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Abstract 8 

We review paleoceanographic and paleoclimatic records from the northern North Atlantic to assess 9 

the nature of climatic conditions at 4.2ka BP, which has been identified as a time of exceptional 10 

climatic anomalies in many parts of the world. The northern North Atlantic region experienced 11 

relatively warm conditions in the early Holocene (6-8ka B.P.) followed by a general decline in 12 

temperatures after ~5ka B.P., which led to the onset of Neoglaciation. Although a few records do 13 

show a distinct anomaly around 4.2ka B.P. (associated with a glacial advance), this is not 14 

widespread and we interpret it as a local manifestation of the overall climatic deterioration that 15 

characterizes the late Holocene.  16 

 17 

1. Introduction 18 

Detailed studies of two sediment cores in the North Atlantic (at ~65° and ~54°N) by Bond et al 19 

(1997) revealed quasi-periodic variations in the percentage of hematite-stained grains and 20 

Icelandic glass during the Holocene, which were interpreted as evidence for pulses of ice-rafting.   21 

They argued that during these episodes, “cool, ice-bearing surface waters shifted across more than 22 

5° of latitude, each time penetrating well into the core of the North Atlantic Current”.  One of the 23 

8 Holocene episodes (later dubbed “Bond events”) occurred at ~4.2ka calendar years B.P. 24 

Subsequently, Bond et al. (2001) argued that these colder episodes were driven by changes in solar 25 

insolation (cf. Wanner and Bütikofer, 2008; Wanner et al., 2011), notwithstanding the fact that 26 

total solar irradiance did not vary by more than ±0.15% over this period (Vieira et al., 2011; Roth 27 

and Joos, 2013; Wu et al. 2018). Other paleoceanographic studies have been unable to reproduce 28 

the record of ice-rafting reported in Bond et al., (1997) (e.g. Andrews et al., 2014) yet the literature 29 

is replete with studies that have tried to identify a signal linked to the timing of Bond events in 30 

other paleoclimatic records from around the world (e.g. Fleitmann et al., 2003; Gupta et al., 2003; 31 
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Wang et al., 2005; Pèlachs et al., 2011).  Here we review sedimentary records from the northern 32 

North Atlantic (north of 60°N) with a focus on evidence for an “event” around 4.2ka B.P.  This 33 

region is of significance as it is the core region for ventilation of the North Atlantic which drives 34 

the Atlantic Meridional Overturning Circulation (AMOC), with global teleconnections through the 35 

conveyor belt system of ocean currents.  We do not focus on records from Iceland as these have 36 

been reviewed separately by Geirsdóttir et al. (2018). 37 

The North Atlantic has a very distinct pattern of sea surface temperatures, reflecting the ocean 38 

currents that traverse the region (Figure 1).  Warm sub-tropical water enters the region from the 39 

southwest via the Gulf Stream (North Atlantic Current) and this transfers heat to sub-polar latitudes 40 

north of Scandinavia by way of the Norwegian Atlantic and West Spitsbergen currents, as well as 41 

around the western and northwestern coast of Iceland via the Irminger current.  In contrast, cold 42 

polar water exits the Arctic Ocean via the East Greenland current, which extends to around the 43 

southern tip of Greenland. The region between these water masses is where deepwater formation 44 

occurs, driving the large-scale Atlantic Meridional Overturning Circulation (AMOC). On the 45 

timescale of the Holocene, there have been significant changes in the characteristics and position 46 

of these major oceanographic features, as recorded by various paleoceanographic proxies.   47 

 48 

2. Paleoceanographic evidence 49 

First, we consider a transect of sediment cores that are aligned along the axis of the main influx of 50 

Atlantic water entering the North Atlantic, from north of the UK to west of Svalbard (Figure 1) 51 

Sea-surface temperatures have been tracked using alkenones and diatoms, which reflect conditions 52 

in the photosynthetic mixed layer of the ocean surface, and by the relative abundance of 53 

