
1.  Introduction
Determining the role of geological environments in the synthesis of organic molecules is an important 
challenge for origin of life research as well as for understanding how to deconvolute abiotic signatures from 
biological signatures in planetary missions. For understanding how the emergence of metabolism could 
have occurred in a geological environment, much work focuses on studying reactions of organic molecules 
that are both important to modern biology and also are likely to have been present at life's origin. Pyruvate 
and glyoxylate are two carboxylic acid compounds that are of particular prebiotic interest: They are central 
to modern biochemistry, can be synthetized abiotically (Cody et al., 2000; Echkardt et al., 2019; Eggins et al., 
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1988; Marín-Yaseli et al., 2016; Mohammed et al., 2017; Varma et al., 2018), and can lead into a variety of im-
portant reaction pathways for origin of life including reactions that resemble ancient proto-metabolic cycles 
(Muchowska et al., 2017, 2019). In previous studies, pyruvate and/or glyoxylate have been shown to react 
with redox-active iron minerals and/or dissolved Fe2+ and various nitrogen sources to form amino acids, 
alpha-hydroxy acids (αHA's), thiols, and other citric acid cycle intermediates (Barge et al., 2019; Huber & 
Wächtershäuser, 2003; Muchowska et al., 2017, 2019; Novikov & Copley, 2013). The amino acids and αHA's 
formed in these reactions can then polymerize to form larger functional molecules (Forsythe et al., 2015, 
2017). From previous studies, it is clear that minerals are important for driving abiotic reactions of these two 
precursors to synthesize a variety of prebiotically relevant products. However, it is not known how the spe-
cific geological conditions could affect the relative abundances of products, which in turn might affect the 
composition and function of any oligomers formed from this monomer seed reservoir (e.g., Chandru et al., 
2018; Surman et al., 2019). Also, for astrobiology and planetary science where specific organic distribution 
patterns are sometimes considered a possible biosignature to search for life on other worlds (Creamer et al., 
2017; Georgiou, 2018; Lovelock, 1965; McKay, 2011), it is important to consider whether environmentally 
directed abiotic organic reaction networks might also produce similar effects.

Previously it has been shown that pyruvate, when reacted with different transition metal sulfide (including 
iron, arsenic, zinc, and copper sulfide) minerals, gave different distributions of organic products (Novikov 
& Copley, 2013). In a recent study, we showed that the relative yields of products formed from pyruvate 
reacting with iron hydroxide minerals could be controlled by systematically varying the Fe(II)/Fe(III) ratio 
in the mineral as well as the pH (Barge et al., 2019). This suggests that redox, pH, and perhaps other envi-
ronmental parameters could have a significant effect on the organic distribution patterns produced from 
prebiotic organic-mineral reactions. However, the reaction networks of pyruvate and glyoxylate have not 
been explored in this context, and it is also unknown what other conditions might be important. For exam-
ple, the concentration of nitrogen (e.g., NH3/NH4

+) must be a factor for amino acid formation from either 
pyruvate or glyoxylate. However, in previous studies of reductive amination with iron hydroxides, very high 
concentrations of NH3/NH4

+ were used that are probably unrealistic for most geological settings (Barge 
et al., 2019; Huber & Wächtershäuser, 2003), so it is not known whether amino acid formation would still 
occur in these systems at lower, more environmentally realistic [NH3/NH4

+] values.

In this study, we investigated how the organic product distribution pattern of a prebiotic pyruvate/glyoxy-
late reaction network in the presence of iron minerals was affected by changing geochemical parameters 
(of iron mineral redox state, pH, and NH3/NH4

