Sievert – Fluid Underground Meeting, Nov 5, 2019

Sizing up the Deep-sea Vent Subseafloor Biosphere

Production, Standing Stock, and Turnover

Stefan Sievert Biology

DEEP-SEA HYDROTHERMAL VENT SYSTEM

Diffuse-Flow or Warm-Water Vent:

Mixing of hydrothermal fluids with seawater below the seafloor

Providing conditions conducive for chemoautotrophs growing as biofilms in cracks and crevices of ocean crust

Sievert – Fluid Underground Mtg, Nov 5, 2019

Primary productivity below the seafloor at deep-sea hot springs

Jesse McNichol^{a,1,2}, Hryhoriy Stryhanyuk^b, Sean P. Sylva^c, François Thomas^{a,3}, Niculina Musat^b, Jeffrey S. Seewald^c, and Stefan M. Sievert^{a,1}

^aBiology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; ^bDepartment of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research – Umweltforschungszentrum (UFZ), 04318 Leipzig, Germany; and ^cMarine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543

Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved May 16, 2018 (received for review March 13, 2018)

Jesse McNichol

IGT

SHIPBOARD INCUBATIONS WITH HYDROTHERMAL FLUIDS UNDER SIMULATED IN SITU CONDITIONS

Primary Productivity Inferred from Incubations at *In Situ* Temperature and Pressure Using by HISH-SIMS

- Campylobacteria dominate carbon fixation!
- Amendments increase carbon fixation

Fraction of Electrons from Dissimilatory Reactions Used for Carbon Fixation: Chemosynthetic Growth Efficiency (CGE)

Determination of Rates of Various Chemosynthetic Reactions

Summary of rates of change in chemical concentrations and cell densities.

	Incubation condition						
	Control (24 °C)	H ₂ addition (24 °C)	NO3 ⁻ addition (24 °C)	O ₂ (80 μM) (24 °C)	O ₂ (110 μM) (24 °C)	NO ₃ ⁻ /H ₂ (24 °C)	NO3 [−] /H2 (50 °C)
H_2S consumption (fmol cell ⁻¹ d ⁻¹) H_2S production (fmol cell ⁻¹ d ⁻¹)	475.8 797.1 642.7 N.A.	434.3 681.6 238.6 77.8 51.7	598.4 506.7 481.7 N.A.	483.2 776.5 N.A.	494.5 523.3 N.A.	527.1 510.6 458.1 N.A.	312.5 753.9 N.A.
H_2 consumption (fmol cell ⁻¹ d ⁻¹)	N.A.	30.6 87.9 138.5 49.6	N.A.	N.A.	N.A.	418.1 351.8 508.4	1535.2 989.7
O_2 consumption (fmol cell ⁻¹ d ⁻¹)	N.R.	N.R.	N.R.	604.4 347.2	290.4 608.5	N.R.	N.R.
NO_3^- consumption (fmol cell ⁻¹ d ⁻¹)	N.R.	N.R.	57.5 65.0 87.9	N.R.	N.R.	229.9 193.0 187.7	654.7 522.2
NH_4^+ production (fmol cell ⁻¹ d ⁻¹)	-42.9 -31.8 4.9	6.1 - 5.7 6.4	0 13.5 37.3	- 12.2 - 15.2	14.1 21.3	37.8 33.0 41.9	229.5 245.7
$\%~\text{NO}_3^-$ to DNRA at t_{end}	0 0 48.5	27.9 0 63.2	0 11.8 21.1	0 0	0 0	17.5 19.4 18.2	55.2 53.1
Initial cell density ($\times 10^5$ cells mL ⁻¹)	2.3 9.8 2.8	4.1 3.1 4.7	2.4 5.1 4.1	1.9 1.9	1.3 1.7	2.7 2.0 1.7	1.0 1.0
Maximum cell density (× 10 ⁵ cells mL ⁻¹)	6.8 5.0 4.6	5.0 6.3 8.8	7.1 6.3 6.1	4.7 4.8	10.0 9.1	8.2 9.2 7.5	11.2 9.5

McNichol et al, Deep-Sea Research I: 115 (2016) 221–232

- Using *in situ* consumption and rates per cell allows calculation of **standing stock**
- **Biomass residence time** can be inferred from CGE-derived productivity and standing stock assuming steady state

Constraints on Subseafloor Productivity, Standing Stock, and Turnover from Measurements of CGE

Parameter	Lower bound	Upper bound	Units		
Absolute carbon fixation rates ¹	17.3	321.4	$\mu g \ C \circ L^{-1} \circ day^{-1}$		
Chemosynthetic growth efficiency ¹	0.06	0.13	Fraction electron equivalents to Carbon fixation		
Estimated in situ carbon fixation ²					
(per L Crab Spa mixed fluid):	104	253	µg C ∘ L ⁻¹		
(per L Crab Spa end-member fluid):	1.4×10 ³	3.5×10 ³			
Estimated annual productivity ³ of:					
Crab Spa vent ⁴	6.1×10 ³	1.5×10 ⁴	g C ∘ y⁻¹		
Surrounding vent field ⁵	3.8×10 ⁶	9.3×10 ⁶			
Global diffuse-flow vents ⁶	4.5×10 ¹⁰	1.4×10 ¹²			
Standing stock ⁷ , Crab Spa	28.6	NA	g C		
Biomass residence time ⁸ , Crab Spa	17	41	hours		
Global standing stock ⁶	1.4×10 ⁹	2.7×10 ⁹	g C		
McNichol <i>et al.</i> , 2019, PNAS					

O Cells

Fluid geochemistry, local hydrology, and metabolic activity define methanogen community size and composition in deep-sea hydrothermal vents

Lucy C. Stewart [17 · Christopher K. Algar² · Caroline S. Fortunato³ · Benjamin I. Larson [14] · Joseph J. Vallino⁵ ·

The ISME Journal (2019) 13:1711–1721 https://doi.org/10.1038/s41396-019-0382-3

Julie A. Huber 6⁶ • David A. Butterfield 6⁴ • James F. Holden 6¹

- Fluid Residence Time: 29-33 h
- 10¹¹ methanogens occupying as little as 2 m³ pf ocean crust needed to create CH₄ anomalies
- Small, but very active subseafloor biosphere

Outstanding Questions

Mode of growth in subseafloor? In situ rates? Flow path and plumbing? Permeability of ocean crust? Fluid mixing? Fluid residence time? Fluid volume? Flow rate?