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The history of the carbon cycle is punctuated by enigmatic tran-
sient changes in the ocean’s store of carbon. Mass extinction
is always accompanied by such a disruption, but most disrup-
tions are relatively benign. The less calamitous group exhibits
a characteristic rate of change whereas greater surges accom-
pany mass extinctions. To better understand these observations,
I formulate and analyze a mathematical model that suggests
that disruptions are initiated by perturbation of a permanently
stable steady state beyond a threshold. The ensuing excita-
tion exhibits the characteristic surge of real disruptions. In this
view, the magnitude and timescale of the disruption are prop-
erties of the carbon cycle itself rather than its perturbation.
Surges associated with mass extinction, however, require addi-
tional inputs from external sources such as massive volcanism.
Surges are excited when CO2 enters the oceans at a flux that
exceeds a threshold. The threshold depends on the duration of
the injection. For injections lasting a time ti & 10, 000 y in the
modern carbon cycle, the threshold flux is constant; for smaller
ti , the threshold scales like t−1

i . Consequently the unusually
strong but geologically brief duration of modern anthropogenic
oceanic CO2 uptake is roughly equivalent, in terms of its potential
to excite a major disruption, to relatively weak but longer-
lived perturbations associated with massive volcanism in the
geologic past.

carbon cycle | mass extinctions | excitable systems |
dynamical systems | carbon isotopic events

Introduction
Earth’s carbon cycle is a loop between photosynthesis, which
converts carbon dioxide (CO2) to organic carbon, and respira-
tion, which converts organic carbon back to CO2 (1–4). The
cycle has undergone many disruptions throughout Earth’s his-
tory (5–7). These events are expressed in the geologic record as
relatively abrupt and large changes in the isotopic composition of
sedimentary carbon (8) compared with background fluctuations.
Fig. 1 shows 2 examples in one 800-ky time series. Such events
are typically attributed to changes in the fluxes and concentra-
tions of carbon (8–10). Thus, Fig. 1 could reflect the transient
addition of 2 pulses of isotopically light carbon originating, for
example, from the respiration of a previously unreactive reser-
voir of organic carbon (10, 11). Such disruptions have also been
interpreted as geochemical responses to other sources of envi-
ronmental change, including variations in Earth’s orbital param-
eters (12); dissociation of methane hydrate (13); bolide impacts
(14); biogeochemical innovations (15, 16); and changes in chem-
ical weathering (17), organic carbon burial (18), and volcanic
emissions (19). These interpretations typically treat the marine
carbon cycle as a passive recorder of an externally imposed
stress. The response imprinted in the geochemical record is then
implicitly assumed to be proportional to the magnitude of the
forcing (8, 16, 20).

Given the variety of possible forcing mechanisms, it comes
as no surprise that the size and timescale of disruptions vary
immensely, by 2 orders of magnitude during the Phanerozoic
(0 to 542 Ma) (7). Yet the same data show that major fluctua-
tions of the carbon cycle exhibit a characteristic rate of change.
Events associated with mass extinction tend to exceed the char-

acteristic rate, whereas others appear bounded by it (7). It seems
unlikely that a rich diversity of stressors, expressed as propor-
tionate responses in the geochemical record, would exhibit such
uniformity.

Here I formulate and analyze an elementary mathematical
model that shows how the characteristic rate can instead emerge
within the carbon cycle. The model portrays the upper ocean as
a chemical reactor open to an incoming flux of dissolved cal-
cium carbonate from rivers and an outgoing flux representing
carbonate burial in sediments. Within the reactor, the concen-
trations of carbonate species respond not only to imbalances
in inputs and outputs, but also to imbalances in the biological
consumption and production of CO2. This framework reveals a
mechanism for autocatalytic amplification of a small but finite
perturbation of a stable steady state followed by relaxation back
to the same steady state. The process is analogous to the exci-
tation of an action potential (nerve impulse) in a neuron (21).
Here, excitations manifest themselves as transient ocean acidifi-
cation; i.e., a temporary increase in the concentration of carbon
dioxide in the upper ocean. This change is distinguished by a
characteristic rate.

These results suggest that the magnitude of a carbon cycle’s
disruption is determined not by the strength of the cycle’s per-
turbation but rather by the intrinsic dynamics of the system itself.
Once the addition of CO2 to the oceans passes a threshold, the
rate of amplification and the eventual severity of the resulting
environmental change should be independent of the detailed his-
tory of the perturbation. Moreover, the model indicates that the
consequences of fast forcing at human timescales may be sim-
ilar to the outcome of slow forcing at geologic timescales (7).
Within this framework, the greater rates of change associated
with mass extinction events are straightforwardly interpreted as
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Fig. 1. Fluctuations of the isotopic composition of carbonate carbon (δ13C)
during the Eocene period, about 54 Ma (26). Time advances to the right
and is given with respect to the minimum of the first abrupt downswing,
an event known as Eocene Thermal Maximum 2 (ETM2) or H1. The sec-
ond event, about 100 ky later, is called H2. The timescale is derived from
astrochronology (26).

the consequence of forcing sustained beyond the threshold, due,
for example, to massive volcanism (22–25).

This paper is organized as follows. The first section presents
a 2-component dynamical system that represents important fea-
tures of the marine carbonate system. Next, this paper analyzes
the stability of the model’s steady state. Three dynamical regimes
receive focus: The limit cycle that results when the steady state
is unstable, the excitations that result when the steady state is
stable, and the model’s behavior when both the steady state
and the limit cycle are stable. Particular attention is given to
the case of excitations and their size and timescale. This paper
then discusses the implications of these findings for interpret-
ing the geochemical record of past disruptions and predicting
the carbon cycle’s response to modern anthropogenic perturba-
tions. The conclusion highlights strengths and weaknesses of this
paper’s principal contributions and points the way toward future
progress.