Neogloboquadrina pachyderma (s), which is diagnostic of cold polar water (Figure 2).  All studies 54 

reveal higher SSTs in the early Holocene, with the largest anomalies (relative to today) at high 55 

latitudes (that is, there was strong polar amplification of the warming) (Andersson et al., 2010).  56 

This early Holocene warming was a consequence of orbital forcing: June/July insolation was ~10% 57 

higher than today at the start of the Holocene in the northern parts of the region, but the peak 58 

warming was delayed due to the influence of the decaying Laurentide and Scandinavian Ice Sheets 59 

and associated icebergs and freshwater (Renssen et al., 2009, 2012; Zhang et al., 2016). 60 

Consequently, maximum temperatures were a few thousand years later than the peak insolation, 61 

punctuated by a short-lived cooling event around 8.2ka B.P. associated with the final major 62 
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freshwater discharge event of the Laurentide Ice Sheet (Barber et al., 1999; Rohling and Pälike, 63 

2005). Thereafter, as insolation declined so sea surface temperatures declined steadily, or by some 64 

estimates, in a more step-like manner (e.g. Calvo et al., 2002; Risebrobakken et al., 2010).  For 65 

example, Birks and Koç (2002), Andersen et al. (2004) and Berner et al. (2011) all found that 66 

August SSTs at 67°N (core MD95-2011) were 4-5°C warmer than today from ~9000-6500 years 67 

B.P., then steadily declined. These analyses were based on diatoms, but similar results (albeit with 68 

a smaller change in temperature, ~2.5°C, perhaps reflecting a different seasonal bias) were 69 

obtained in a study of alkenones from the same core (Calvo et al., 2002). Studies further north, 70 

paint a similar picture (Sarnthein et al., 2003; Risebrobakken et al., 2003, 2010; Werner et al., 71 

2014). This pattern of maximum SSTs in the first half of the Holocene and cooling thereafter is 72 

seen throughout the eastern North Atlantic, in all proxies that are indicative of conditions in the 73 

photic zone (Rimbu et al., 2003; Leduc et al., 2010; Sejrup et al., 2016). The timing of the onset 74 

of cooling varies, but in all cases cooling was well underway by~5.5ka B.P., in what some refer to 75 

as a “transition period” that subsequently led to much cooler conditions in the late Holocene (after 76 

3.5ka B.P.) (e.g. Aagaard-Sorensen et al., 2014; Andersen et al., 2004; Leduc et al., 2010; Sejrup 77 

et al., 2016). Although there were short-lived cooling episodes superimposed on the overall first 78 

order pattern of temperature change (e.g. Werner et al., 2014), there is no evidence for quasi-79 

periodic cooling episodes disrupting the northward flux of Atlantic water, as described by Bond et 80 

al (1997).  Proxies of sub-surface conditions (below the mixed layer) – Mg/Ca ratios and oxygen 81 

isotopes in forams, as well as foram assemblage changes – generally do not show the same pattern 82 

of pan-Holocene cooling as the SST proxies, often indicating slight warming through the Holocene 83 

(e.g. Andersson et al., 2010; Sejrup et al., 2011).  But these records also do not show a pattern of 84 

quasi-periodic cooling events. Could this be because of low resolution in sampling, or poor 85 

chronologies?  This seems very unlikely as many of these records are from high-deposition rate 86 

sites, providing high resolution records that are generally well-dated (e.g. Berner et al., 2011). 87 

Indeed, one exceptionally well-dated, high resolution sediment core from the Storegga Slide region 88 

(90 AMS 14C dates over 8000 calendar years) provides oxygen isotope data on planktonic forams 89 

at a resolution of ±20 years within the core of the Norwegian Atlantic Current at ~64°N. This 90 

clearly shows multi-decadal to century-scale variability throughout the last 8000 years, but none 91 

of the cold water flux episodes that one would expect to see, based on the work of Bond et al. 92 

(1997).  We therefore conclude that there is no signal of a 4.2ka B.P. event in paleoceanographic 93 
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proxies from regions influenced by the flux of warm water from the sub-tropical Atlantic into the 94 

