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Abstract 
Reducing uncertainty in the global carbon budget requires better quantification of ocean CO2 
uptake and its temporal variability. Several methodologies for reconstructing air-sea CO2 exchange 
from sparse pCO2 observations indicate larger decadal variability than estimated using ocean 
models. We assess these reconstructions’ ability to estimate spatiotemporal variability, by creating 
the Large Ensemble Testbed using four independent Earth system models. Model pCO2 fields are 
subsampled as the observations, for each of 100 ensemble members, and the reconstruction is 
performed as is done with real-world observations. The power of a testbed is that the perfect 
reconstruction is known from the original model fields; thus, reconstruction skill can be 
comprehensively assessed. We find that a commonly used neural-network approach can skillfully 
reconstruct air-sea CO2 fluxes when and where it is trained with sufficient data. Flux bias is low 
for the global mean and Northern Hemisphere, but can be regionally high in the Southern 
Hemisphere. The phase and amplitude of the seasonal cycle are accurately reconstructed outside 
of the tropics, but longer-term variations are reconstructed with only moderate skill. For Southern 
Ocean decadal variability, insufficient sampling leads to a 39% [15%:58%, interquartile range] 
overestimation of amplitude, and phasing is only moderately correlated with known truth (r=0.54 
[0.46:0.63]). Globally, the amplitude of decadal variability is overestimated by 21% [3%:34%]. 
Machine learning, when supplied with sufficient data, can skillfully reconstruct ocean properties. 
However, data sparsity remains a fundamental limitation to quantification of decadal variability in 
the ocean carbon sink.  
 
Significance statement 
The ocean is a significant sink for anthropogenic CO2. Accurate estimates of air-sea CO2 exchange 
are needed to track if we are on target to satisfy internationally agreed climate targets. Observations 
remain very sparse, thus statistical approaches have been proposed to fill data gaps. However, the 
uncertainties in these gap-filling reconstructions are unclear.  We use Earth system model 
simulations to evaluate one commonly used machine learning approach, and find that data sparsity 
in the Southern Ocean causes decadal variability to be significantly overestimated. Data coverage 
needs to be increased to improve quantification of the ocean carbon sink. Our approach can be 
used to evaluate other existing reconstructions, and to support the development of new approaches.  
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Introduction 
The ocean significantly modulates atmospheric CO2, having absorbed about 39% of industrial-age 
fossil carbon emissions (1). Under high emission scenarios, the ocean sink is projected to grow 
and become the primary sink for anthropogenic carbon emissions over the next several centuries 
(2). Under low emission scenarios, such as those that would limit global warming to 2°C, the ocean 
carbon sink will decline rapidly as the near-surface waters that hold the bulk of anthropogenic 
carbon (3) come into equilibrium with the atmosphere (4, 5). As the long-term response to the 
changing atmospheric pCO2 unfolds, the ocean sink will continue to be modified on seasonal to 
decadal timescales by climate variability and change. Ultimately, our ability to accurately monitor 
the fate of anthropogenic carbon in the Earth system requires a quantification of the spatially-
resolved variability of the ocean carbon sink on timescales from seasonal to multi-decadal. To 
achieve this goal, global maps of surface ocean pCO2 are required, from which air-sea CO2 
exchange can be derived.  
 
The direction of the air-sea CO2 flux is set by the gradient in pCO2 across the air-sea interface with 
additional controls from the gas transfer velocity and CO2 solubility setting the magnitude. 
Satellites cannot directly measure surface ocean pCO2; therefore, hindcast simulations with ocean 
models (1) and observation-based gap-filling techniques (6) are integral to providing a global 
picture of the evolving ocean carbon sink. Essential to these techniques are high quality in-situ 
pCO2 measurements, such as those annually compiled in the Surface Ocean CO2 ATlas (SOCAT) 
(7, 8). But these data are too sparse to directly constrain global air-sea CO2 exchange. The latest 
SOCAT database release covers only 1.5% of all possible monthly 1°x1° points from 1982 to 
2019, which poses challenges to an accurate global CO2 flux estimate. Current gap-filling 
techniques, such as the self-organizing map feed-forward neural-network (SOM-FFN)(9), provide 
continuous monthly mean estimates. However, these results lack a comprehensive, spatially-
resolved assessment of uncertainties. Understanding these uncertainties is important for 
understanding the mechanisms of variability (10, 11), to compare model output to observation-
based data products (12), to benchmark Earth system model based prediction systems (13), and to 
assess impacts on the global carbon budget (1, 14). Here, we present a comprehensive, spatially-
resolved assessment of uncertainty in the SOM-FFN. 
 