Two-Component Dynamical System
This section constructs a mathematical model to help explore
how instabilities might occur in the marine carbon cycle.
Among the many potentially relevant feedback mechanisms
(27), I focus on the interactions of shallow-ocean respira-
tion with fluxes of carbon into and out of the shallow ocean.
These feedbacks are expressed below as a dynamical system
composed of 2 ordinary differential equations. The objec-
tive is to provide a rational context within which one can
show how mechanisms operating within the carbon cycle can
give rise to general features of its past disruptions. Such
understanding follows from the identification of the ways in
which the qualitative dynamics of the system—e.g., its sta-
bility and bifurcations—can derive from its intrinsic interac-
tions. The theory of dynamical systems makes such connections
possible (28–32).

Although these objectives require the identification of relevant
mechanisms, they do not necessitate detailed parameterizations.
The developments below nevertheless give significant attention
to the way in which specific processes operate in the real carbon
cycle. I begin by stating essential aspects of carbonate chem-
istry. The model is then stated in its most general form, after
which pertinent mechanisms are expressed mathematically. A
final change of variables then leads to a model suitable for
classical stability analysis.

The Carbonate System. The model expresses the evolution of
total alkalinity and the total dissolved inorganic carbon. Total
alkalinity is defined by the sum (2, 33)

a = [HCO−3 ] + 2[CO2−
3 ] + [B(OH)−4 ] + [OH−]− [H+]. [1]

Total alkalinity represents the excess of bases over acids. Its
dominant contributions come from bicarbonate ions (HCO−3 )
and carbonate ions (CO2−

3 ); the factor of 2 attached to the
CO2−

3 concentration derives from its double-negative charge
(33). Total dissolved inorganic carbon (DIC) is symbolized by
w , mnemonically recalled as the “whole” of inorganic carbon:

w = [CO2] + [HCO−3 ] + [CO2−
3 ]. [2]

The carbonate system is taken to always be in thermal equilib-
rium according to the reactions (2, 33)

CO2 + H2O
HCO−3 + H+
CO2−
3 + 2H+. [3]

The 2 conserved quantities (a and w) and the 2 reactions of Eq.
3 specify the equilibrium of the carbonate system. There are 6
unknowns: Not only a and w , but also the concentrations of CO2,
CO2−

3 , HCO−3 , and H+. Specification of any 2 of these quantities
therefore provides the other 4 via equations (1–3, 33).

General Formulation. I consider a well-mixed open system in
which dissolved calcium carbonate (CaCO3) is delivered to the
shallow ocean by rivers and output from the shallow ocean ulti-
mately into sediments. The assumption of a well-mixed system
implies that the model addresses timescales longer than the
timescale of global ocean circulation [about 1,000 y (2, 3)]. The
precise thickness of the shallow layer is unimportant; however, it
must be small compared with the average depth of the oceans.
This assumption allows exchanges of carbon between the shal-
low ocean and the deep ocean and sediments to be expressed in
analogy to the exchange of heat between a small system and a
large heat bath. In other words, the concentration of carbon fluc-
tuates within the shallow layer but the mass of carbon below it is
effectively constant. Thus, the model explicitly considers only the
chemical state of the upper ocean.

Fig. 2 illustrates the model. Its mathematical form reads

ȧ = 2 [ jin−B(a,w)] [4]
ẇ = (1 + ν)jin−B(a,w) +R(a,w)− (w −w0)/τw , [5]

where dots represent time derivatives. The concentrations a and
w are expressed in units of µmol·kg−1. The factor of 2 arises
because 2 molar equivalents of alkalinity are associated with each
mole of CaCO3 (33). Expressing the model in terms of the con-
served quantities a and w rather than, e.g., the concentrations

Fig. 2. Schematic diagram of the model (not drawn to scale). Left and Right
panels represent, respectively, the evolution of total alkalinity, a, and total
dissolved inorganic carbon (DIC), w. The wavy line represents the air–sea
interface, the upper horizontal thick line divides the shallow ocean from the
deep sea, and the lower horizontal dashed line represents the sediment–
seawater interface. Concentration fluxes are indicated by unidirectional
arrows. The sediment–seawater interface is dashed to indicate that there
is no dynamical distinction between the deep sea and sediments.
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of CO2 and CO2−
3 makes it possible to temporarily forestall a

discussion of the changing chemical equilibrium.
The flux jin represents the rate at which dissolved CaCO3 is

added to the oceans by rivers in terms of an equivalent change in
the whole-ocean concentration of dissolved CaCO3, expressed
in units of µmol·kg−1·y−1. The flux B ≥ 0 denotes the rate at
which CaCO3 is output from the system, which, in the real ocean,
corresponds to burial in sediments. However, the model makes
no dynamical distinction between the deep sea and sediments.
Thus, B represents the rate at which CaCO3 exits the shallow
layer without returning. The dimensionless term ν determines
the strength of an external source of CO2, such as volcanic
emissions.

The flux R≥ 0 represents the extent to which upper-ocean
production of CO2 by respiration exceeds a theoretical baseline.
The small change in alkalinity associated with respiration (33)
is neglected. When ν= 0, the baseline case R = 0 is associated
with a steady state in which w =w0 and the riverine influx of dis-
solved CaCO3 is precisely balanced by burial (i.e., B = jin). In
this case, the model’s upper ocean would act merely as a way sta-
tion for the temporary storage of dissolved carbonate. Positive
R, on the other hand, acts to increase w above w0. The model
assumes that this increase is resisted linearly, so that if the base-
line R = 0 were restored, w would return to w0 at the timescale
τw . At long timescales (�102 y) in the real ocean, the processes
responsible for such dissipation include the riverine influx of dis-
solved CaCO3 and the dissolution and precipitation of CaCO3

on the seafloor (34, 35). These processes act as the ocean’s
“homeostat” or “pHstat” at a wide range of timescales (2, 35).
Aspects of the homeostat that act simultaneously on DIC and
alkalinity respond to the difference between jin and B . However,
the homeostat must also influence DIC independently by oppos-
ing the respiration feedback; otherwise DIC would grow without
bound when R> 0. Eq. 5 represents this negative feedback by the
term proportional to w −w0. The homeostat’s dominant charac-
teristic timescale, denoted here by τw , is about 10 ky (36–38) in
the modern ocean.