+ concentration). These are environmental parameters that 
could vary within a variety of planetary settings relevant for the emergence of life: Including in iron-rich 
subsurface or seafloor sediments where the upper layers may be more oxidizing than lower layers, or in hy-
drothermal vent chimneys where the interior reducing fluid interfaces with more oxidizing seawater (e.g., 
Martin et al., 2008). Iron oxyhydroxide minerals, which we used in these experimental simulations as a rep-
resentative geochemical reactant and/or catalyst, are very sensitive to oxidation and can exist in a variety of 
redox states depending on local chemistry and pH (Halevy et al., 2017; Jolivet et al., 2004). In aqueous iron-
rich systems such as early Earth's oceans and early/present day Mars, reactive iron oxyhydroxide minerals 
(such as green rust, magnetite, or ferric hydroxide) would be prevalent (Halevy et al., 2017). Iron mineral 
redox gradients can also coexist with gradients of pH, for example, in an early Earth hydrothermal system 
with alkaline vent fluid feeding into a more acidic, CO2-rich ocean (Russell & Hall, 2006), or on Mars where 
iron-bearing minerals have formed in both acidic and alkaline conditions (Ehlmann et al., 2011; Murchie 
et al., 2009). Thus, a variety of combinations of redox, pH, and chemical concentrations could exist in plan-
etary systems of interest and it is important to understand to what extent this would affect abiotic organic 
chemistry.

A primary consideration in this study was to simulate pyruvate and glyoxylate reactions in realistic geo-
logical systems relevant to early Earth environments as well as to chemically diverse organic/mineral sam-
ples likely to be encountered on other worlds such as Mars, Ceres, or Enceladus (De Sanctis et al., 2017; 
Michalski et al., 2018; Postberg et al., 2018). Iron is an important reactant in abiotic systems, and early 
Earth's ocean was rich in dissolved Fe2+ (with some minor Fe3+ content) (Shibuya et al., 2016). This iron 
could have precipitated as a variety of reactive oxide/hydroxide minerals with different Fe(II)/Fe(III) ratios. 
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Metallic iron (Fe0) is also highly reactive with these organic precursors 
(Muchowska et al., 2017) but was not as abundant in early/present-day 
Mars or early Earth surface environments, so was not included in the 
experiments discussed here. However, in a chondrite system such as 
the subseafloor of Enceladus, Fe0 might play a larger role (Sekine et al., 
2015). The employed pH range was chosen to span a range from neu-
tral to alkaline, to simulate water-rock systems that are thought to be 
significant for producing energy for life or the origin of life on other 
worlds (Price et al., 2017; Russell et al., 2010, 2014; Tosca et al., 2018). 
NH4Cl was used as the nitrogen source since NH3/NH4

+ is geologically 
realistic for early Earth (Stirling et al., 2016; Summers & Chang, 1993), 
with NH3/NH4

+ in equilibrium based on pH. Additionally, NH3/NH4
+ 

could be produced from abiotic NOx reduction on Mars (Summers et 
al., 2012), and has been detected on Enceladus and Ceres (De Sanctis et 
al., 2015; Waite et al., 2009). We used a range of [NH4Cl] from 0 to 375 
mM to encompass likely planetary environments where these reactions 
might occur.

2.  Materials and Methods

All reactions were carried out in a nitrogen-filled glove box. Solutions were prepared with Milli-Q water 
(18.2 MΩ•cm) that had also been purged with nitrogen or argon gas to remove any dissolved oxygen. The 
iron oxyhydroxide minerals representing minerals formed in a seafloor or wet sediment (Figure 1) were 
prepared using FeCl2•4H2O and FeCl3•7H2O where the total iron concentration in each serum bottle was 
50 mM. The amount of Fe(II) and Fe(III) varied depending on the desired mole fraction of Fe(II):Fe(III) 
and no iron was added for experiments that did not contain any mineral. NH3/NH4

+ was introduced 
into the reaction by addition of ammonium chloride (NH4Cl) ranging from 0 to 375 mM. Glyoxylate or 
pyruvate (glyoxylic acid monohydrate and/or sodium pyruvate) was added at a concentration of 2.5 mM. 
Milli-Q water was added to dissolve all reactants and 5 ml of 1 M NaOH was added to precipitate with 
the iron to synthesize an iron oxyhydroxide mineral. Each solution was then titrated with 1 M HCl or 1 
M NaOH to pH 7 or 10. Each vial was placed in a water bath set to 70°C for 3 weeks and sampled at t = 0, 
24 h, 48 h, 72 h, 1 week, 2 weeks, and/or 3 weeks. Five 1-ml aliquots were taken at each time point while 
agitating the bottles to ensure an even distribution of liquid and solid in each sample. 0.5 ml of 1 M NaOH 
was added to each aliquot to precipitate out the iron from solution. The samples were centrifuged and the 
supernatant was transferred to a new Eppendorf tube. Three samples were analyzed directly, the fourth 
sample was spiked with the amino acid, and the fifth with the α-hydroxy acid to verify their presence/
absence.