Our Large Ensemble Testbed uses 100 members from four Large Ensemble Earth system models, 
25 members each, to evaluate the performance of the SOM-FFN over 1982-2016 given real-world 
pCO2 sampling (Figure 1A). For each ensemble member, the pCO2 reconstruction is performed in 
the same manner as in the SOM-FFN application to SOCAT pCO2 data (see Methods). We sample 
the pCO2 field of each testbed ensemble member as the SOCATv5 database (step 1) and use co-
located driver data (see Methods) from the same ensemble member output to train, evaluate, and 
test the SOM-FFN (step 2). We then reconstruct full-field pCO2 from the full-field driver data 
(step 3). CO2 flux is then calculated using the reconstructed and original climate model pCO2 field 
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(step 4). This is repeated for each ensemble member, providing a total of 100 unique reconstruction 
and model-truth pairs. To assess the performance across various timescales, we deconstruct the 
flux into seasonal, decadal, and sub-decadal components (Figure 1B) (see Methods). Performance 
on decadal time scales is of particular interest, since the reconstruction techniques indicate greater 
decadal variability than ocean models, especially in the Southern Ocean (15–18).  
  
We emphasize that the goal of this work is not to provide an estimate of real-world air-sea CO2 

exchange, but instead to assess the statistical fidelity of SOM-FFN given real-world sampling. 
Fidelity is quantified by three metrics: the method’s ability to capture the long-term mean, and the 
phase and amplitude of seasonal to decadal time-scale variability. Our approach allows assessment 
of the reconstruction’s fidelity across a wide range of potential states of ocean internal variability 
as estimated by 25 ensembles each from 4 independent Earth System models. 
 
Results 
Reconstruction bias 
Regionally, the 1982-2016 mean CO2 flux from SOM-FFN can be biased high or low by more than 
0.50 mol C m-2 yr-1 (Figure 2A), but these patches average out such that the global average bias is 
small (-0.01 mol C m-2 yr-1). Regional biases are smaller in the Northern Hemisphere where data 
are more dense, and larger in the Indian Ocean and Southern Hemisphere where data are more 
sparse (Figure 2B,C). The mean and interquartile range of biases in the Northern and Southern 
Hemisphere is [0.01, -0.05:0.06] and [-0.04, -0.13:0.06] mol C m-2 yr-1, respectively. Grid cells 
with at least 48 months of data have a mean bias that does not exceed 0.14 mol C m-2 yr-1 90% of 
the time (Figure 2C).  
 
Reconstruction phasing 
Temporal correlation of the reconstruction to the original model field for each ensemble member 
indicates the ability of SOM-FFN to accurately capture phasing of variability at seasonal, sub-
decadal, and decadal time scales (Figure 3A-C). The standard deviation of the correlations 
indicates the degree to which correlations are consistent across ensemble members (Figure 3D-F). 
Spatial coincidence of low standard deviations and high correlations indicates that the 
reconstruction performs well across all the climate states represented by the ensemble members.  
 
Reconstructed CO2 flux, for the seasonal cycle, has the highest correlation to its original model 
field in the subtropics (Figure 3A). The large seasonal amplitude provides a prominent signal that 
the neural-network can identify (supplemental Figure 1). Higher data density in the Northern 
Hemisphere (Figure 2B) leads to a marginally better reconstruction which leads to better 
constraints on the seasonal cycle here. The lack of a prominent seasonal cycle in the tropics (19) 
leads to a limited signal for an SOM-FFN reconstruction. The ability of the SOM-FFN to capture 
monthly variations is patchy in the Southern Ocean and Indian Ocean; two regions that have been 
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previously identified as having the largest mismatch towards observations and the expected 
seasonal amplitude increase (10, 20). Despite smaller correlations around the equator and in the 
Southern Ocean and Indian Ocean, the global average correlation is 0.89. Additionally, regions of 
high correlation have low spread across the ensemble members (Figure 3D). The pattern 
correlation between the mean correlation (Figure 3A) and the spread of the correlations (Figure 
3D) is -0.88, indicating a tight consistency between the mean result and the 100 ensemble 
members.  
 
