliams et al. [2001] confirmed weak coupling due
to dissipation at the boundary. An oblate boundary can cause
stronger coupling, but not enough to align the axes of rotation
[Williams et al., 2006b]. Still, there should be a small tilt to
the fluid rotation with a precessing orientation.
[4] What would happen with an inner core? The coupling

with the fluid is relatively weak allowing a different orien-
tation. Any nonspherical attribute of the inner core gravity

field would result in torque on the inner core from the
gravitational interaction with the Earth. In addition, there
would be torque from gravitational interaction with the
mantle. These gravitational torques should cause the mean
inner core rotation period to match the mantle’s, in the
absence of strong nongravitational influences. It is shown
in this paper that the inner core can have its own Cassini
state, precessing with an 18.6 yr retrograde motion along the
ecliptic plane. The tilt of the inner core’s equator to
the ecliptic plane can be different than the mantle’s tilt.
The distinct tilt and nonspherical gravity field of the inner
core would cause a time variation of gravity measured on or
above the lunar surface. The inner core can potentially be
detected from this variation. The Moon can serve as a
prototype for other solar system bodies with forced preces-
sion and an interior fluid layer.

2. Geometry

[5] The orientation of the mantle coordinate frame is
known well from lunar laser range analysis [Williams et
al., 2006a] and serves as the reference frame for gravity
field determinations [Konopliv et al., 1998, 2001]. The
mantle and inner core frames do not generally coincide
and the potential of the inner core is referred to the mantle
frame through a three angle rotation.
[6] Principal axis frames for the mantle and inner core

allow their static second-degree gravity fields to be
expressed in terms of J2 and C22. Here, the computations
are simplified by assuming that (1) both mantle and inner
core rotate with the same rate, (2) the two equator planes are
tilted with respect to one another by a constant angle Im�Iic,
and (3) small physical libration variations are ignorable. The
mantle and inner core are treated as uniformly rotating and
precessing with tilts Im and Iic, respectively.
[7] With small physical librations ignored, the angles from

the descending nodes of the two equators to their principal-
axis-defined zero meridians are F + p + tm for the mantle and
F + p + tic for the inner core. F is the orbit angle for the lunar
mean argument of latitude with a period of 27.212 d and the
t s allow for a longitude shift between the principal axes of
the zero meridians. When sin(Im � Iic) is small, the inner
core J2 and C22 mostly transform into their corresponding
constant mantle quantities, but there are small periodic
effects. For unnormalized harmonic coefficients referred to
the rotating mantle frame, using whole Moon mass (M) and
radius (R), the most relevant of the periodic terms are

DC21 ¼ � sin Im � Iicð Þ J2 cos Im � Iicð Þ sin F þ tmð Þf
þ C22 1þ cos Im � Iicð Þ½ 	 sin F þ 2tic � tmð Þg ð1aÞ

DS21 ¼ � sin Im � Iicð Þ J2 cos Im � Iicð Þ cos F þ tmð Þf
� C22 1þ cos Im � Iicð Þ½ 	 cos F þ 2tic � tmð Þg: ð1bÞ
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DC21 andDS21 are in the mantle frame while J2 and C22 are
in the inner core frame. For small Im � Iic, the DC21

variation is nearly proportional to the inner core J2 + 2C22

and the DS21 variation is nearly proportional to J2 � 2C22.
There are other periodic terms among the five second-
degree harmonic coefficients with arguments of 2F, 3F, and
4F, but they involve second through fourth degree functions
of sin(Im � Iic), respectively.

3. Precession Dynamics

[8] The rotation dynamics considers three coupled units:
the solid mantle including crust (subscript m), the fluid
outer core (f ), and the solid inner core (ic). For each unit,
time-varying rotation about three axes depends on torque
vectors. In addition to uniform rotation and precession,
there will be oscillations about the uniform motion. These
oscillations are about 0.03� for the mantle, compared to Im =
1.543�, and this paper concentrates on the tilts of the three
precessing equators without oscillations.
[9] The two solid units are affected by torques from the

Earth’s gravitational attraction, Tme and Tice. The orbit is
taken to be circular. There are torques at the two fluid/solid
interfaces due to oblate boundaries, Tfm and Tfic on the
fluid, while the torques on the adjacent solid units will have
opposite signs. The exterior gravity harmonics of the inner
core can interact with the interior harmonics of the mantle
with torques Ticm on the inner core and �Ticm on the
mantle. There are no gravitational torques on a uniform
density fluid and therefore its rotation rate can differ from
the solid units.
[10] The torques on the mantle, fluid, and inner core units

are

Tm ¼ Tme � Tfm � Ticm ð2aÞ

Tf ¼ Tfm þ Tfic ð2bÞ

Tic ¼ Tice � Tfic þ Ticm; ð2cÞ

respectively. If high frequency terms and dissipation effects
are ignored and the assumptions of the previous section are
adopted, all of the precession causing torques will be
aligned or anti-aligned at the common line of nodes. For
each of the three units, the line-of-nodes component of the
sum of torques can be set equal to the cross product of the
precession rate vector and each angular momentum vector,
giving three coupled differential equations.
[11] The three coupled differential equations are solved