2.1.  1H Nuclear Magnetic Resonance Spectroscopy

To prepare the samples for liquid 1H nuclear magnetic resonance (NMR) spectroscopy, the iron was first 
removed from solution via precipitation with 1 M NaOH. Unless otherwise described 0.54 ml of each sam-
ple was pipetted into a NMR tube along with 60 μl of sodium trimethylsilylpropanesulfonate (DSS)/D2O 
standard. DSS was an efficient standard as its main peak appears at 0.00 ppm and does not interfere with 
any of the starting material or product peaks. The samples were analyzed on a 400 MHz Bruker equipped 
with an auto sampler. The 1H NMR spectra were analyzed with MestReNova NMR analysis software. The 
concentrations of glyoxylate, pyruvate and their products are expressed as the combined methyl region peak 
areas for each molecule, relative to the normalized DSS peak. Data are plotted as the average of the three 
triplicate samples at a given time point in an experiment with error bars indicating the standard deviation. 
A complete list of experiments is found in Table S1. In many samples, we also observed an unidentified peak 
at 3.81 ppm and so a range of standards were run for identification of this peak (including iminodiacetic 
acid, diglycolic acid, glycinamide, MeOH, citric acid, and gly-gly).
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Figure 1.  Iron hydroxide mineral precipitates formed at various 
Fe(II):Fe(III) ratios. Left to right: 100% Fe(III), 50% Fe(II), 75% Fe(II), and 
100% Fe(II).
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2.2.  Quadrupole Time-of-Flight Mass Spectrometry Analysis

Organic products were verified using quadrupole time-of-flight mass spectrometry (Q-TOF/MS). Reaction 
samples were stored at room temperature for short-term storage, and at −20°C for long-term storage. If the 
samples were frozen, they were brought to room temperature on the benchtop. The samples were vortexed 
for ∼1 min to ensure proper mixing. Three hundred microliters of sample was transferred to a high perfor-
mance liquid chromatography vial and 0.2 µl was directly injected to an Agilent 6545 Q-TOF fitted with an 
Agilent InfinityLab Poroshell 120 HILIC-Z, 2.1 × 100 nm column for analysis. All samples were run five 
times. The samples were analyzed with Mass Hunter Profinder Professional and the identified compounds 
were matched to the Agilent METLIN metabolomics database. The identified compounds are summarized 
in Table S2.

2.3.  Ligand Dissociation Experiments

We attempted ligand dissociation experiments to detect organics that were trapped in the mineral solid 
phase, as was suspected by the C fraction detected in the solids via combustion in our previous work (Barge 
et al., 2019), and to see if any polymers had formed. The reaction mixture of a 33% Fe2+ glyoxylic acid exper-
iment (pH = 10, T = 70°C) was decanted and washed. The remaining mineral was then lyophilized and 30 
mg of the mineral was placed in a Falcon tube. The mineral was then exposed to either 2 ml of pH = 7 H2O 
(as a control), 2 ml of pH = 7 H2O with 0.3 weight % phenanthroline (to test precipitated mineral), or 2 ml 
of pH = 3 H2O with 0.3 weight % phenanthroline (to test dissolved mineral). These reactions were tested at 
two different temperatures: Room temperature or 70°C. The pH = 3 solutions were titrated with 1 M HCl. 
In the vials with phenanthroline, a red color was observed, indicating metal binding to the phenanthroline. 
1H NMR was taken at t = 0 and t = 1 week.