The SOM-FFN methodology, when combined with the available observations, is less capable in 
reconstructing variability at sub-decadal (Figure 3B) and decadal (Figure 3C) time-scales; 
contrasting the seasonal signal. Global average correlation values are 0.75 and 0.58, respectively. 
Correlations are lower on decadal timescales (Figure 3C) than on sub-decadal timescales (Figure 
3B) in the subtropics. The decadal signal is best reconstructed in the Western Pacific warm pool. 
The pattern correlations between the mean and standard deviation across ensemble members are 
moderate (r=-0.77 for sub-decadal, and r=-0.66 for decadal); indicating a wide spread of 
correlations where the mean correlations are moderate. This suggests that in some ensemble 
members at specific locations, even the very sparse sampling that occurred was sufficient to 
capture the dominant modes of variation. However, this is not generally true across the ensemble, 
indicating a lack of robustness to the particular realization of oceanic variability.  
 
Reconstruction of the amplitude 
Percent error of the standard deviation quantifies how well the reconstruction captures the true 
amplitude of variability. SOM-FFN, for the global average, overestimates the amplitude of the 
seasonal cycle by 7%(Figure 4A). Regionally, the reconstruction is accurate north of 35°N, but in 
the tropics and Southern Hemisphere, the seasonal amplitude is overestimated by a median value 
of 10% [3%:12%] (Figure 4A,D). The amplitude of sub-decadal variability is slightly 
underestimated at most locations, with a global average of -1% (Figure 4B).   
 
On decadal timescales, SOM-FFN overestimates the amplitude of variability at most locations and 
for both the regional and global means. Globally, the overestimate is 21% (Figure 4C). In the 
Southern Ocean (<35°S), the median is a 39% overestimation, with a large interquartile range 
across ensemble members (Figure 4F).  
 
The percent overestimation, by definition, is inversely proportional to the model standard 
deviation, and the four climate models of the Large Ensemble have different inherent amplitudes 
of decadal variability (Figure 5A) (21, 22). It is quite promising that the amplitude of the 
reconstructed decadal variability is close to its appropriate original model, as indicated by the small 
spread in average absolute error (AAE) (0.03-0.06 molC m-2 yr-1). AAE is defined as the mean of 
the absolute difference between the standard deviation of the reconstruction and of the original 
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model field. Thus, SOM-FFN is skillful in capturing the broad range of decadal variability 
simulated by the different climate models, even with the very sparse sampling. However, this broad 
range of underlying decadal variability influences the percent error. MPI-GE has a large decadal 
variability, and a low percent error (5%); conversely, GFDL-ESM2M has a small decadal 
variability and thus a high percent error (84%). Since we do not know which of these models best 
represent the true decadal variability of the Southern Ocean, the median across all four Large 
Ensembles (39%) is our best estimate.  
 
Influence of additional Southern Ocean sampling 
In recent years, the sampling density in the Southern Ocean has substantially increased through 
the launch of the fleet of drifters and Bio-Argo floats (23, 24). To assess the future impact of this 
new data source on our results, we test the potential impact that this additional Southern Ocean 
sampling would have on the reconstruction. We additionally supplement the sampling in the 
Southern Ocean (Figure 6A) for a subset of ensemble members within the Large Ensemble Testbed 
(Figure 1). Specifically, the historical sample locations of all SOCCOM and CARIOCA 
measurements are collapsed to a monthly climatology, and then assumed to have occurred at the 
same locations every year from 1982-2016. This adds 114,972 additional samples at 592 locations, 
equivalent to increasing data density from 1.4% with only SOCAT to 2.1% with the artificially 
persistent floats.  
 
