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1 Introduction

We are going to study the stability and bounds on turbulent dissipation shear ßows in a
conducting ßuid when a vertical (with respect to the ßow) magnetic Þeld is applied. More
precisely we are going to investigate Couette ßow and Poiseuile (Hartmann) ßow in the
presence of the magnetic Þeld. First using integral inequalities we are going to estimate
regions in the parameter space when the ßow is energy stable. Then we are going to derive
bounds on the dissipation valid even in the presence of turbulent ßows.

2 Couette Flow

2.1 Preliminaries

First we consider we plane Couette ßow. We consider two plates separated by a distance
d (from −d/2 to +d/2) that move with respect to each other with velocity iU∗. The unit
vector i is one of the horizontal directions and j is the vertical. Between the plates there
is a conducting liquid of density ρ ≡ 1, magnetic diffusivity η and viscosity ν. For the top
and bottom boundary we use no-slip boundary conditions for the velocity and �line-tied�
for the magnetic Þeld, e.g. (B = jB0) where B0 is an externally imposed Þeld. We assume
periodic boundary conditions for the other directions.The setup is shown in Þgure(1).
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Figure 1: The setup for magnetic Couette ßow

The equations of motion that govern this system are [1]

∂tu+ u ·∇u = −∇P +B ·∇B + ν∇2u
∂tB + u ·∇B = B ·∇u+ η∇2B (1)

∇ · u = 0 , ∇ · B = 0.
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Figure 2: The laminar velocity proÞle and the magnetic Þeld lines.

Where B is the magnetic Þeld and u is the ßuid velocity. There are three non-dimensional
numbers that govern this system. Our choice is going to be the Reynolds number Re, the
Hartmann number Q and the Prandtl number P or alternatively the magnetic Reynolds
number RM. Their deÞnition is given bellow:

Re =
U∗d
ν
, Q =

B2d

2
√
νη
, Pr =

ν

η

!
or RM = RePr.

"
The Hartmann number Q gives an estimate of how strong the magnetic Þeld is when
compared with the diffusive velocities d/

√
νη. In the limit Q→ 0 we should obtain the non

conductive ßuid results. The energy dissipation of this system is given by

D = ν&|∇u|'+ η&|∇BT |' = U∗3

d
D. (2)

D is a non-dimensional form of the dissipation and our principal aim is to estimate it as a
function of the non-dimensional parameters mentioned before.

2.2 The Laminar State

The above set of equations allow for an exact laminar solution. Assuming homogeneity in
the x and z direction and no time dependence we have u = iU(y), B = iB1(y) + jB2 and

0 = B2 · ∂yB1 + ν∂2yU (3)

0 = B2 · ∂yU + η∂2yB1 (4)

B2 = constant. (5)

The last equation came from the solenoidal constraint on B. The above equations have the
solution:

B1 =
1

2

#
ν

η
U∗
cosh

!
B2d
2
√
νη

"
− cosh

!
B2y√
νη

"
sinh

!
B2d
2
√
νη

"
 , U =

1

2
U∗
1 + sinh

!
B2y√
νη

"
sinh

!
B2d
2
√
νη

"
 (6)

In the limit B2d/
√
νη → 0 we return to plane Couette ßow. The laminar solution for the

velocity proÞle as well as the magnetic Þeld lines is shown in Þgure (2).
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Next we examine the energy dissipation Dls of the laminar solution. The dissipation
can be easily calculated from (2) and it gives

Dls = Dvisc +Dmagn

=

#
ν

η

B2U
∗2

4d

coth( B2d

2
√
νη

)
+

B2d
2
√
νη

sinh2
!
B2d
2
√
νη

"
+ (7)

#
ν

η

B2U
∗2

4d

coth( B2d

2
√
νη

)
−

B2d
2
√
νη

sinh2
!
B2d
2
√
νη

"


=
1

2

#
ν

η

B2U
∗2

d
coth

(
B2d

2
√
νη

)
(8)

or in a non-dimensional form

D = Re−1Q coth (Q) (9)

There are a few points we have to make for the above equation. We note Þrst that the
viscous dissipation is always bigger than the resistive dissipation although the difference is
exponentially small for large Q. Moreover for Þxed magnetic Þeld B2 and velocity U the
dissipation increases with the Prandtl number. In other words decreasing η increases the
dissipation. In the limit ν →∞, η →∞ keeping the Prandtl number Þxed the dissipation
goes to the Þnite limit 12PrB2U

∗2/d. Taking the limit Q = B2d/2
√
νη → 0 we obtain the

plane Couette dissipation

Dls ) νU
∗2

d2
and for large Q we obtain Dls ) 1

2

#
ν

η

B2U
∗2

d
.