2.4.  Mineral Analysis: XRD and Colorimetry

X-ray diffraction (XRD) analysis was conducted on the solid portion of a set of pH 10 glyoxylate exper-
iments, at %Fe(II) = 0, 33, 50, and 100 after the experiments had run for 72 h. After completion of each 
reaction, the supernatant was discarded. The remaining minerals were lyophilized and stored in the glove-
box. Prior to analysis, the samples were crushed with a ceramic mortar and pestle. The samples were load-
ed onto a 1.5 cc sample holder with a spatula and sealed with a Kapton film, and placed in the instrument 
with a copper anode. The samples were run on a Malvern Panalytical Aeris XRD. The spectra were com-
pared to the RRUFF database (Lafuente et al., 2015) and the literature for identification (see supporting 
information).

Iron colorimetry analysis was conducted on the solid and liquid portions of pH 7 and 10 glyoxylate experi-
ments, at %Fe(II) = 33, 50, 75, and 100. This technique was used to find the relative mole fractions of Fe(II) 
and Fe(III) in a 1-ml sample and in the supernatant. For supernatant samples, one extra sample was taken at 
t = 0 to which 0.5 ml of H2O was added, the sample was centrifuged, and the supernatant was transferred to 
a new Eppendorf tube. For both pH 7 and 10 reactions, three extra samples were taken at t = 0 to which 0.5 
ml of 2.5 M HCl was added to dissolve the solid. The same was done for t = 3 weeks’ samples. All samples 
were diluted to 2 ml, where 1 ml was used for Fe(II) and 1 ml was used for Fe(total). To the Fe(II) samples, 
100 µl of dH2O was added and to the Fe(total) samples, 100 µl of 0.8 M ascorbic acid was added to reduce 
Fe(III) to Fe(II) since the colorimetry technique only measures Fe(II). After 10 min, 100 µl of 1 M HCl, 100 
µl of 1 M sodium acetate, and 2 ml of 0.3% 1,10 phenanthroline were added to every sample while agitating 
the vials in between each reagent; the total assay volume was 3.3 ml. The samples were set aside for 10 min 
to let the color fully develop and were analyzed with a Thermo Fisher GENESYS 30 Visible spectrophotom-
eter set to a wavelength of 510 nm.
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3.  Results and Discussion
We observed that iron oxyhydroxide minerals played a large role in driving reactions of pyruvate and glyox-
ylate (Figure 2), and the relative yields of organic products observed from an experiment were dependent 
on the environmental parameters of pH, Fe(II)/Fe(III), and [NH4Cl]. The main products we observed by 1H 
NMR spectroscopy were amino acids (glycine and alanine) and αHA's (glycolate and lactate), validated by 
spiking with authentic standards and confirmed by LC-QTOF-MS. In the case of glyoxylate, other products 
were also observed by LC-QTOF-MS that were undetectable by 1H NMR spectroscopy, including oxalate. 
There was also a 1H NMR peak at 3.81 ppm that we were unable to identify (see supporting information). 
The 3.81 ppm peak was observed without any iron mineral present, and we hypothesize that it was a by-
product of glyoxylate. This peak could correspond to an oligomer of glyoxylate, which can be formed under 
basic conditions with ammonia as a catalyst (Hoefnagel et al., 1992).

Glyoxylate reacted slowly with NH4Cl in aqueous solution, producing glycine at and above ∼10 mM NH4Cl, 
as well as minor glycolate, over 3 weeks. Below ∼200 mM NH4, glyoxylate was still recovered at the end of 
the experiment, and the amount of glyoxylate remaining after 21 days decreased with increasing [NH4Cl] 
(see supporting information). This is distinct from the pyruvate reaction system, we previously studied 
(Barge et al., 2019) where no reaction was observed when no minerals were present.

In contrast, when iron oxyhydroxide minerals were added, more pyruvate and glyoxylate reactions were 
possible (and glycine and glycolate, which were also formed with no mineral, were formed significantly 
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Figure 2.  Reaction pathways of pyruvate (pyruvic acid) and glyoxylate (glyoxylic acid) with ammonia and iron 
minerals that were observed based on different pH conditions, and proposed larger molecules that might result from 
these monomers.
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faster). Over a period of several weeks, we observed formation of amino 
acids (alanine or glycine) and αHA's (lactate or glycolate) (Figures 3–5). 
(Acetate and formate were also observed in most pyruvate and glyoxy-
late reactions, respectively, but at very low concentration, and their yield 
did not vary with any of the conditions tested in experiments with min-
erals, so we cannot be confident they are not reagent contaminants and 
so do not report them as products.) When minerals were included, gly-
oxylate was almost always completely consumed after 21 days; whereas 
sometimes, depending on conditions, pyruvate still remained at the end 
of a 21-day experiment. The iron hydroxide minerals themselves likely 
had varied mineralogies, depending on pH and %Fe(II) (Jolivet et al., 
2004). We did not observe significant oxidation of the Fe in the minerals 
(by colorimetry) over the 3-week reaction period. Even though magnet-
ite, which is a more oxidized iron mineral phase, was detected in XRD 
in our samples, we believe this is an effect of oxidation during analysis; 
see supporting information.