As expected, the additional sampling substantially improves the fidelity of the Southern Ocean 
reconstruction on all timescales (Figure 6). Enhanced sampling in the Southern Ocean also 
improves the reconstruction outside of the region because the biogeographic provinces of SOM-
FFN are constrained by physical and biogeochemical properties; not by geography. Focusing on 
the Southern Ocean, the phasing of the decadal variability is improved, as indicated by higher 
mean correlations (Figure 6B vs. 3C). Error in the amplitude is much reduced at most locations 
(Figure 6C vs. 4C). The simulated additional sampling also reduces the spread of amplitude error 
across the ensemble members on seasonal (Figure 6D), sub-decadal (Figure 6E), and decadal time 
scales (Figure 6F). The interquartile range, for the decadal time-scale, across the 28 member subset 
is [-11.6%, 0.0%] with a median of -6.9%. A combination of ship and float data has recently led 
to smaller Southern Ocean fluxes in recent years (25). However, if SOCAT sampling had been 
supplemented by continuous drifters and floats in the Southern Ocean for the last 3 decades, giving 
only 2.1% sampling coverage, we would now be able to reconstruct the amplitude of real-world 
decadal variations in the Southern Ocean carbon sink to within 20% (Figure 5B,6F) and globally 
to within 2%  (Figure 6C). This provides evidence that Southern Ocean observations are key to 
improving the reconstruction’s ability to capture decadal variability.  
 
Discussion 
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These results offer the first spatially-resolved quantification of the uncertainty of observation-
based CO2 flux reconstruction on seasonal to decadal timescales. We address reconstruction 
fidelity for the ocean CO2 flux given real-world pCO2 data sparsity across a range of simulated 
realizations of the ocean’s internal variability. We do not account for uncertainties in 
measurements, in the representativity of one or small number of instantaneous pCO2 observations 
for a full month and a 1°x1° grid cell, nor in the full-field driver data. System lags beyond the 
instantaneous non-linear response to changes in the driver fields are also ignored. Model output 
has previously been used to assess performance of this or similar statistical approaches for pCO2 
reconstruction either using a single model (26, 27) or an ensemble of hindcast models (28), and 
should continue to serve as a method benchmark (29). The advantage of the Large Ensemble 
Testbed is that it is much less dependent on the particular model simulation used as “truth” and 
allows for a statistically robust assessment of reconstruction performance across a range of climate 
states and model structures/representations. This testbed can be used to test other reconstruction 
approaches, for development of new approaches, and for evaluating new sampling strategies (26), 
and is now publicly available (see Methods). Here, we tested the ability of the SOM-FFN method 
to accurately reconstruct pCO2 across the global ocean. We illustrate that the reconstruction 
method itself can be fairly accurate across timescales, but that data sparsity remains a fundamental 
limitation.   
  
The SOM-FFN has previously been used as a reference field to assess the performance of model 
simulations over the historical period (12, 14, 30–33). We find that SOM-FFN provides a robust 
global estimate of the mean CO2 uptake by the ocean, but regionally and locally, its performance 
is dependent on the location and the density of observations. If there are at least 48 months of data 
for a 35 year timeframe, the mean bias in the long-term mean is under 0.14 mol C m-2 y-1 90% of 
the time (Figure 2C). Mean bias can locally be much larger, particularly in poorly sampled regions 
such as the Southern Hemisphere. Similarly, the ability of the reconstruction to accurately capture 
the phase (Figure 3) and amplitude (Figure 4) of variability on sub-decadal and decadal time scales 
varies regionally. To improve observation-based reconstructions of the ocean carbon sink in the 
future, additional sampling will be critical (Figure 6). 
 
When driven with real-world SOCAT observations and driver data, SOM-FFN indicates large 
amplitude decadal variability in the Southern Ocean carbon sink, with a significant slowdown in 
uptake over the 1990s, reaching a minimum in 2001, and then a recovery (11, 15, 16, 34) until 
around 2011 (17). Here, we demonstrate that the SOM-FFN method overestimates the amplitude 
of the decadal variability in the Southern Ocean by a median of 39% across all ensemble members. 
A reduction of the amplitude of decadal variability would bring SOM-FFN more in line with other 
observation-based products (18), ocean circulation inverse models (15) and with ocean models (1, 
14, 15).  
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Though this work strongly indicates that SOM-FFN overestimates decadal variability of the 
Southern Ocean and of the globe, it does not provide a clear basis for a direct rescaling of the 
SOM-FFN for comparison to other estimates (1, 11, 16, 34). First, correlations indicate that 
decadal variability (Figure 3C, F) is only reconstructed with moderate skill in terms of phasing. 
Second, with respect to amplitude, one could note that the magnitude of Southern Ocean 
reconstructed variability from real data using SOM-FFN is 0.17 mol C m-2 yr-1 and from (35), 0.16 
mol C m-2 yr-1 (16). A re-scaling could be derived from the mean AAE, implying a reduction of 
0.04 mol C m-2 yr-1 to arrive at 0.12-0.13 mol C m-2 yr-1. This would be a downscaling of 
approximately 25%. However, a percent scaling has been shown to be strongly dependent on the 
background variability of the real ocean (Figure 5), and we do not know which of the four climate 
models best represents this. Directly from the median percent error, 39% would be the best choice 
for a rescaling of Southern Ocean amplitude, leading to 0.06 mol C m-2 yr-1. To restate, we do not 
have a clear basis for a direct rescaling. One way to constrain this range in the future could be to 
reconstruct pCO2 within a suite of hindcast models that have less spread in their underlying 
variability due to their forcing with realistic meteorology.  
 
