HLY0102-D3-26, Gakkel

Frieder Klein, Niya G Grozva, Jeffrey S Seewald, & Sean P Sylva

OF SOCEANOC

Why Care?

- CH₄ plays key roles in the global C cycle
- Oxidation of CH₄ yields catabolic (ATP generating) energy for chemolithoautotrophs
- Abiotic CH₄ on other planetary bodies (Mars, Titan, Enceladus)
- The source(s) of abiotic CH₄ remain(s) poorly constrained

Knittel et al (2005)

Biogenic, Thermogenic, & Abiotic Methane

- Biogenic: formed by biological organisms
- Thermogenic: formed by thermal decomposition of living organisms or biologically derived compounds
- Abiotic: formed by purely chemical processes with no interference of biological organisms

Milkov & Etiope (2018)

Serpentinite-hosted Methane Seeps

Abiotic CH₄ is leached from basalt or gabbro...!?? Welhan & Craig (1983) Kelley & Fruh-Green (1999)

Image courtesy of C. German

Reduction of dissolved inorganic carbon during hydrothermal circulation!??

log [CH₄ (mmol kg⁻¹)] (predicted)

Ultramafic-Influenced Hydrothermal Systems

McDermott et al. (2015) Proskurowski et al. (2008) Charlou et al. (2002)

Clumped Isotope Geothermometry

 $^{13}CH_4 + ^{12}CH_3D \implies ^{13}CH_3D + ^{12}CH_4$

McDermott et al. (2015)

Von Damm Vent Field

CH₄ is radiocarbon dead

 $\delta^{13}C_{CO2}$ = +0.9‰ ±0.3 Same as seawater

Roedder (1979)

Serpentinization as a Source of Methane

1. $2FeO + H_2O = Fe_2O_3 + H_2$ 2. $4H_2 + \Sigma CO_2 = CH_4 + 2H_2O$

Hypotheses

- 1. Serpentinization within olivine-hosted fluid inclusions creates conditions conducive to abiotic CH₄ formation.
- 2. Same process takes place in peridotite and gabbroic rocks in distinct geologic settings.
- 3. CH₄ can be stored over geological timescales and released by dissolution or fracturing of the olivine host.

Approach

- survey of fluid inclusions in marine and continental mafic and ultramafic rocks
- examine inclusion contents with SEM, EMPA, and Raman
- analyze volatile contents in crushed rocks with GC-IRMS
- □ model reaction pathways with EQ3/6

Klein et al. (2019)

78% of peridotite and all olivine-bearing gabbros examined contain olivinehosted inclusions

Klein et al. (2019)

□ Volatile contents: □ $H_{2(g)}$ □ $H_{2(g)}$ - $CH_{4(g)}$ □ $CH_{4(g)}$

 \rightarrow 5 Pg CH₄ globally

Klein et al. (2019)

Whole-rock CH₄ abundance

Grozeva et al. (2020)

Cumulative # crushes

Carbon isotopic compositions

Additional data from Charlou et al. (2010), McDermott et al. (2015), Kelley & Früh-Green (1999, 2001), Vacquand et al. (2018)

Grozeva et al (2020)

Equilibrium modeling using EQ3/6 (Wolery, 1992)

Klein et al. (2019)

Klein et al. (2019)

Questions

- What is (are) the carbon source(s)?
- What are the clumped isotopologues of CH₄ in olivine-hosted fluid inclusions?
- How much CH₄ is there in olivine-hosted fluid inclusions in intermediate to fast-spreading crust, if any?
- What would happen during subduction of CH₄-bearing fluid inclusions?
- Is there CH₄ in olivine-hosted fluid inclusions on other planetary bodies?

Acknowledgments

- Henry Dick, Karmina Aquinho, Emmanuel Codillo, Mark Kurz
- IODP, captains and crews of JOIDES Resolution, R/V Atlantis, R/V Knorr, R/V Melville, CDC Healy, F/S Polarstern, DSV Alvin
- Curators at the College Station, Bremen, and Kochi core repositories
- NSF