2.3 Stability

Next we examine the energy stability of the above ßow. Writing the magnetic and the
velocity Þeld as the laminar solution plus an arbitrary perturbation u = Uls+v and Btotal =
Bls + b we obtain from (1):

∂tu+ v ·∇v + U ·∇v + v ·∇U = −∇P +B ·∇b+ b ·∇B + b ·∇b+ ν∇2v (10)

∂tb+ v ·∇B + b ·∇U + v ·∇b = B ·∇v + b ·∇U + b ·∇v + η∇2b (11)

∇ · v = 0 , ∇ · b = 0. (12)

where we dropped the index ls for convenience. Multiplying the Þrst one with v and the
second one with b adding them and taking their space average we obtain

1

2
∂t&v2 + b2' = −&(v1v2 − b1b2)U $' − &(b1v2 − v1b2)B$1' − η&|∇b|2' − ν&|∇v|2' (13)

where the prime indicates a derivative with respect to y and many terms dropped out due
to the boundary conditions. Using the inequalities:

&(v1v2 − b1b2)U $' ≤ 1

2
&(v21 + v22 + b21 + b22)'max |U $| ≤

1

2
&(v2 + b2)'max |U $|
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&(b1v2 − v1b2)B$1' ≤
1

2
&(τv21 +

1

τ
b22 + τv

2
2 +

1

τ
b21)'max |B$1| ≤

1

2
&(τv2 + 1

τ
b2)'max |B$1|

(where τ is a free parameter) and the Poincare inequality

&|∇v|2' ≥ π2

d2
[&|v|2'

we end up with

1

2
∂t&v2 + b2' ≤ −

*
ν
π2

d2
− 1
2
max |U $|− 1

2
τ max |B$1|

+
&v2' (14)

−
*
η
π2

d2
− 1
2
max |U $|− 1

2τ
max |B$1|

+
&b2' (15)

The energy of the perturbation is going to decrease if each term in the square brackets

is greater than zero. Eliminating τ and recalling that max |U $| = U∗B2
2
√
νη coth

!
B2d
2
√
νη

"
and

max |B$1| = B2U∗
2η We obtain that for stability:

B22U
∗2

4η2
<

*
2π2ν

d2
− U

∗B2
2
√
νη
coth

(
B2d

2
√
νη

)+
·
*
2π2η

d2
− U

∗B2
2
√
νη
coth

(
B2d

2
√
νη

)+
(16)

where each term in the square brackets should be non-negative.
In dimensionless numbers

Q2Re2Pr <
,
2π2 −ReQ coth (Q)- · ,2π2Pr−1 −ReQ coth (Q)- (17)

or

Q2R2M <
,
2π2 −ReQ coth (Q)- · ,2π2 −RMQ coth (Q)- (18)

For small Q we obtain that max{Re,RM} ≤ 2π2. For large Q the range of RM,Re de-
creases inversely proportional to Q (e.g. max{Re,RM} ≤ 2πQ−1). Figure (3) summarizes
our results. We note that the conditions we derived are sufficient for energy stability but
their violation does necessarily not imply energy instability.
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Figure 3: Energy stability reagions for magnetic Couette ßow. The solid lines indicate the
estimated stability boundaries for different values of Q. The dashed lines indicate constant
Prandtl number

2.4 Background Method

Next we want to examine how the energy dissipation is modiÞed when the ßow is in a
�turbulent� regime. We are going to use the Doering-Constantin background method [2]
[3] to produce an upper bound on the dissipation. As in the energy stability method we are
going to separate the ßow to a background component iU(y), iB1(y)+jB2 that we are going
to leave undetermined and a ßuctuating component v, b. Following the same procedure as
in the energy method we obtain:

1

2
∂t&v2 + b2' = &v1B2B$1'+ &b1B2U $' − &(v1v2 − b1b2)U $' − &(b1v2 − v1b2)B$1'

−ν&|∇v|2' − η&|∇b|2'+ ν&v1U $$'+ η&b1B$$1 ' (19)

where the linear and constant terms in v and b appeared because the background proÞle is
no longer a solution of the MHD equations (1). To eliminate some of them we are going to
add half of the total dissipation:

1

2
D = +1

2
ν&|∇(U + v)|2'+ 1

2
η&|∇(B + b)|2'