We use Large Ensemble model output to provide the first detailed statistical assessment of the 
uncertainty in a reconstruction of air-sea CO2 fluxes based on sparse in-situ ocean pCO2 data. Flux 
bias is low for the global mean, and at most locations in the Northern Hemisphere. However, bias 
can be regionally high in the data-poor Southern Hemisphere. The seasonal cycle is well-captured 
in phase and amplitude outside of the tropics. Interannual phase and amplitude are better captured 
in the Northern Hemisphere and the tropics than in the Southern Hemisphere. In the Southern 
Ocean, insufficient sampling leads to a 39% [15%:58%] overestimation of decadal variability. 
Globally averaged, the amplitude of decadal variability is overestimated by 21% [3%:34%]. To 
improve observation-based reconstructions of the ocean carbon sink, extension of sampling to 
include the Southern Ocean and other data-poor regions is required.  
 
Methods  
SOM-FFN pCO2 interpolation 
Self-organizing map feed-forward neural-network (SOM-FFN) (11, 20, 36) is a non-linear 
regression using a combination of self-organizing maps (SOM) and feed-forward neural-networks 
(FFN) to extrapolate from sparse pCO2 observations to a global 1°x1° grid at a monthly resolution. 
To estimate pCO2 at each spatial location, SOM-FFN relies on auxiliary datasets with full, or 
approximately full, global coverage: Sea Surface Temperature (SST) and Surface Chlorophyll-a 
(Chl-a) from satellite;  Sea Surface Salinity (SSS) from a compilation of in-situ data sources; 
Mixed layer depth (MLD) climatology from argo floats; and atmospheric CO2 mixing ratio 
(xCO2). These variables serve as proxies for known processes affecting pCO2. The long-term 
growth of pCO2 is driven by atmospheric CO2 (xCO2). Solubility is set by SSS and SST. Biological 
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uptake of dissolved inorganic carbon (DIC) is indicated by Chl-a. Biological productivity and 
entrainment of DIC are influenced by MLDs.  
 
The first step uses a self-organizing map (SOM) to cluster the global ocean into 16 biogeochemical 
provinces based on climatological variables (surface ocean pCO2 from (37), SST, SSS, MLD, and 
Chl-a). This allows for neural-network algorithms specific to each province to be developed in the 
second step, taking advantage of regional coherence in the dominant drivers of pCO2 variability 
(eg. SST in subtropics, DIC in subpolar).  
 
The second step develops a non-linear regression to estimate pCO2 given the aforementioned 
environmental driver variables (SST, SSS, MLD, Chl-a, xCO2). All driver variables are monthly 
varying from 1982 through 2016, with the exception of climatological MLD. Any gaps in the 
driver data are either replaced with climatology or removed from the estimation. Within each 
province, a unique feed-forward neural-network (FFN) is developed to link the driver variables to 
pCO2 observations from SOCAT. This approach does not impose mechanistic relationships. Once 
the FFN algorithm is trained, tested, and evaluated on SOCAT pCO2 in each province, the 
relationship is applied to continuous fields of driver variables to estimate pCO2 at all 1°x1° 
locations and all months from 1982-2016. Finally, air-sea CO2 exchange is calculated following 
(38). 
 