Based on the different reactivity of glyoxylate and pyruvate, we varied 
several key geochemical parameters to determine how the organic dis-
tribution pattern of the products could be adjusted as a function of en-
vironmental conditions. In general, a higher concentration of [NH4Cl] 

increased the amount of glycine relative to glycolate, and the presence of minerals increased the total gly-
cine yield; this was true at various %Fe(II) compositions (Figure 3). However, at a given [NH4Cl] the effect 
of the mole fraction of Fe(II) in the Fe-oxyhydroxide mineral, as well as the effect of pH, was significant 
(Figures 4 and 5). When looking at the relative yield of glycine and glycolate, the redox and pH conditions 
affected which product was dominant. Under alkaline conditions (pH 10), and with very reducing minerals 
(%Fe(II) = 90%–100%), glycolate was dominant and hardly any glycine was produced. This is similar to 
our previous results in the pyruvate reaction system (Barge et al., 2019), where above about 75% Fe(II), the 
αHA lactate was the dominant product over the amino acid alanine. When the iron oxyhydroxide mineral 
contained about 50% Fe(II), glycine and glycolate were produced at roughly equal abundances, which is also 
distinct from the pyruvate reaction system (Barge et al., 2019) where alanine dominated over lactate at this 
condition. In experiments with mixed glyoxylate and pyruvate, the expected relative distributions of amino 
acids and αHA's were observed relative to the amount of precursor that was initially included; a mixed 

precursor system did not yield any observable rate differences from a 
single precursor system.

We also observed that the relative abundance of products in the gly-
oxylate system in the iron redox gradient was strongly affected by pH 
(Figure 4). At pH 7, with reduced iron minerals, both glycine and glyco-
late were present, but when the minerals were more oxidized, glycolate 
was the dominant product (and glycine was a minor product) with the 
exception of Fe(II) = 90% where the yield of glycine was higher than 
glycolate. This is in contrast to the glyoxylate results at pH 10 where re-
duced minerals tended to favor glycolate synthesis and oxidized miner-
als favored both glycine and glycolate synthesis. In the pyruvate system, 
at pH 7, lactate was the only product observed and its concentration 
increased with %Fe(II); alanine was only formed under alkaline condi-
tions and at intermediate %Fe(II) values (Figure 5).

Though this reaction system started with only two simple precursors, 
pyruvate and glyoxylate, a variety of organic distribution patterns 
were produced depending on the %Fe(II) in the mineral, the pH, and 
[NH4Cl]—in other words, by varying the specific geochemical parame-
ters of this aqueous mineral system (Figure 6). Determining the mech-
anisms of all the organic reactions is beyond the scope of this study. 
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Figure 3.  1H NMR results of glyoxylate reactions with Fe-oxyhydroxide 
minerals as a function of [NH4Cl] at different Fe oxidation states; T = 
70°C, pH 10: (a) Mineral containing 33% Fe(II) at t = 1 week. (b) Mineral 
containing 50% Fe(II) at t = 1 week. NMR, nuclear magnetic resonance.