Eqs. 4 and 5 describe the general form of a dynamical sys-
tem in which the riverine influx of alkalinity and DIC produce
internal feedbacks that collectively act to determine the extent
to which alkalinity and DIC accumulate before exiting the sys-
tem. The description of the model is completed by the functional
specification of the feedbacks B and R, to which we now turn.

The Burial and Respiration Fluxes. The export and burial of CaCO3

in the real ocean depends on the physical environment (e.g.,
temperature and pressure), the chemical environment, and eco-
logical factors affecting biogenic carbonate precipitation (e.g.,
phytoplankton community composition). When seawater is
undersaturated with carbonate ions, CaCO3 dissolves; when it is
supersaturated, CaCO3 can precipitate (33). At low saturations,
physical and biogenic precipitation—and therefore carbonate
output—is impeded. The dependence of precipitation on pres-
sure manifests itself as a critical depth beneath which carbonate
dissolves. Based in part on earlier work (39), I express these
dependencies by

B(a,w) =B [c(a,w)] = bjins(c, cp), [6]

where the carbonate ion concentration c(a,w) derives from the
equilibrium of the carbonate system (33) and

s(c, cp) =
cγ

cγ + cγp
[7]

is the sigmoidal function shown in SI Appendix, Fig. S1. The
exponent γ parameterizes the sharpness of the transition, cp
is the transitional carbonate ion concentration where s = 1/2,

and bjin denotes the maximum rate of carbonate burial. The
apparent requirement that c be computed from a and w would
appear to be a serious complication, but a change of vari-
ables discussed below solves this problem. The introduction
of the exponent γ may also appear unwelcome; however, this
paper’s conclusions require only that the function s be sigmoidal.
SI Appendix, Fig. S1 suggests that γ' 4 corresponds to the
modern ocean.

Respiration is also sensitive to environmental conditions. For
example, warmer temperatures should result in increased res-
piration rates relative to production rates (27, 40–42). Possible
consequences include an upward shift of respiration and a pos-
itive feedback for shallow-ocean and atmospheric CO2 levels
(27, 41, 43, 44). Alternatively, carbonate production by pelagic
calcifiers may decrease at lower pH (45–48). The “ballast hypoth-
esis” (49–51) suggests that the export of organic carbon out
of the photic zone is facilitated by its association with bio-
genic carbonate. A decreased supply of ballast would decrease
export of organic carbon and therefore increase respiration rates
in the shallow ocean. A positive feedback is again possible
(27, 52, 53).

Neither the ballast (54–58) nor the temperature (42, 59–61)
feedback is free of ambiguity. However, both are reasonable
hypotheses. This paper addresses the case of the ballast feed-
back, with the expectation that the lessons learned will inform
consideration of other possible respiration feedbacks, including
those involving temperature.

The essential idea is that lower concentrations of CO2−
3 lead to

less biogenic carbonate production and therefore less ballast, less
associated organic carbon export, and more upper-ocean respira-
tion (27, 45–53). These observations suggest that the respiration
flux R decreases with increasing carbonate ion concentration c.
For c below a low concentration of carbonate ions, R should
be near its maximum. Conversely, for c above a high concen-
tration, respiration in the shallow layer is assumed to reach
its baseline R = 0. The baseline case therefore corresponds to
the upper-ocean respiration flux that would continue to occur
despite elevated production of carbonate ballast.

This reasoning suggests that R decreases with c similar to the
way B increases with c (SI Appendix, Fig. S1), but with a possibly
different amplitude and transitional concentration. I therefore
write

R(a,w) =R[c(a,w)] = θjins̄(c, cx ), [8]

where s̄ = 1− s , θjin is the maximum value of R, and cx is the
“crossover” concentration that marks the halfway point in the
transition from high to low R. As for the burial function of
Eq. 6, the sharpness of the transition parameterized by γ is a
minor detail. SI Appendix, Fig. S2 illustrates how the burial and
respiration fluxes of Eqs. 6 and 8 modify Fig. 2.

Transformation from ȧ to ċ. SI Appendix shows that the rate of
change of the CO2−

3 concentration can be approximated by

ċ = f (c) (ȧ − ẇ). [9]

Here the “buffer function”

f (c) = f0
cβ

cβ + cβf
[10]

approximates the magnitude of the partial derivatives ∂c/∂a and
∂c/∂w via specific values of f0, β, and cf related to the equilib-
rium of the carbonate system (SI Appendix, Fig. S3). Substitution
of Eqs. 6 and 8 into Eqs. 4 and 5 and insertion of the resulting
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expressions into Eq. 9 then remove the implicit dependence of c
on a and w . The new system reads

ċ/f (c) =µ[1− bs(c, cp)− θs̄(c, cx )− ν] +w −w0 [11]
ẇ =µ[1− bs(c, cp) + θs̄(c, cx ) + ν]−w +w0, [12]

where time is nondimensionalized by t← t/τw and

µ= jinτw [13]

is a characteristic concentration. The system of Eqs. 11 and 12
is henceforth called the carbon-cycle model. Its parameters are
listed in SI Appendix, Table S1. Of these, only µ, b, θ, cx , cp ,
and ν are of interest. The remaining 5 parameters are set to cor-
respond to the equilibrium chemistry or the properties of the
modern ocean. Although they are retained in the analysis that
follows, they serve only to maintain realism.

Steady State and Its Stability. Steady states, or fixed points, occur
where ċ = ẇ = 0. Under this condition, the addition of Eqs.
11 and 12 yields bs(c, cp) = 1. Substituting Eq. 7 and solving
for c, one then finds the unique steady-state carbonate ion
concentration

c∗= (b− 1)−1/γcp , [14]

which exists only for b> 1. Substitution of c∗ for c in Eq. 12 then
provides the steady-state DIC concentration

w∗=w0 +µ

(
θ+ ν−

θcγp
(b− 1)cγx + cγp

)
. [15]

Note that the untransformed model (Eqs. 4 and 5) yields the
same steady state after substitution of Eqs. 6 and 8. SI Appendix
shows that parameter values consistent with the modern ocean
(SI Appendix, Table S1) predict values of c∗ and w∗ that are also
consistent with the modern ocean.