The large ensemble testbed 
Our 100-member Large Ensemble Testbed includes 25 randomly selected members from each of 
four independent initial-condition ensemble models:  

● CanESM2: Second Generation Canadian Earth-System Model (RCP8.5) (39)  
● CESM-LENS: Community Earth System Model – Large Ensemble  (RCP8.5) (40) 
● GFDL-ESM2M: Geophysical Fluid Dynamics Laboratory Earth-System Model (RCP8.5) 

(41) 
● MPI-GE: Max Planck Institute for Meteorology Grand Ensemble (RCP8.5) (42) 

Each individual climate model is an imperfect representation of the actual Earth system, thus we 
use multiple Large Ensembles to span across the different model structures and their representation 
of internal variability. Each large ensemble member uses the same external forcing of historical 
atmospheric CO2 before 2005 and Representative Concentration Pathway 8.5 (RCP8.5) 
afterwards. Spread in the ensemble members is generated by perturbing the initial state of the Earth 
system at the start of each simulation. This is accomplished either by changing the seed value that 
goes into a random number generator as part of the cloud parameterization (CanESM2), perturbing 
the initial air-temperature field with round-off level differences (CESM-LENS), or branching off 
from snap-shots of the historical simulation (GFDL-ESM) or pre-industrial simulation (MPI-GE). 
These initial perturbations cause each ensemble member to have a unique atmosphere and ocean 
state at each point in time, i.e. a different state of internal variability. By using many ensemble 

ESSOAr | https:/doi.org/10.1002/essoar.10502036.1 | Non-exclusive | First posted online: Tue, 28 Jan 2020 01:33:14 | This content has not been peer reviewed.



members it is possible to test the methods ability to capture the full range of pCO2 variability 
potential in the system under any possible climate state, not only that which occurred in the real 
ocean. As a specific example, the real ocean experienced an El Niño in 1997-1998. In the testbed, 
ensembles may have had a La Niña, El Niño or been neutral at this time. We expect only that 
Southern Oscillation statistics be consistent with the real world in the climate model ensembles.  
 
To create the testbed, we retrieve monthly averaged SST, SSS, Chl-a, MLD, xCO2, and pCO2 from 
each member. A bilinear interpolation scheme is used to transform each field to a 1°x1° rectilinear 
grid, the same resolution as the SOCATv5 gridded product (8). Each member’s monthly varying 
ocean pCO2 is then sampled at the resolution of the SOCATv5 data product, with the other 
variables remaining un-sampled. The sampled pCO2 field and co-located driver data for each of 
the 100 members constitutes the Large Ensemble Testbed capable of evaluating pCO2 interpolation 
methods. The intention is to create fields that mimic the environmental driver variables and 
SOCATv5 data used in the real-world application of the SOM-FFN interpolation. After the 
monthly varying pCO2 field is reconstructed for each member, air-sea CO2 exchange is calculated. 
 
Air-sea CO2 exchange 
Air-sea CO2 flux is calculated in mol C m-2 yr-1 for each month at each 1°x1° spatial location using 
the (38) parameterization with the (43) scale factor of 0.27. High-frequency output is not available 
for all large ensemble members thus to be consistent with the flux calculation used in the real-
world application of the SOM-FFN flux product, we use ERA-interim 6-hourly global atmospheric 
reanalysis (44) as an estimate for the wind-speed variance. Saturation vapor pressure is removed 
from the total pressure when calculating the atmospheric partial pressure of CO2 (45). See 
Supplemental Text 1 for more details.  
 
Temporal decomposition  
To evaluate the performance of the SOM-FFN on various time scales, an approach similar to (46) 
is used to temporally decompose the air-sea CO2 flux into additive components at each grid point 
(see Figure 1B for an illustration). 
 
We first eliminate the influence of increasing atmospheric CO2 by removing a linear-trend at each 
1°x1° grid cell from the reconstructed air-sea CO2 flux and the model truth. Then, a repeating 
seasonal cycle is calculated from the detrended time series. After removing the seasonal 
component, the decadal signal is isolated by applying a locally weighted regression (loess) 
smoother (47) with a 10-year window. Finally, the remaining signal not explained by a linear trend, 
seasonal cycle, or decadal trend is here termed the sub-decadal component. This decomposition 
was done for both the reconstructed and model truth air-sea CO2 flux for each of the 100 ensemble 
members. Statistical metrics were applied across each time scale.  
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Statistical metrics  
The fidelity of the reconstruction is based on a suite of statistical metrics (48). Our focus is on bias, 
correlation, percent error in standard deviation, and average absolute error, chosen to assess if the 
reconstruction captures the long-term mean, temporal phasing of the signal, and variability 
observed in the model. Each ensemble member is treated as an equally likely climate state, thus 
statistical metrics are averaged across the 100 ensemble members. Spread in each metric across 
ensemble members is quantified by the standard deviation.  
 