Nordic Seas.  Cooling had set in more than a millennium earlier in this region.    95 

Next, we consider studies in the western part of the North Atlantic, north of Iceland on the 96 

Icelandic Shelf, and further to the east, near Denmark Strait.  Here, many studies have examined, 97 

inter alia, foraminiferal assemblages, coccoliths, dinoflagellate cysts and sea-ice biomarkers and 98 

ice-rafted debris (IRD) reflecting transport of material in the cold East Greenland Current (e.g. 99 

Andrews et al., 1997; Jennings et al., 2002; Giraudeau et al., 2004; Solignac et al., 2006; Sicre et 100 

al., 2008; Justwan et al., 2008; Perner et al., 2015; Moossen et al., 2015; Cabedo-Sanz et al., 2016; 101 

Kolling et al., 2017).  In this region, warmest conditions occurred around 6.0±1.5ka B.P. (the 102 

timing depending on location); these conditions were associated with minimal input of IRD, 103 

reflecting the recession of tidewater glaciers onto land along the eastern coast of Greenland, and a 104 

weak East Greenland Current, with minimal stratification of the water column at that time as the 105 

flux of warmer, more saline Irminger Current water increased (Justwan et al., 2008; Jennings et 106 

al., 2011; Werner et al., 2014; Telesinski et al., 2014; Perner et al., 2016). Conditions began to 107 

change by ~5.0±0.5ka B.P. (the timing varying geographically) when cold water diatoms and 108 

forams, sea-ice (as tracked by the biomarker index, IP25) and IRD started to increase, and the water 109 

column became more stratified as the East Greenland Current strengthened (Moros et al., 2006; 110 

Telesinski et al., 2014; Perner et al., 2016; Kristiansdottir et al., 2017). These changes correspond 111 

to the re-advance of glaciers in East Greenland, part of the much more widespread onset of 112 

neoglaciation that is well-documented in many regions around the North Atlantic (Solomina et al., 113 

2015).Warmer conditions (strengthened Irminger Current) developed over the past 2000 years, but 114 

this period is also characterized by a series of minor fluctuations in the extent of ice in the region, 115 

with much colder conditions after ~1.0ka B.P. when the coldest conditions of the last 8000 years 116 

occurred, with abundant IRD and sea-ice in Denmark Strait and off the north coast of Iceland 117 

(Bendle and Rosell-Mele, 2007; Andresen et al., 2013; Cabedo-Sanz at al 2016; Kolling et al., 118 

2017). None of these records show evidence of an unusual anomaly at 4.2ka B.P.; rather, the 119 

overall cooling of the late Holocene began 500-1000 years earlier (cf. Orme et al., 2018).   Similar 120 

variability is also seen further south and southwest of Iceland, at ~59°N (Farmer et al., 2008; Moros 121 

et al., 2012; Orme et al., 2018) though there is evidence from dinocysts for an anomaly in the 122 

seasonality of SSTs at ~4.5ka B.P., perhaps related to a westward shift in the Sub-Polar Gyre, 123 

allowing warmer Atlantic water to influence the site (van Nieuwenhove et al., 2018). 124 
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This review of paleoceanographic studies extending from southern Greenland to Fram 125 

Strait, and from western Svalbard and the southern Barents Sea southward to 60°N, provides no 126 

evidence for a significant change in major oceanographic conditions that could be linked to the 127 

4.2ka B.P. climate anomaly seen elsewhere.  Rather, the evidence points to a more gradual change 128 

that was well under way by ~5ka B.P., from the relatively warm conditions of the early Holocene 129 

(driven by precessional forcing) to much colder conditions that have characterized the last 3 130 

millennia.   131 

 132 

3. Terrestrial records from around the North Atlantic 133 

3.1 Eastern Greenland and the Greenland Ice sheet 134 

Lake sediment records from sites along the coast of eastern Greenland provide a record of 135 