SI Appendix also derives and interprets the results of a linear
stability analysis. The requirements for stability are expressed
in terms of the trace Tr and determinant ∆ of the Jacobian
matrix of Eqs. 11 and 12 evaluated at the fixed point. These
calculations yield

Tr =−1− ∆

2

(
1−

θbcγp c
γ
x

[(b− 1)cγx + cγp ]2

)
, [16]

where

∆ =
2µγf0(b− 1)

1
γ
+1

cβ−1
p

b(b− 1)β/γcβf + bcβp
. [17]

The fixed point is unstable when Tr> 0. Fig. 3 provides sta-
bility boundaries in the planes of µ and b, µ and cx , and µ

and θ. Instability is favored for large µ= jinτw because greater
rates of riverine input and longer damping times provide for
faster-growing fluctuations. For some combinations of parame-
ters, however, homeostatic damping always maintains stability.

Limit Cycle
SI Appendix shows that the fixed point becomes unstable via a
Hopf bifurcation, which leads to periodic nonlinear oscillations
called limit cycles. Fig. 4 depicts a stable limit cycle in the phase
plane of c and w . SI Appendix, Fig. S4 illustrates the time series
c(t) and w(t) on the limit cycle, along with the time evolution of
quantities derived from these 2 quantities.

To understand how the limit cycle operates, consider the evo-
lution of the periodic trajectory from the point where w is at
its minimum, i.e., at the lower crossing of the nullcline ẇ = 0.
Here, the ballast feedback begins to increase DIC by the addi-
tion of CO2, which acts to consume CO2−

3 ions via the reaction
of SI Appendix, Eq. S8. However, the relative rate at which
the CO2−

3 concentration decreases compared with the rate at
which DIC increases becomes progressively slower as the ocean
becomes less buffered at lower CO2−

3 concentrations. Eventually
the CO2−

3 concentration reaches a minimum where the loss of
CO2−

3 via burial and the CO2 feedback is balanced by the home-
ostatic response, and it crosses the nullcline ċ = 0. However, DIC
continues to rise until it is overcome by the homeostatic feed-
back, reaching a maximum where it crosses the nullcline ẇ = 0.
The homeostatic feedback then acts to decrease w while increas-
ing c. The CO2−

3 concentration reaches its maximum when
carbonate burial becomes stronger than the addition of dissolved
CaCO3 from rivers and the weakened homeostatic feedback. A
rapid upward jump of the burial rate then acts to reduce both
the CO2−

3 and DIC concentrations. Eventually DIC reaches its
minimum and the cycle repeats.

A single period of the limit cycle embodies several attributes
of the marine carbonate system that have attracted consider-
able attention in recent years. The rise of DIC, for example, is
initially accompanied by a rise of CO2 (SI Appendix, Fig. S4C)
and a reduction of pH (SI Appendix, Fig. S4E). This process is
called ocean acidification (62). The acid is eventually neutralized
by the dissolution of seafloor carbonate and other homeostatic
processes, but only slowly, at a modern timescale of about 10
ky—part of the long legacy of any rise in CO2 levels (34). Finally,
the surfeit of dissolved CaCO3 must eventually be buried. In
the limit cycle pictured here, carbonate burial occurs as a sharp
pulse (SI Appendix, Fig. S4H) analogous to the “cap-carbonate”
deposits that follow global glaciations (63).

Periodic disruptions of the carbon cycle independent of peri-
odic forcing may have occurred in the geologic past (64–67).
The following section shows, however, that the potential exis-
tence of a limit cycle is more important than its actual existence.

2 4 6 8 10
0

100

200

300

400

500A

40 60 80 100 120 140

B

0 2 4 6 8 10

C

Fig. 3. (A–C) Stability in the planes of µ and b (A), µ and cx (B), and µ and θ (C). Values of fixed parameters are given in SI Appendix, Table S1. Crossing the
red and blue boundaries results in supercritical and subcritical Hopf bifurcations, respectively. The fixed point is stable only where indicated. However, the
region of stability of the limit cycle extends into the region of the stable fixed point adjacent to the subcritical bifurcation. Fig. 6 maps the bistable region
in the plane of cx and θ.
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Fig. 4. A stable limit cycle in the phase plane of the CO2−
3 concentration c

and the DIC concentration w. Values of parameters are given in SI Appendix,
Table S1. The dotted curves represent the nullclines ċ = 0 and ẇ = 0.

Three aspects of the limit cycle are central to that discussion: Its
amplitude, its period, and its dynamical origin.

Unlike linear oscillations, the amplitude or size of a limit
cycle is independent of the initial condition. As shown in Fig. 4,
trajectories originating inside the limit cycle grow outward,
whereas trajectories originating outside move inward. The result-
ing amplitude is therefore a property of the system itself rather
than its perturbation.

However, the size of the limit cycle does depend on the sys-
tem’s parameters. An appropriate measure of size along the DIC
axis is the difference ∆w =wmax−w∗, where wmax is the maxi-
mum value of w in the cycle; one similarly has ∆c = cmax− c∗.
SI Appendix shows that ∆w and ∆c generally increase with µ
and θ but decrease with b. The limit cycle’s size grows roughly
linearly with µ because µ sets the rate of all processes other
than homeostatic damping. Because rates and size scale similarly
with µ, the dimensionless period T of all but the smallest limit
cycles should be effectively independent of µ. These observations
imply that

T 'T0 + 2A/µ, [18]

where A= (∆w∆c)1/2 is a measure of the amplitude of the
limit cycle in units of µmol·kg−1 and T0∼ 1 is the dimension-
less period of an infinitesimal limit cycle. The factor of 2 reflects
an assumption that roughly twice as much time is required to
go through a complete cycle compared with the time it takes to
change w or c by its typical excursion.