Figure 4.  Results of glyoxylate reactions with Fe-oxyhydroxide minerals 
over the full iron redox gradient showing mM concentrations of the 
products detected at (a) pH 10 and (b) pH 7. The initial concentration of 
glyoxylate was 2.5 mM. ([NH4Cl] = 375 mM; T = 70°C; sampled at t = 3 
weeks).
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However, it seems likely that Fe(II) is a strong reductant for pyruvate 
to form lactate, as lactate was observed in greatest abundance at 100% 
Fe(II); though perhaps Fe(II) is not as important in glycolate formation 
from glyoxylate, since glycolate is observed at various %Fe(II) values. 
It is possible that the reduction of glyoxylate in the absence of Fe(II) 
may be due to a Cannizzaro reaction of glyoxylate, forming both gly-
colate (Figure S5) and oxalate (which is undetectable in 1H NMR, but 
was observed via Q-TOF/MS in some of our experiments) (Butch et al., 
2013; Geissman, 1944). The presence of Fe(II) in minerals in our ex-
periments seems to facilitate reduction, since more αHA's are formed 
at intermediate to high %Fe(II); it is likely that the minerals are acting 
as reactants (rather than catalysts), though we were not able to deter-
mine the stoichiometry of the reaction. If Fe(II) in minerals was acting 
as a reductant, then we would expect to observe oxidation of Fe pro-
portional to the reduction of pyruvate or glyoxylate over the course of 
the experiment. We did not observe significant iron oxidation after 21 
days at any condition tested (Figure S23). However, under our exper-
imental conditions there was a 20-fold excess of iron compared to the 
original amount of organic added, so even assuming complete stoichio-
metric iron oxidation we would only see a 5% change in [Fe(II)], which 
is within the range of error in our colorimetry technique. In a geological 
sample, there would also likely be an excess of minerals compared to 
organics, so the ability to determine whether iron minerals are acting as 
reactants versus catalysts in a planetary environment would depend on 
precision of techniques available to measure Fe(II)/Fe(III) (as well as 
organic detection). The effect of pH on alanine formation (increased at 
alkaline conditions) is likely due to the pKa of ammonia at ∼9.25, and so 
at pH 10, NH3 (a stronger nucleophile) is more abundant and reactive. 
The precise mechanism of glyoxylate/pyruvate reductive amination to 
glycine/alanine in these systems was not established. One possibility is 
that an imine intermediate, followed by reduction of the C=N bond to 
form the amino group, was responsible for the synthesis (Gomez et al., 
2002). In this regard, condensation to form the imine would be easier to 
form glycine due to the aldehyde starting material. However, we were 
unable to detect such an imine intermediate, which in any case is ex-
pected to be ephemeral given its high reactivity.

Other studies have shown that these amino acids and αHA's can react 
to form polymers, leading the system toward increased complexity. For 
example, long oligomers of lactate and glycolate can be produced from 
wet-dry cycling at temperatures as low as 30°C, and these can produce 
vast combinatorial libraries (Chandru et al., 2018). The combination of 
amino acids and αHA's is also significant. When αHA's including lac-
tate and/or glycolate are mixed with alanine and/or glycine and under-
go wet-dry cycles, depsipeptides are formed that can reach increasing 
amino acid content, and minerals can play a role in sequence selection 
(Doran et al., 2019; Forsythe et al., 2017, 2015; McKee et al., 2018). It has 
also recently been shown that αHA's can spontaneously form prebiotic 
compartments (Jia et al., 2019). Though these experimental prebiotic 
studies of monomer and oligomer formation vary in the environmental 
conditions employed (aqueous reactions vs. wet-dry cycles), it is possi-
ble that planetary environments exist that could facilitate both mono-
mer synthesis as well as reactions to more complex organic molecules. 
As one example, iron precipitation in an aqueous environment can form 
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Figure 5.  Results of pyruvate reactions with Fe-oxyhydroxide minerals over 
the full iron redox gradient showing mM concentrations of the products 
detected at (a) pH 10 and (b) pH 7. The initial concentration of pyruvate was 
2.5 mM. ([NH4Cl] = 375 mM; T = 70°C; sampled at t = 3 weeks).