Holocene environmental conditions that generally reinforce the paleoceanographic evidence 136 

discussed earlier.  A “Holocene Thermal Maximum” (characterized inter alia by longer ice-free 137 

conditions, higher levels of lacustrine productivity, increased evaporation, more tundra vegetation 138 

and higher levels of terrestrial plant material transferred to lakes) is clearly seen from ~8ka B.P. 139 

(or earlier) to ~5.0±0.5ka B.P (e.g. Kaplan et al., 2002; Andresen et al., 2004; Schmidt et al., 2011; 140 

Balascio et al., 2013; Wagner and Bennike, 2015; Axford et al., 2017; van der Bilt et al., 2018a).  141 

Thereafter, conditions became colder, often with a decline in vegetation cover, an increase in the 142 

flux of coarse-grained sediments, and a shift in the types of chironomids and diatoms present, 143 

towards species that thrive in cooler conditions.  At the same time, in glacierized watersheds, the 144 

growth of glaciers led to an increase in the flux of minerogenic material which is a diagnostic 145 

signal of the onset of late Holocene neoglaciation across the region.  In Kulusuk Lake (65°N) this 146 

change occurred at ~4.2ka B.P., when there was an abrupt increase in clastic sediments from 147 

glaciers that had probably disappeared during the mid-Holocene warm period (Balascio et al., 148 

2015).  A similar transition is seen in sediments from nearby Ymer Lake, where a higher frequency 149 

of avalanches and a longer season with ice-cover is thought to have favored the transfer of coarser 150 

material into the lake after ~4ka B.P.  At another site in the same region, the Holocene thermal 151 

maximum was identified (via the evaporative enrichment of dD in leaf wax n-alkanes) from 8.4 to 152 

4.1ka B.P, followed by a decrease in evaporation as the open water season became shorter.  At the 153 

same time, there was an increase in the flux of clastic sediments and terrestrial organic material 154 

into the lake as river runoff increased (Balascio et al., 2013).  In all of these studies, it is clear that 155 
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there was a fairly rapid transition from warm mid-Holocene conditions to the colder, wetter late 156 

Holocene that encompassed the 4.2ka B.P. interval of interest.  In some cases, there is evidence 157 

for a short-lived “event” at around that time (e.g., at Kulusuk Lake; Balascio et al., 2015) but this 158 

appears to be simply part of the overall deterioration in climate that led to ice growth across the 159 

region.  There is currently no evidence for a more widespread glacial advance at 4.2ka B.P. Given 160 

that cooling was persistent over the last 5000 years, and the elevational threshold for glacierization 161 

is close to mountain tops across the region (declining in elevation poleward), it is understandable 162 

that different locations would have experienced the onset of neoglaciation at, different times.  163 

However, as the ELA continued to lower over the last 3-4 millennia, glaciers that had greatly 164 

diminished in size, or disappeared entirely, during the Holocene Thermal Maximum were 165 

eventually regenerated, with the exact timing varying across the region. In the case of Kulusuk 166 

Lake, it seems reasonable to conclude that the steady decline in temperatures and the specific 167 

hypsography of that basin led to a positive mass balance, with early ice growth and associated 168 

sediment input to the lake around 4.2ka B.P. 169 

 Ice cores from Greenland provide records of past climate variations from oxygen isotopes, 170 

glaciochemistry and physical characteristics, which are broadly consistent with those from coastal 171 

lake sediments. Alley and Anandakrishnan (1995) examined evidence for summer melting in the 172 

GISP2 ice core, as recorded by changes in the physical properties of the ice.  Their analysis was at 173 

a relatively low resolution, but they showed maximum Holocene summer temperatures from 174 

~7.5ka B.P., followed by a two-step transition to colder conditions, from ~6.5 to 5.5ka B.P., and 175 

~4.5 to 4ka B.P., with persistently low summer temperatures (minimal melting) thereafter.  After 176 

adjusting for ice thickness changes, Vinther et al. (2009) also showed that there was an overall 177 

decline in temperature at the Summit of the Greenland Ice Sheet (73°N, 3210 masl) over the last 178 