for the tilts of the equator planes to the ecliptic plane for the
mantle (Im), fluid core (If), and inner core (Iic). The orbit
plane inclination i is known. Each of the torques is propor-
tional to a sine of angle combinations: i + Im for Tme, i + Iic
for Tice, Im � If for Tfm, Iic � If for Tfic, and Im � Iic for Ticm.
The equations are linearized for sines of the four separate
angles by setting the cosines equal to 1 as well as other
suitable approximations. They are then inverted to get the
sines of Im, If, and Iic. Tilt Im is known to be 1.543� from
lunar laser ranging data analysis, but it is treated as a solution
parameter here with a well known coefficient in Tme.
[12] Principal axis longitude shifts tm and tic can result

from the mantle’s interior S22 harmonic and the size
depends on both interior 2,2 harmonics. There is a balance

of the mean torques normal to the two equators. If the lunar
mantle’s interior S22 harmonic is comparable to its C22

harmonic, then jtic j would be of order 20� while the
relatively small core moment would make jtm j of order
2000 which can be ignored here. The longitude shifts will be
smaller if the symmetry axis of the mantle’s interior 2,2
harmonics is more nearly aligned with its principal axis,
which could happen if there is a common origin such as an
ancient frozen figure due to equilibrium distortion from tide
plus spin [Jeffreys, 1915, 1937; Kopal, 1969; Lambeck and
Pullan, 1980].

4. Model Calculations

[13] For the dynamical computations of this paper, a lot is
known about the mantle parameters, but little is known
about the fluid outer and solid inner cores. The mantle
(+ crust) has more than 98% of the lunar mass and there is
little difference between the gravity coefficients of the
mantle and the whole Moon. The whole Moon gravitational
harmonics are known from spacecraft data analysis
[Lemoine et al., 1997; Konopliv et al., 1998, 2001]. Lunar
laser ranging data analysis gives accurate information on the
orientation and rotation of the lunar mantle [Dickey et al.,
1994; Williams et al., 2006a] and moment differences
[Konopliv et al., 1998], radius limits for the core/mantle
boundary [Williams et al., 2001], and early results on that
boundary’s oblateness [Williams et al., 2006b]. By contrast,
nothing is known about the real size of the inner core or the
oblateness of the inner core/outer core boundary. There is
no measurement of the mantle’s gravity field interior to the
core/mantle boundary or the inner core gravity field.
[14] For model calculations, a relatively large inner core is

considered in order to emphasize the gravitational signature.
The inner and outer core radii are fixed at 300 and 334 km,
the two densities are suitable for solid and liquid iron
(7800 and 7100 kg/m3, respectively), and the ratios of the
two moments of inertia to the whole Moon moment come out
3.64� 10�4 and 2.36� 10�4, respectively. The oblateness of
the core/mantle boundary is fixed at 5 � 10�4 compatible
with the fluid core radius [Williams et al., 2006b]. In the first
approximation, both the DC21 core signature and the inner
core tilt Iic depend on its J2 + 2C22. A spread of values was
considered for J2 + 2C22 from 0 to somewhat larger than the
whole Moon value, after scaling for the different masses and
radii. Also, a spread of inner core/mantle coupling values was
considered from absent to strong.
[15] Figure 1 shows three curves for inner core caused

DC21 amplitude vs a spread of inner core J2 + 2C22 values.
The inner core J2 + 2C22 values on Figure 1, expressed for
the mass and radius of the inner core, were used for the tilt
calculation; multiply by 3.58 � 10�4 to scale to the whole
Moon MR2 used in the Geometry section. The whole Moon
J2 + 2C22 is 2.48 � 10�4, so the inner core J2 + 2C22 values
in Figure 1 range from 0 to 3 � 10�4, the latter being 1.2
times the whole Moon value.
[16] A spread of mantle/inner core coupling strengths

were computed. Three curves are presented in Figure 1. One
case has no mantle/inner core coupling. The remaining
cases were quantified according to the strength of the
coefficient of sin(Im � Iic) in torque Ticm compared to the
coefficient of sin(i + Iic) in Tice. For the second (moderate or
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modest) case in Figure 1 this ratio was 4, while for the third
(strong) case it was 64. For the inner core/mantle gravita-
tional coupling parameter, an estimate of the topographic
contribution to the mantle’s internal J2 can be made from
early results on core/mantle boundary oblateness [Williams
et al., 2006b] and that favors the strong coupling case. For
the DS21 amplitude, both inner core J2 and C22 are needed.
From the ratio of equation (1b) to (1a), DS21 = (J2 � 2C22)/
(J2 + 2C22) DC21 for small Im � Iic so DS21  DC21.
[17] The sign of the DC21 coefficient reverses if Iic > Im