Bias is calculated as the long-term mean of the reconstruction (R) minus the model truth (M),   
𝑏𝑖𝑎𝑠 = 𝑅' − 𝑀' ,with the overbar representing the mean over 1982-2016. Bias is a measure of the 
systematic discrepancy between the reconstruction and model over the long term. It is important 
to note that values near zero may be misleading as positive and negative discrepancies can cancel 
out.  
 
Pearson correlation coefficient, 𝑟,  is defined as the covariance between the reconstruction and the 
model divided by the product of their standard deviations, 𝑟 = +,-(/,1)

3435
 . Correlation is used to 

quantify the synchrony between the reconstruction and model truth. Values are bounded between 
-1≤ r ≤1, which quantifies the degree to which reconstruction captures the phasing observed in the 
model. Values near 1 and -1 indicate that the reconstruction and model are perfectly in or out of 
phase, respectively. Intermediate values indicate a phase shift between the two signals, with values 
closer to zero indicating a larger phase shift between signals.  
 
Percent error (%𝑒𝑟𝑟𝑜𝑟 = (34	:35

35
) ∗ 100 ) in the standard deviation quantifies the degree to 

which the reconstruction correctly captures the amplitude of CO2 flux variability as observed in 
the ensemble member. This metric indicates whether the reconstruction overestimates 
(%𝑒𝑟𝑟𝑜𝑟>0), underestimates (%error<0), or perfectly captures (%𝑒𝑟𝑟𝑜𝑟=0) the variability of the 
model truth. This metric is sensitive to the model standard deviation.  
 
Average Absolute Error (AAE) quantifies how well the magnitude of variability is reconstructed 
in units of  mol C m-1 yr-1 . It is defined as the absolute difference between the standard deviation 
of the reconstruction and of the original model field averaged across all ensemble members 
(𝐴𝐴𝐸 = |𝜎/ − 𝜎1	|' ).  
 
Data Availability 
The 100 member large ensemble testbed is publicly available at 
https://figshare.com/collections/Large_ensemble_pCO2_testbed/4568555. Data analysis scripts 
are contained in GitHub repository https://github.com/lgloege/large_ensemble_testbed. 
SOCATv5 is available at https://www.socat.info/index.php/previous-versions/. ERA-interm 6 
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hourly output is available at https://apps.ecmwf.int/datasets/. Any other inquiries should be 
addressed to L.G. 
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Figure 1: The Large Ensemble Testbed. A) Schematic of the testbed; oceanic pCO2 from each 
of the 100 members is sampled in space and time like the SOCAT gridded product (Step 1). The 
sampled output is used with auxiliary model output variables to reconstruct pCO2 in the same 
way as the real-world application of the SOM-FFN (Landschützer, Gruber, Bakker, & Schuster, 
2014) (Step 2). pCO2 is reconstructed everywhere using full-field auxiliary datasets (Step 3). 
Finally, CO2 flux is calculated for the model truth and reconstruction for each of the 100 
ensemble members and then statistically compared across seasonal to decadal time scales (Step 
4). Maps in the schematic are pCO2.  B) Illustrated breakdown of CO2 flux time series at a single 
point into seasonal, decadal, and sub-decadal variability.  
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Figure 2: Reconstruction bias and sampling density. A) Bias between reconstruction and 
model truth, averaged over the 100 ensemble members. Red and blue shading indicates regions 
where the reconstruction is biased high or low, respectively. B) Number of months with 
observations in each grid cell. C) Cross plot of bias with number of months with data, by 1°x1° 
grid cell. Color indicates correlation between the reconstruction and model truth on decadal time 
scale.  
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Figure 3: Phasing of SOM-FFN reconstructed variability on seasonal, sub-decadal and 
decadal, compared to original model. Correlation between reconstruction and original model 
on A) seasonal, B) sub-decadal, and C) decadal time scales, averaged across the 100 ensemble 
members. The global average is displayed atop each plot. The standard deviation of the 
correlation across the 100 ensemble members is shown on D) seasonal, E) sub-decadal, and F) 
decadal time scales. The pattern correlation between the mean and standard deviation is 
displayed between each pair of maps, with values close to -1 signifying high correlations are 
consistent across ensemble members.  Note the reversed scale such that high mean correlation 
and low standard deviation, together indicating a robust reconstruction, have the same coloration. 
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Figure 4: Error of amplitude in SOM-FFN reconstructed variability on seasonal, sub-
decadal and decadal. Percent error of CO2 flux standard deviation on A) seasonal, B) sub-
decadal, and C) decadal time scales, averaged across the 100 ensemble members. Global average 
is shown in white text. Color indicates the percentage by which the reconstruction over or under-
estimates the variability. (D-F) Percent error as shown in A-C, averaged within three regions 
delineated by latitude for each of the 100 ensemble members and displayed as box plots on D) 
seasonal, E) sub-decadal, and F) decadal time scales. Boxes indicate the interquartile range 
(IQR), the orange line indicates the median, and circles indicate points greater than 1.5*(IQR).   
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Figure 5: Cross plot of decadal standard deviation in the Southern Ocean. The reconstructed 
and ensemble member decadal standard deviation averaged across the Southern Ocean (<35°S), 
separated by model. Colored text indicates average absolute error (AAE), and the percent error 
averaged across members from each model with A) the SOCAT sampling and B) idealized 
sampling. Black text indicates statistics averaged across all the ensemble  members. 
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Figure 6: Potential fidelity (phasing and amplitude) of SOM-FFN decadal reconstruction, 
had there been persistent drifters and floats in the Southern Ocean since 1982. A) Number 
of months with data, with SOCAT plus idealized float sampling in the Southern Ocean; the mean 
B) correlation and C) percent error of CO2 flux standard deviation on decadal time scales across 
the 28 members using SOCAT plus idealized float sampling, similar to Figure 4C but with 
additional sampling. Box plots of percent error indicate spread among members within three 
regions delineated by latitude are shown on D) seasonal,  E) sub-decadal, and F)  decadal time 
scales.  
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Supplemental material 
 