~9,000 years (interpreted from changes in d18O in the GISP2 ice core) with the warmest 20 year 179 

period ~7970 years b2k, and the coldest ~300 years b2k. These two periods differed in mean 180 

temperature by ~4.9°C (though it is unclear if this was mean annual temperature as small changes 181 

in the seasonality of snowfall on the ice sheet could have drastically changed the apparent 182 

temperature over time).  Superimposed on the long-term temperature decline there were 183 

multidecadal anomalies on the order of ±1°C.  One of the largest of the negative anomalies after 184 

the well-known 8.2ka B.P. event began ~4400 b2k and reached a minimum at 4340 b2k, but by 185 

4200 b2k, temperatures had sharply increased (Figure 3). The 8.2ka B.P. cooling episode was the 186 
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result of freshwater flooding of the North Atlantic as the Laurentide Ice Sheet collapsed, so a 187 

different explanation is required to explain the later anomaly, and it seems plausible that this short-188 

lived cooling event was a consequence of the massive eruption of Hekla (in Iceland) at ~4.2ka B.P. 189 

(recognizing that there are dating uncertainties in both the ice core and tephrochronological 190 

databases).  Kobashi et al. (2017) also reconstructed mean annual temperature, derived from the 191 

differential diffusion of argon and nitrogen isotopes in firn prior to its densification into ice.  This 192 

provided a temperature record which is similar to that of Vinther et al (2009) but with more multi-193 

decadal to century-scale variability. Although it also shows a negative temperature anomaly 194 

around 4.5ka B.P., this is well within the normal variability of the record; a more significant 195 

temperature decline is seen somewhat later, centered on ~3.5ka B.P.  In summary, there is no 196 

compelling evidence for a distinct climatic anomaly at 4.2ka B.P. in ice cores from Greenland.  197 

 198 

3.2 Svalbard 199 

Lake sediment records from Svalbard record changes in climate at the northernmost limit of North 200 

Atlantic water (the West Spitsbergen Current).  All studies describe a warm early Holocene phase 201 

when many of the glaciers seen today were small or absent. On Amsterdamoya, at the northwestern 202 

edge of Svalbard, warm and dry conditions spanned the interval from 7.7 to 5ka B.P., and nearby 203 

glaciers were small or absent by 8.4ka B.P., only re-forming in the late Holocene (Gjerde et al., 204 

2018; de Wet et al., 2018).  To the southwest, on the Mitrahalvoya Peninsula, there is also evidence 205 

that glaciers reached their minimum size by the mid-Holocene, but subsequently re-formed or re-206 

advanced. Karlbreen began to grow around 3.5ka B.P. (Røthe et al., 2015) but in the neighboring 207 

watershed of Hajeren an abrupt increase in minerogenic sediments at 4.25 ka B.P. registered the 208 

onset of neoglaciation in the basin (van der Bilt et al., 2015).  Paleotemperature estimates (from 209 

alkenones) in the same record indicate this advance was triggered by an abrupt drop in temperature 210 

at that time; thereafter, temperatures remained low (van der Bilt et al., 2018b). Other records from 211 

the region indicate that the first neoglacial advances of glaciers occurred around 4.6ka B.P. (e.g. 212 

Svendsen and Mangerud, 1997; Reusche et al., 2014). 213 

 214 

3.3 Scandinavia 215 

As most glaciers in Scandinavia had their largest areal extent during the “Little Ice Age” (~A.D. 216 

1400-1850), information about past glaciers in Norway during the late Holocene is based on 217 
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reconstructions from indirect evidence, mainly sediments deposited in distal glacier-fed lakes (e.g. 218 

Nesje 2009, Bakke et al., 2010; 2013). After several large glacier advances in the earliest Holocene, 219 

the climate was in general warm during the early Holocene (8.5-6.5ka B.P.) and most glaciers 220 

melted away (Nesje 2009) (Figure 4). Around 6 ka B.P. glaciers start to re-grow mainly as a 221 

function of decreasing summer insolation over the Northern Hemisphere (Wanner et al. 2008). The 222 

regrowth of glaciers shows a gradual increase in glacier size interrupted by smaller glacier 223 

advances (Bakke et al, 2010, 2013; Vasskog et al., 2012). Along a coastal south-north transect in 224 