as equation (1) shows. This occurs near the whole Moon
value of J2 + 2C22 in Figure 1, but the reversal location
would shift if the inner boundary oblateness was finite. The
precession dynamics has a resonance when the inner core’s
natural (free) precession period, an eigenvalue of the dif-
ferential equations, matches the 18.6 yr retrograde forced
precession. Such a resonance is apparent for the moderate
and strong coupling cases in Figure 1 where the curves go
off scale; it occurs for values beyond the right-hand frame
boundary for the zero coupling case. To the left of the
resonance value for the moderate and strong coupling cases,
the tilt Iic has a negative sign. For the strong coupling case,
Iic is within 0.1� of Im for the right-hand half of Figure 1 and
that accounts for the shallow curve there. The model
computations for the inner core free precession period span
several orders of magnitude. Analogous to the mantle
[Ward, 1975], some model free precession periods now
longer than 18.6 yr could have passed through resonance
with the node as the Moon evolved outward. In Figure 1,
the resonance shifts to the right as the orbit evolves outward
and part of the area to the left of each curve’s present
resonance would have passed through the resonance. This
would have been a major event for the core if it occurred.

5. Tides

[18] Solid-body tides also cause variations of the lunar
gravity field and that must be considered when assessing the
detectability of the inner core variation. The tidal compo-
nents can be expressed as a series of periodic terms for

gravity harmonic coefficients. Table 1 shows the amplitudes
for the two most important periods evaluated with a Love
number k2 of 0.0216, intermediate between two recent
values [Williams et al., 2006a, 2006b]. The 27.212 d pair
of tidal terms has the same period as the inner core terms of
interest, with sin F for C21 and cos F for S21 variations.
Based on the foregoing model computations, a sensitivity of
10�10 or better is desired for the 2,1 harmonic coefficients,
and that corresponds to 0.5% knowledge of the C21 tidal
term. The current uncertainty for k2 is about 12% [Konopliv
et al., 2001; Williams et al., 2006a, 2006b] requiring
considerable improvement. The 27.555 d (mean anomaly)
tidal terms offer a possible way to improve the Love number
while also trying to detect the inner core signature. For S21,
the inner core signature will be smaller than for C21, but the
tidal term is very much smaller with a current uncertainty of
1.2 � 10�11.

6. Discussion

[19] Accurate orbital or surface measurements of periodic
signatures in the gravity field of the Moon offer an oppor-
tunity to detect an inner core. Different tilts for precessing
mantle and inner core equators would cause a static inner
core gravity field to appear as a variable field in the mantle
frame. The relatively small core makes the amplitudes of
variation small. To detect the (mantle frame) DC21 ampli-
tude of interest (equation (1a)), which is proportional to
inner core J2 + 2C22, an order-of-magnitude accuracy
improvement in the Love number k2 is called for. This
improvement might be achieved using the same gravity
field measurements as the inner core search. The (mantle
frame) DS21 variation is proportional to inner core J2 �
2C22 and should be the smaller of the 2,1 pair, but the tidal
background is much less of a concern.
[20] Too little is known to reliably predict the strength of

the inner core variations. A plausible spread of model
parameter values is used for model computations and Figure 1
presents results for a spread of gravity coefficients and three
inner core/mantle gravitational coupling strengths. A large
(300 km radius) inner core was picked for the Figure 1
computations. The signal of interest is expected to scale as
the fifth power of the inner core radius making detection
harder for smaller cores. The scheme of this paper would
require very high accuracy gravity field measurements,
roughly 10�10 for a 300 km radius inner core and 10�11

for 190 km. Existing gravity fields based on past spacecraft
missions do not achieve these accuracies. Very accurate
future tracking data would be required to detect the inner
core.
[21] The small lunar inner core effect stems from both

cores relatively small sizes compared to the Moon. Several
large synchronous satellites are suspected of having subter-

Figure 1. Amplitude of DC21 vs. inner core J2 + 2C22 for
three inner core/mantle coupling strengths.

Table 1. Tidal Amplitudes (Unnormalized) for Two Major Tidal

Periods

Gravity Coefficient 27.555 d Tide 27.212 d Tide

J2 1.3 � 10�8 0
C21 0 �1.9 � 10�8

S21 0 �1.0 � 10�10

C22 7 � 10�9 0
S22 9 � 10�9 0
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ranean oceans, and for those cases the inner solid unit is
large. Between the two solid units, relative motions in
longitude, not equator orientation, was briefly mentioned
byWu et al. [2001]. An interesting extension of the scheme of
this paper might be the possibility of detection of interior
structure in large synchronous satellites with buried oceans.
For satellites with equilibrium figures giving the same ratio
C22/J2 for mantle and inner core, there is a plane intermediate
between the mantle and inner core equators which nearly
nulls the first-order signature analogous to equations (1) , so a
surface equator tilted with respect to the intermediate plane
would indicate a fluid layer. Inner core-mantle coupling
was considered for longitude librations for Mercury with its
3:2 rotation state [Peale et al., 2002]; the obliquity is small
and the equators of mantle and inner core are expected to
nearly align which would minimize the gravity signature.
Calculations for the satellites and Mercury would be neces-
sary to see what is detectable.
[22] The detection of interior structure and properties is

very difficult for the Moon and other remote bodies. The
scheme of this paper, using high accuracy gravity field
measurements, is offered as an additional technique.
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