Figure 6.  Organic distribution signatures for mineral-driven reactions 
at different redox and pH conditions. mM abundances of the organic 
precursors and products (after 21 days, at 375 mM [NH4Cl]) are shown, at 
approximate values of fluid pH and %Fe(II) in the iron hydroxide mineral, 
showing how the organic distribution pattern is highly dependent on 
environmental parameters.
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iron hydroxide minerals similar to the precipitates formed in our experiments, but can also form iron-sil-
ica gels as precursors to hydrothermal/sedimentary precipitates (Grenne & Slack, 2003; Hopkinson et al., 
1988; Oehler, 1976; Tosca et al., 2016; Zheng et al., 2016); these silica/iron-silica gels can form lower water 
activity environments that might be beneficial for facilitating abiotic/prebiotic organic reactions (Gorrell 
et al., 2017; Pierre, 2020; Quinson et al., 1988; Trevors & Pollack, 2005; Westall et al., 2018). Hydrated sili-
ca-rich materials are present on Mars, and these may represent hydrothermal or other aqueous alteration 
environments that could also contain iron oxyhydroxides (Pineau et al., 2020; Schindler et al., 2019; Sun 
& Milliken, 2018; Tosca et al., 2018); in the case of potential Martian hot spring environments (e.g., Ruff 
et al., 2020; Sun & Milliken, 2020), it is especially possible that variations in temperature or water activity 
over time could have facilitated both aqueous reactions as well as those dependent on wet-dry cycles. It is 
also possible that complex abiotic/prebiotic chemistry on planets could be facilitated by multiple, intercon-
nected environmental settings with varying conditions over space and time (Stüeken et al., 2013). The full 
condition space that can support complex molecule formation from glyoxylate and pyruvate, and the sum of 
planetary environments where such conditions may be found, is not well understood. However, it is likely 
that the environmental parameters that drive the initial distribution of amino acid and αHA monomers 
from these precursors will provide an additional chemical pressure to shape the composition and function 
of any oligomers/polymers formed from that seeding reservoir.

Previous work on prebiotic amino acid formation via reductive amination using NH3/NH4
+ as the N source 

has utilized a relatively large (>100-fold) excess of NH3/NH4
+ (Barge et al., 2019; Huber & Wächtershäus-

er, 2003). In this work, we examined an array of [NH4Cl] values from 0 up to 375 mM, and we observed 
formation of glycine and alanine in mineral-containing experiments even at 5 mM [NH4Cl] (the lowest 
NH4Cl concentration tested; alanine was present at 0.0092 mM) (Figure 7). Other nitrogen sources in ad-
dition to NH4Cl have been tested for prebiotic reductive amination in previous studies, including ammoni-
um bicarbonate (NH4HCO3), hydrazine (NH2NH2), methylamine (CH3NH2), hydroxylamine hydrochloride 
(NH2OH•HCl), and dimethylamine ((CH3)2NH) (Huber & Wächtershäuser, 2003; Muchowska et al., 2017, 
2019), some of which may be relevant for amino acid synthesis on other worlds. For example, nitriles, 
amines, imines, and various other nitrogen species have been detected on Titan (Loison et al., 2015); a va-
riety of nitrogenous compounds are found in meteorites including methylamine, ammonia (Pizzarello and 
Williams, 2012; Pizzarello et al., 2011), aliphatic amines, and amino acids (Aponte et al., 2017; Pizzarello 
et al., 1994); ammonia and nitriles have been found in the plumes and E-ring of Enceladus (Postberg et al., 
2008; Waite et al., 2009); and ammonium chloride and/or carbonate have been observed on Ceres (De Sanc-
tis et al., 2016). NH3/NH4

+, being one of the simplest and most abundant reduced N sources, could also be 
formed from reducing NOx species with iron or iron minerals on terrestrial planets such Mars or early Earth 
(Hansen, Borggaard, & Sorensen, 1994; Stern et al., 2015; Summers & Chang, 1993; Summers et al., 2012).
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Figure 7.  Glycine and alanine synthesis under low [NH4Cl] conditions. Left: Glyoxylate reactions with iron hydroxide 
minerals (33% Fe(II)); Right: Pyruvate reactions with iron hydroxide minerals (50% Fe(II)); both at 70°C, pH 10, t = 1 
week.
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In our previous work with the pyruvate system, we found via combustion analysis that over 50% of the 
total C in a representative experiment was present in the minerals (Barge et al., 2019). We also observed in 
these experiments that a large fraction of organics is “missing” from the liquid phase and must therefore 
be concentrated in the minerals. The total amount of organics in the solid phase is greater at pH 7 than 
at pH 10, and at pH 10 is greater when the Fe minerals are more oxidized (see supporting informa-
tion). We conducted ligand dissociation experiments on select solid samples to investigate organics in 
the minerals, but while small (less than 0.01 integration) aliphatic peaks corresponding to glycolate and 
glycine were visible, no polymers or additional products were observed in the reaction (see support-
ing information). However, extracting polar, highly functionalized organic compounds from minerals is 
challenging and more study is required to understand if polymerization is occurring in the solid phase 
in these experiments.