Scandinavia different locations have experienced the onset of neoglaciation at different times, 225 

mainly as a function of altitude (cf. Geirsdóttir et al., 2018). Around 2ka B.P. many glaciers 226 

reached present day size with a maximum glacier extent during the Little Ice Age (Nesje 2009). A 227 

review of more than 20 papers shows that none of them indicate any abrupt anomalous change in 228 

glacier extent connected to a perturbation of climate around 4.2 ka. (Bakke et al., 2005a; 2005b; 229 

2008; 2010; 2013; Dahl and Nesje; 1992; 1994; 1996; Lauritzen 1996; Snowball and Sandgren, 230 

1996; Seierstad et al., 2002; Lie et al., 2004; Nesje et al. 2009; Vasskog et al., 2011; 2012 Støren 231 

et al., 2008; Wittmeier et al., 2015; Shakesby et al., 2007; Kvisvik et al., 2015, Gjerde et al., 2016). 232 

Investigating this further, we examined other terrestrial evidence mainly pollen, macrofossil and 233 

diatom records derived from lake sediments (e.g. Bjune et al., 2005; Velle et al., 2005). They have 234 

a time resolution somewhat lower than the glacier reconstructions (typical 500 yr spacing) but they 235 

all reflect the general decrease in summer insolation over the northern hemisphere and no abrupt 236 

transition close to 4.2ka B.P. (Bjune, 2005; Bjune et al., 2004, 2006; Velle et al., 2005). The only 237 

terrestrial evidence from Scandinavia that shows a clear anomaly at 4.2ka B.P. is a speleothem 238 

record of d18O from Northern Norway (Lauritzen and Lundberg 1999) where higher temperatures 239 

are recorded, peaking at 4.2ka, before a rapid decrease to much colder temperatures at ~3.7ka B.P.  240 

 241 

4. Conclusions 242 

A review of paleoceanographic and terrestrial paleoclimatic data from around the northern North 243 

Atlantic reveals no compelling evidence for a significant climatic anomaly at ~4.2ka B.P.  In 244 

particular, there is no supporting evidence for “cool, ice-bearing surface waters… penetrating well 245 

into the core of the North Atlantic Current” at that time, as described by Bond et al., (2001). The 246 

region experienced relatively warm conditions in the early Holocene (6-8ka B.P.) followed by a 247 

general decline in temperatures after ~5ka B.P., signaling the onset of Neoglaciation.  Although a 248 
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few records do show a distinct anomaly around 4.2ka B.P. (associated with a glacial advance), this 249 

is not widespread and we interpret it as a local signal of the overall climatic deterioration that 250 

characterized the late Holocene. 251 

 252 
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Figure 1.  Major ocean currents in the North Atlantic and associated sea surface temperatures. 559 

(Source: NOC/UK Met-Office OSTIA data; map from http://www.seos-project.eu) 560 

 561 

 562 

 563 



 20 

 564 
 565 

Figure 2.  Holocene August SSTs at various locations in the northern North Atlantic (Anderson et 566 

al., 2004) and alkenone-based SSTS from sediment cores along a N-S transect in the North 567 

Atlantic Current-Norwegian Current system (cf. Figure 1).  568 
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 579 
 580 

Figure 3.  Oxygen isotope anomalies (d18O) relative to the Holocene average.  Timescale is in years 581 

b2k (before A.D. 2000).  The interval around 4.2ka BP is enlarged in the box (Data source: 582 

Vinther et al., 2009). 583 
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 596 

Figure 4. Summary of glacier extent in various regions of Scandinavia during the Holocene.  4.2ka 597 

B.P. is highlighted by the red dashed line (after Nesje, 2009). 598 
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