SI Appendix, Fig. S5 shows that Eq. 18 is a reasonable approx-
imation. It characterizes the limit cycle well partly because the
complicated dependence of A and T on the system’s parameters
other than µ (SI Appendix) is similarly expressed by A and T . The
physical interpretation of Eq. 18 is readily exposed by rewriting
it in terms of dimensional time. Setting τ =Tτw/2, τ0 =T0τw/2,
and recalling µ= jinτw , one finds

A' jin(τ − τ0). [19]

This relationship, which essentially follows from dimensional
analysis, shows that, for τ� τ0, the limit cycle’s size is roughly
given by the riverine influx jin integrated over the time required
for the system to be forced maximally out of its steady state.

The manner in which the limit cycle arises is also of interest.
There are 2 kinds of Hopf bifurcations—subcritical and super-
critical (21, 28, 29). SI Appendix performs a standard calculation

(21, 28, 29) to determine where each Hopf bifurcation occurs
here; the results are color coded along the curves of Fig. 3. In
the carbon-cycle model, the subcritical Hopf bifurcation is adja-
cent to a bistable region where the stable fixed point and a stable
limit cycle appear with an unstable limit cycle. The following
section establishes the importance of this region for the inter-
pretation of the model’s response to perturbations of the stable
fixed point.

Excitability
Now suppose the system is in a stable steady state with no
injection of CO2 (ν= 0). At time t = 0 we set ν= 0.35, which
corresponds to injecting additional DIC into the oceans at a rate
equal to 35% of riverine inputs. From Eqs. 14 and 15, we see
that CO2 injection increases w∗ by νµ, but c∗ is unchanged.
The new fixed point retains its stability, because stability is
independent of ν (Eqs. 16 and 17). However, the state of the
system must now relax to the new fixed point. Fig. 5 A and B
shows that there is a small excursion beyond the fixed point
as the trajectory spirals inward to the new steady-state DIC
concentration.

Next we repeat the same procedure, but with a slightly larger
CO2 injection rate, ν= 0.40. The initial condition remains the
same and the new, stable steady-state DIC concentration is only
marginally higher than before. However, Fig. 5 C and D shows
that the excursion beyond the fixed point is now roughly an order
of magnitude greater than before. Indeed, its size is compara-
ble to the large limit cycle of Fig. 4. The trajectory, however,
is not periodic, and the system soon relaxes back to its stable
steady state.

SI Appendix, Fig. S6 shows how the size of such excursions
varies with ν. The size is defined by the difference between
the maximum values of w and w∗ν , where w∗ν is the DIC fixed
point computed from Eq. 15 for a given value of ν. SI Appendix,
Fig. S6 shows that the transition from small to large excursions is
sharp yet continuous. Here it occurs near ν= 0.391. Beyond this
threshold, the size of the excursion no longer grows appreciably
with ν.

Dynamical systems that exhibit phenomena similar to those of
Fig. 5 and SI Appendix, Fig. S6 are called excitable (21). When a
stimulus such as ν exceeds a threshold, excitable systems produce
a transient excitation significantly larger than the stimulus, as
seen here. Excitable systems were first introduced to understand
the behavior of action potentials (nerve impulses or spiking) in
neurons (68, 69). They have since been studied in the context of
numerous other problems, including glacial cycles (32) and the
response of peatlands to warming (70).

Excitations occur near Hopf bifurcations (21). Even though
the fixed point is stable, a remnant of the stable limit cycle
exists in the phase plane. Here, as illustrated in Fig. 5, when ν
is above a critical threshold νc , the trajectory effectively hops
on to a vestige of the limit cycle before settling in to the
fixed point. The size and timescale of excitations are there-
fore comparable to limit cycles. Specifically, their amplitudes
are insensitive to the extent to which the threshold parameter
exceeds the threshold (SI Appendix, Fig. S6), and their dura-
tion is comparable to the period of limit cycles. Unlike limit
cycles, however, they do not require that a parameter of the
system, such as µ, be increased beyond a point of bifurcation.
For the carbon-cycle model studied here, this means that excita-
tions can occur in a stable carbon cycle that is merely subjected
to an above-threshold injection of CO2 while its constituent
parameters—e.g., riverine fluxes into the system, burial fluxes
out of it, and the timescale of homeostatic equilibration—remain
the same.

Fig. 6 shows where excitations occur and at what value of νc ,
in the plane of cx and θ, along with the stability boundary at
which the Hopf bifurcation occurs. Fig. 6 also shows the bistable
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Fig. 5. Evolution following perturbations below and above the excitations threshold. (A–D) Phase-plane representation and the time series w(t) for a sub-
threshold perturbation with ν= 0.35 (A and B) and an above-threshold perturbation with ν= 0.40 (C and D). The initial condition and all other parameters
are the same in each simulation. The crossover CO2−

3 concentration cx = 55 µmol·kg−1; other parameters are given in SI Appendix, Table S1. The larger
value of ν in the above-threshold case increases the DIC fixed point w* by 0.05µ= 12.5 µmol·kg−1 in C compared with A, which is nearly imperceptible in
the plots.

region adjacent to the stability boundary where the subcritical
Hopf bifurcation occurs. One sees that excitations occur in a wide
region of parameter space adjacent to the bistable region.

The relation between excitations and bistability is further clar-
ified in Fig. 7, which provides a 1D view along the cx axis. The
bistable region occurs at values of cx where the stable fixed point
and stable limit cycle coexist with an unstable limit cycle. In this
region, values of ν that depress the minimum w of the stable limit
cycle below the minimum w of the unstable limit cycle create
an immediate jump to the stable limit cycle. At the left bound-
ary of the bistable region, the unstable limit cycle and the stable
limit cycle collide via a saddle-node bifurcation of cycles (29).
For values of cx below this point, only the fixed point is stable.
Whereas an above-threshold ν creates a jump to the stable limit
cycle when cx is in the bistable region, a similar above-threshold
ν creates an excitation at smaller values of cx . Fig. 8 illustrates
how the unstable limit cycle determines the evolution of phase-
plane trajectories in the bistable regime. SI Appendix, Fig. S7
shows that excitations near the saddle-node bifurcation of cycles
can create a finite train of pulses before returning to the stable
fixed point.