In a planetary environment, the parameters we tested as well as other geochemical conditions (such as 
mineralogy) may change with time and/or space, especially in gradient systems. In an open system, it is 
possible that water-soluble organic products formed at one set of conditions could diffuse to react at differ-
ent conditions. Given that pH and %Fe(II) also seem to affect the degree to which organics are built up in 
the mineral during the initial reaction, it is possible that subsequent changes in environmental conditions 
such as fluid pH, or redox-driven mineralogical transformations could act to release previously bound 
organic products. In geological/planetary systems, there are various mechanisms that can subject the re-
action to changes in water content, pH, and/or temperature, such as heat fluctuations in a hydrothermal 
system, tidal activity acting on a shallow vent system or surface water body, or impact-related heating of a 
subsurface environment. Further permutations of these organic products could be achieved by additional 
geological mechanisms such as photochemistry or volcanic heating (Guzman & Martin, 2010; Huber & 
Wächtershäuser, 2010; Saladino et al., 2011), or even re-generation of the glyoxylate and pyruvate precur-
sors from their αHA's via iron-sulfur redox reactions (Wang et al., 2011). The specifics of which geochem-
ical parameters and/or gradient conditions, and which corresponding monomer concentrations, are most 
favorable for polymerization and for driving certain depsipeptide/peptide functionalities remains to be 
investigated.

4.  Conclusions
Geochemical environments could host a variety of possible combinations of environmental conditions, 
particularly in systems with overlapping redox/pH/chemical gradients. This would provide a complex 
and variable set of conditions for organic molecule synthesis in planetary environments. We have shown 
here that varying key geochemical parameters of iron mineral redox state, pH, and [NH4Cl] can “tune” 
the organic distribution patterns produced from an abiotic reaction network of pyruvate and glyoxylate 
(Figures 2 and 3), two important precursors for the emergence of metabolism. Generally, increasing Fe(II) 
mole fraction relative to Fe(III) in the Fe-oxyhydroxide mineral led to increased αHA yield. As well, the 
pH had a pronounced effect on product distribution (amino acid vs. αHA) at a given %Fe(II). At any par-
ticular set of these geochemical conditions, pyruvate and glyoxylate did not give identical relative yields 
of their corresponding αHA and amino acid, so it is likely that other carboxylic acid precursors in these 
gradients also would act distinctly. In previous work, a large excess of NH3/NH4

+ has been utilized to 
drive reductive amination to form amino acids, and in this work we also observed that increasing [NH4Cl] 
led to increased amino acid yield. However, our results showed that glycine and alanine can still be pro-
duced in the presence of iron oxhydroxide minerals even at much lower [NH4Cl] concentrations (5 mM). 
Though organic compound distribution patterns have been considered a possible tool to identify biosig-
natures (Creamer et al., 2017; Georgiou, 2018; Lovelock, 1965; McKay, 2011), the field of prebiotic chem-
istry illustrates the high complexity and diversity that is possible in abiotic systems consisting of simple 
organic molecules, particularly with reactive minerals/ions that increase reaction network functionality. 
This abiotic organic reaction network occurs in the presence of iron minerals which are common and 
could exist in a variety of redox states on Mars, ocean worlds, and the early Earth; and under neutral to 
alkaline pH conditions that should be present in many planetary environments that experience mineral 
precipitation and alteration.
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Data Availability Statement
The data from this study are available in the supporting information (XRD, colorimetry, representative 
NMR spectra, Q-TOF/MS), and a summary of the experimental data in the Open Science Framework 
(Barge, 2020).
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