 
Supplemental Figure 1: Average seasonal and decadal amplitude in Northern Hemisphere 
and tropics. The average seasonal cycle (gray) and decadal component (black) is displayed 
across A) 35°N - 90°N and B) 35°S - 35°N. Note different y-axis scales. 
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Supplemental text 1 
Air-sea CO2 flux (𝐹CDE)  is calculated in mol C m-2 yr-1 for each month at each 1°x1° spatial 
location using the (38) parameterization (Equation 1).  
 

𝐹𝐶𝑂2' = 𝑘𝑤' 𝑆𝐶𝑂𝑤' (1 − 𝑓𝑖𝑐𝑒' )(𝑝𝐶𝑂2,𝑎𝑡𝑚−𝑚𝑜𝑖𝑠𝑡' − 𝑝𝐶𝑂2,𝑜𝑐𝑒𝑎𝑛' )																										𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1  
 
which parameterizes 𝐹CDE as a function of the gas transfer velocity (𝑘T), CO2 solubility (𝑆CDE), ice 

fraction (𝑓U+V),  and partial pressure of CO2 in moist air (𝑝𝐶𝑂W,XYZ:Z,U[Y ) and surface ocean 
(𝑝𝐶𝑂W,,+VX\). Overbars denote monthly averages. We use the (38) gas transfer velocity with the 
(43) scale factor of 0.27 (Equation 2). 
 

𝑘𝑤' = 0.27(𝑢̄2 + 𝑢′2' )	(𝑆𝑐' /660)−0.5																																																												𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	2 
 
Because high-frequency output is not available for all large ensemble members, and to be 
consistent with the flux calculation used in the real-world application of the SOM-FFN flux 
product, we use ERA-interim 6-hourly global atmospheric reanalysis (44) as an estimate for the 
wind-speed variance (𝑢′W' ).  
 
Solubility is calculated following (49) with the (38) Schmidt number (Sc).  Partial pressure of 
moist air (𝑝𝐶𝑂W,XYZ:Z,U[Y) is calculated following Equation 3. 
 

𝑝𝐶𝑂W,XYZ:Z,U[Y = 𝑥𝐶𝑂W(𝑃XYZ	 − 𝑝𝐻W𝑂)																																																	𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	3 
 
Where 𝑥𝐶𝑂Wis the dry air mixing ratio of atmospheric CO2, 𝑃XYZ	 is the total atmospheric pressure, 
and 𝑝𝐻W𝑂 is the saturation vapor pressure (45). 
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