Discussion
If the carbon cycle is indeed excitable, the great events of the
geologic past should reveal signs of such dynamics. Among these
events, those associated with mass extinction are of particu-
lar interest. It is also of interest to ask how the hypothesis of
excitability informs our understanding of the risks of human-
induced carbon-cycle disruptions in the future. The following
discussion provides some first steps in these directions.

Characteristic Events. Because excitations inherit the properties
of limit cycles, Eq. 19 relates not only the amplitude and
period of limit cycles via the flux jin, but also the amplitude
and duration of excitations. As expected, numerical simula-
tions of the carbon-cycle model show that the excitation size
∆w ' jinτ for large τ , where τ is the time from the onset of
an excitation to its peak (SI Appendix, Fig. S8). The geochemi-
cal record provides data from which the normalized size ∆w/w∗

may be estimated for real events; it also provides estimates of
τ (7). If real events are excitations, then the above reason-

ing suggests that their size and timescale should approximately
satisfy

∆w

w∗
=
αjin
w∗

τ , [20]

where α is a constant. Because αjin/w∗ is a concentration flux
divided by a steady-state concentration, I call it the specific rate
of the excitation.

Fig. 9 plots ∆w/w∗ as a function of τ for 31 global disrup-
tions of the carbon cycle during the last 542 My (7). Five of the
events are associated with major mass extinctions. Variations in
τ are likely related to changes in the timescale of homeostatic
damping over geologic time (7). The straight line and its uncer-
tainty (the yellow region) predict the size of the disruption that
would occur if it were quantitatively related to the cessation of
organic carbon burial and the resulting accumulation of CO2 (7).
Roughly half of the events occur in this region; they each display
surges of carbon that grow with approximately the same specific
rate. In addition to being well populated, the yellow region also

4
3 2

1

0.5

25 50 75 100 125 150

2
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10

Fig. 6. Contours of νc (dotted) in the region of excitations (pale yellow)
and jumps to the stable limit cycle in the region of bistability (pale blue) in
the plane of cx and θ. The blue and red portions of the stability boundary
correspond to a subcritical and a supercritical Hopf bifurcation, respectively.
Fixed parameters are specified in SI Appendix, Table S1. Excitations or jumps
are defined to occur if there exists a ν for which d∆w/dν > 103, where
∆w = wmax−w*. The threshold νc is the value of ν where that derivative is
greatest.
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Fig. 7. Bifurcation diagram for the parameter cx , the crossover CO2−
3

concentration for the ballast feedback. The solid and dotted black line
respectively represents the stable and unstable fixed point w*. The solid
blue line indicates the maximum and minimum values of w in the stable limit
cycle and the dashed red line represents the same extremes of the unstable
limit cycle. The subcritical Hopf bifurcation occurs where the radius of the
unstable limit cycle goes to zero, at cx = 62.61 µmol·kg−1. The saddle-node
bifurcation of cycles occurs where the unstable and stable limit cycles col-
lide, at cx = 55.89 µmol·kg−1. Excitations occur at smaller values of cx , to
the left of the arrowhead. Fixed parameters are specified in SI Appendix,
Table S1.

appears to separate benign events from 4 of the 5 mass extinc-
tion events. The disruptions within the yellow region therefore
appear to share important characteristics in addition to their
common specific rate. Henceforth these disruptions are called
characteristic events.

I hypothesize that characteristic events represent excitations
of the marine carbon cycle. If so, then the size of characteristic
events is predicted by Eq. 20, just as it is for model excita-
tions. The yellow region in Fig. 9 satisfies Eq. 20 for α∼ 0.1 (7).
Model excitations scale similarly, but with α∼ 1 (SI Appendix,
Fig. S8). This difference likely reflects mechanisms, such as
limitations imposed by organic carbon burial (7), that are not
captured by the model. The important point, however, is that for
both observed disruptions and model excitations, the amplitude
∆w ∝ jinτ .

The shared scaling of characteristic events and model excita-
tions with the riverine flux jin points to a common foundation.
The carbon-cycle model is an open, nonlinear chemical reac-
tor driven out of equilibrium by a flux of reactants into and out
of the system. So, too, is the real ocean; elemental concentra-
tions are determined by the balance of inputs and outputs while
buffering is controlled by heterogeneous carbonate equilibria
(71). More generally, instability, bistability, and oscillations can
occur in nonlinear chemical systems forced out of equilibrium
(72). In such problems, the size of limit cycles—and therefore
the size of any excitations—is a property of the system rather
than its perturbation (29). The model expressed by Eqs. 11 and
12 shows how this works in an idealized carbon cycle. The pro-
portionality of event sizes to the driving flux is a robust property
of the model that should be equally applicable in more com-
plex settings. The common scaling with jin also provides strong
evidence that characteristic events display an intrinsic nonlinear
response to perturbation rather than a proportionate response
to an external stress. Because different above-threshold stressors
would yield a similar response in an excitable system, the exci-
tation hypothesis also explains why the yellow region in Fig. 9 is
relatively well populated. In addition, because the carbon iso-
topic signals typically return to their initial steady state after
each event (e.g., Fig. 1), the steady state apparently remains sta-
ble. The combination of these observations is consistent with
excitability.

Events lying below the yellow region in Fig. 9 occur at
relatively slow specific rates and do not appear to share any-

thing in common other than their slowness. They likely rep-
resent a quasistatic (10) response to subthreshold changes in
the parameters of the carbon cycle, such as changes in burial
rates. These minor events therefore probably embody the clas-
sic proportionate response. The anomalously fast mass extinc-
tion events in the upper region should, however, be related to
excitability. To understand how, I first discuss the excitation
threshold.

The Excitation Threshold. Practically speaking, the amplitude of
an excitation should significantly exceed the amplitude of the
perturbation required to exceed the threshold (21). In terms of
the carbon-cycle model, such a definition immediately provides
a conservative upper bound for νc by requiring that the increase
in w∗ due to ν be smaller than the excitation amplitude ∆w .
Obtaining the former from Eq. 15 and the latter from Eq. 20,
one then has νcµ<αjinτ with α∼ 1. Similar reasoning applies
to the real carbon cycle. Given a damping timescale τw , the DIC
fixed point should again increase by roughly νcµ at the threshold.
The assumption that characteristic events are excitations then
provides the same bound on this increase, but with α∼ 0.1.
In either case, the excitation timescale τ should be similar
to the damping timescale. Recalling µ= jinτw , one then finds
νc <α or

νc .

{
1 model [21]
0.1 real world. [22]

Fig. 6 shows that the excitation threshold in the carbon-cycle
model is consistent with Eq. 21 near the subcritical Hopf
bifurcation.

The combined output of CO2 from modern subaerial and sub-
marine volcanism produces about 0.06 Pg·C·y−1 (73), which is
about 15% of the modern riverine flux of 0.41 Pg C·y−1 (74). If
the volcanic flux were doubled, the perturbation expressed by ν
would therefore be about 0.15, equivalent to the predicted upper
bound for νc (Eq. 22) and therefore enough, in principle, to
initiate an excitation.

Mass Extinctions. Fig. 9 shows that 4 mass extinction events
exhibit a specific rate significantly greater than that of

0 50 100 150 200
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2800

3000

3200

3400

Fig. 8. Phase-space trajectories in the bistable regime. Here cx =

58 µmol·kg−1 and all other parameters are the same as in Fig. 5 C and
D. The red dashed limit cycle is unstable; thus trajectories initialized inside it
return to the (stable) fixed point. Trajectories initialized outside the unstable
limit cycle evolve to the stable limit cycle.

Rothman PNAS | July 23, 2019 | vol. 116 | no. 30 | 14819

D
ow

nl
oa

de
d 

at
 M

B
L 

W
oo

ds
 H

ol
e 

O
ce

an
 In

st
 L

ib
ra

ry
 o

n 
A

pr
il 

8,
 2

02
0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1905164116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1905164116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1905164116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1905164116/-/DCSupplemental


10  100 1000
0.01

0.1

1

Fig. 9. The relationship between the relative size and duration of 31
disruptions of the global carbon cycle during the last 542 My (7). The rel-
ative size ∆w/w* is obtained from changes in the isotopic composition
of carbonate carbon that occur in time series similar to that of Fig. 1.
The yellow region contains characteristic events; these events satisfy Eq.
20 with α∼ 0.1. The events in the pale red region, which include 4 of the
5 mass extinction events, grow faster than characteristic events. The light
blue region contains minor events with relatively slow growth rates. The
labeled events are associated with the end-Cretaceous (KT), end-Triassic (TJ),
end-Permian (PT), end-Ordovician (Ord), and Frasnian–Famennian (FF) mass
extinctions. Ref. 7 provides descriptions of each event and a discussion of
uncertainties.

characteristic events, by a factor of 2 to 5 (7). These events
can be characterized as excitations driven by an injection rate
ν significantly greater than νc .

The idea follows reasoning similar to that used to bound νc .
Excitations at threshold exhibit the characteristic size ∆w '
αjinτ (Eq. 20). Suppose that CO2 injection occurs at rate (νc +
ε)jin, where ε> 0. Eq. 15 then shows that ∆w will increase by εµ
relative to its size at the threshold, resulting in

∆w ' jin(ατ + ετw ). [23]

In other words, above-threshold excitations are larger than
threshold excitations by a factor of about 1 + ετw/ατ . Since
the excitation timescale τ should not appreciably change, the
observed rate would similarly increase. Because τ ∼ τw , the main
interest lies in ε/α, which is on the order of 10ε for the real car-
bon cycle. So, for νc ∼ 0.1 (the upper bound of Eq. 22), excitation
at twice the threshold would increase ∆w and its growth rate by
roughly a factor of 2.

The association of massive flood-basalt volcanism with the
end-Permian (23), end-Triassic (22), and end-Cretaceous (24,
25) mass extinctions suggests how this would work. Flood basalts
release CO2 at a rate of about 3.5× 10−3 Pg C/ km3 of magma
(75). Schoene et al. (24) estimate that up to 11 km3·y−1 of
magma erupted from Deccan volcanism over a 10-ky period
tens of thousands of years before the end-Cretaceous extinc-
tion. The resulting CO2 flux is equivalent to about 10% of the
modern riverine flux, yielding ν' 0.1, commensurate with the
upper bound for νc . Other episodes of massive volcanism (22–
25) may exhibit similar pulses (76). Such events may indeed be
well above threshold: If νc were much smaller than its upper
bound, then ε= ν− νc ' 0.1, yielding α/ε' 1. The size and rate
of the event would then be roughly double those of characteristic
disruptions.

Excitation of the Modern Carbon Cycle. As a result of anthro-
pogenic CO2 emissions, Earth’s oceans currently absorb about
2.3 Pg C·y−1 (77), which is about 5.6 times the riverine carbon
influx. The resulting excitation parameter, ν= 5.6, is more than
50 times greater than the predicted upper bound for νc . That
prediction, however, assumes a continuous, constant injection of
CO2. If CO2 injection occurs instead for a time much less than

the damping timescale, its ability to initiate an excitation may be
attenuated by the ocean’s homeostatic response.

Whether or not excitation ensues will nevertheless still depend
on the injection rate. Suppose that CO2 injection occurs over a
time ti <τw . If excitations follow when ν >νc for ti ≥ τw , then
excitations should still occur when ti <τw if the DIC addition
νjinti is approximately equal to or greater than the total input
resulting from injection at the threshold νc over 1 damping
time. In other words, there is a ti -dependent threshold ν′c that
approximately satisfies ν′cti = νcτw for small ti . Therefore,

ν′c(ti)' νc
τw
ti

, ti <τw . [24]

The scaling like t−1
i should increase in accuracy as ti→ 0. SI

Appendix, Fig. S9 shows that numerical solutions of the carbon-
cycle model compare well to this prediction. The dependence of
the short-time threshold on ti is qualitatively similar to the notion
of a critical ramping rate (70).

Given the real-ocean upper bound νc . 0.1 (Eq. 22), sub-
stitution of τw = 104 y and ti = 102 y into Eq. 23 yields the
century-scale upper bound ν′c . 10. Mean 21st-century oceanic
carbon uptake will likely range from 1.8 to 4.2 Pg C·y−1

(77), which translates to 4.4≤ ν≤ 10.2, similar to the upper
bound for ν′c . With respect to the excitation threshold, the
modern perturbation is therefore approximately equivalent
to the aforementioned end-Cretaceous pulse; its duration is
2 orders of magnitude shorter but its flux is 2 orders of
magnitude greater. Fig. 10 illustrates this correspondence
graphically.

The short-time critical rate ν′c may be alternatively expressed
as a critical mass mc . Multiplication of both sides of Eq. 24 by
jinti shows that injection with ν >ν′c over a timescale ti <τw is
equivalent to adding a mass of carbon greater than

mc ' 12νcjinτwV , [25]

where V = 1.35× 1021 kg is the mass of the oceans (2) and
the factor of 12 converts mol to g. Ref. 7 derives an equiva-
lent expression from different assumptions. In conjunction with

Fig. 10. Equivalence, with respect to the excitation threshold, of the per-
turbations of the modern and end-Cretaceous carbon cycles, expressed in
terms of the dimensionless CO2 injection rate ν. The straight line labeled
ν′c is the threshold’s upper bound predicted by Eq. 24, assuming the mod-
ern damping timescale τw = 104 y; the segment labeled νc (Eq. 22) provides
the upper bound for times ti > 104 y. The circles represent projected 21st-
century ocean carbon uptake rates for a range of plausible scenarios (77);
the vertical line indicates their uncertainty. The symbols labeled KT pro-
vide the median and upper limit of the 68% confidence interval estimated
for the period of peak Deccan volcanism tens of thousands of years before
the end-Cretaceous extinction (24). Because the excitation threshold scales
like 1/ti , both the modern and end-Cretaceous perturbations potentially lie
near the threshold’s upper bound despite the 2 orders of magnitude that
separate their rates.
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Eq. 22, Eq. 25 predicts the upper bound mc . 405 Pg C, which
falls within the projected uptake of 290 to 540 Pg C from the year
1850 to 2100 (77). Thus, in terms of either 21st-century uptake
rates or total postindustrial uptake, the modern marine carbon
cycle may be at the precipice of excitation.

Finally, there is an important caveat. Since the carbon-cycle
model applies only to timescales greater than that of ocean
mixing [about 1,000 y (2, 3)], it does not necessarily inform
understanding of phenomena at timescales shorter than 1,000 y.
However, if the addition of CO2 to the oceans were not apprecia-
bly damped at submillenial timescales by processes not discussed
here, the reasoning outlined above would remain valid at these
short timescales.

Conclusion
Major disruptions of Earth’s carbon cycle are typically inter-
preted as a proportionate response to an environmental per-
turbation (8, 16, 20). This paper suggests instead that many
of these events represent the nonlinear amplification of pro-
cesses that operate within the carbon cycle. To illustrate how
this could work, this paper constructs and studies a simple
dynamical-system model of the marine carbon cycle. The results
suggest that disruptions can follow when a stable steady state
is perturbed beyond a threshold. A likely source of pertur-
bations is an increased flux of CO2 into the oceans. The
autocatalytic amplification of model disruptions exhibits a char-
acteristic increase and rate of growth of the ocean’s store
of carbon before returning to the original steady state. Such
characteristic sizes and rates, independent of the history of
external perturbations, are classical features of nonlinear sys-
tems (29). The historical record of the real carbon cycle also
exhibits similar characteristics (7). These shared properties sug-
gest that the model displays important features of the real
carbon cycle.

These findings suggest that a characteristic excitation of upper-
ocean CO2 levels follows the injection of CO2 into the oceans
at an above-threshold rate. If injection continues over a time
greater than the timescale τw over which the oceans homeostat-
ically adjust to changes in pH, the threshold’s upper bound is
roughly equivalent to the higher estimates of the rate at which

CO2 degasses from major flood-basalt eruptions associated with
mass extinction (24, 76). If injection is instead limited to a shorter
duration ti , the threshold increases by a factor of τw/ti . Thus, the
relatively slow rate of CO2 injection commensurate with massive
volcanism at geologic timescales turns out to be roughly equiva-
lent, in terms of its potential to reach the threshold, to the much
stronger but briefer perturbation of the modern carbon cycle.
Mass extinction events appear to be associated with excitations
well above threshold.

These conclusions rely in part on the assumption that the
dynamics of a 2D dynamical system represent a subset of
the complex behavior exhibited by the real carbon cycle. This
assumption does not require that the mechanisms encoded by
the terms within the dynamical system be strictly correct. How-
ever, it does demand that the model’s qualitative dynamical
properties, such as the possible existence of a limit cycle, be
realistic. This may not be true. One could argue, for example,
that phenomena at submillenial timescales, such as ecological
reorganization, will act as strong negative feedbacks in local envi-
ronments, impeding global autocatalytic self-organization. The
present state of the geochemical record makes such notions dif-
ficult to rule out observationally. On the other hand, numerical
simulation of more detailed carbon-cycle models (44) should
allow one to test whether excitations are expressed in such frame-
works. Likewise, careful analysis of individual disruptions or
specific periods in the geochemical record should allow one to
test whether quantitative signatures of excitable systems exist.
The possibility of resonance with the fluctuations of external
perturbations (21), such as those induced by orbital variations
(12), offers one such route. The work reported here identifies
why the carbon cycle may be excitable, how excitability may
have been expressed in the past, and why an excitation may
occur in the future. In a curious twist of geological and biolog-
ical evolution, dynamical mechanisms underlying environmental
upheaval and mass extinction may be similar to those that make
neurons spike.
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