=
1

2
ν&|∇v|2'+ 1

2
η&|∇b|2'+ ν&U $∂yv1'+ η&B$1∂yb1'+

1

2
ν&U $2'+ 1

2
η&B$12'

by doing so, we obtain
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1

2
∂t&v2 + b2'+ 1

2
D = &v1B2B$1'+ &b1B2U $' − &(v1v2 − b1b2)U $' − &(v1b2 − b1v2)B$1'

−1
2
ν&|∇v|2' − 1

2
η&|∇b|2'+ 1

2
ν&U $2'+ 1

2
η&B$12' (20)

To get rid of the remaining linear terms we will use the transformation v = w − iV (y) and
b = β − iH(y) where

νV $$ = B2B$1 and ηH $$ = B2U $ (21)

then

∂tE + 1
2
D = −&(w1w2 − β1β2)U $' − &(w1β2 − β1w2)B$1'+

1

2
ν&|∇w|2'+ 1

2
η&|∇β|2'

+
1

2
ν&U $2 + V $2'+ 1

2
η&B$12 +H $2' (22)

where E = 1
2&v2 + b2'. We can write the above equation (22) in the form

2∂tE +D = −QUB1 +Dbg (23)

where QUB1 is a quadratic functional on v and b that depends on our choice of the back-
ground Þelds U and B1, and Dbg is the dissipation due to the background Þeld. Our aim now
is to choose an appropriate background Þeld so that the quadratic term QUB1 is positive
deÞnite. If we succeed the we can prove by integrating over time that the the total energy
is bounded in time. More by taking the time average of (23) that the total time averaged
dissipation is D ≤ Dbg.

From the form of QUB1 a natural choice for the background magnetic Þeld is going to
be B1 = 0. For U we are going to use the piece-wise linear proÞle

U(y) =


(U∗/2δ)y if − d/2 ≤ y ≤ −d/2 + δ
U∗/2 if − d/2 + δ ≤ y ≤ d/2− δ
(U∗/2δ)(d/2− y) if d/2− δ ≤ y ≤ d/2.

(24)

From (21) and the boundary conditions for b we also have that

H(y) =
B2
η

1 y

0
U(y$)− &U'dy$. (25)

The background Þelds U and H are shown in Þgure (4). We can easily now evaluate the
dissipation of the background Þeld and it is found to be

1

2
Dbg = νU∗2

4d

1

δ
+
B22U

∗2

12ηd
δ =

νU∗2

4d

(
1

δ
+
B22δ

3νη

)
(26)

Dbg obtains its minimum value for δmin =
2
3ην/B22 , giving min{Dbg} = 1√

3
U∗B2
d

249



y
0

*U

U /2*

U(y)

δd/2+ d/2−δd/2 d/2

y
0

*

H(y)

H

d/2 d/2+ δ d/2−δ d/2

Figure 4: The two background Þelds U(y) and H(y). H∗ is equal to B2δ/4η.

Now we focus on the quadratic term QUB1 and try to determine the values of the free
parameter δ that make it deÞnite positive. Formally we would need to solve for the minimum
of QUB1 that would lead to an eigenvalue problem that we would have to solve numerically.
We are not going to follow this procedure here though but instead we are going to give
rigorous estimates for the values of δ that guarantee the positivity of QUB1 . Using the
fundamental theorem of calculus and the Cauchy-Schwartz inequality we can show that

|wi| =
33333
1 y

−d/2
∂wi
∂y
(y$)dy$

33333 =
33333
1 y

−d/2
1 · ∂wi

∂y
(y$)dy$

33333 ≤2y + d/2
33333
1 y

−d/2

(
∂wi
∂y
(y$)

)2
dy$
33333
1/2

.

(27)

This implies33333
1 d/2

−d/2
U $(y)w1w2dx3

33333 ≤ U∗
2δ

1
dxdz

1 δ

0
y

41 0

−d/2

(
∂w1
∂y

)2
dy$
51/241 0

−d/2

(
∂w2
∂y

)2
dy$
51/2

dy+

U∗
2δ

1
dxdz

1 d/2

d/2−δ
(d/2− y)

41 d/2

0

(
∂w1
∂y

)2
dy$
51/241 d/2

0

(
∂w2
∂y

)2
dy$
51/2

dy. (28)

Including all the other terms in |∇w|2 we obtain33331 U $(y)w1w2dx3
3333 ≤ U∗

2δ

δ2

2

1

2

1
|∇w|2dx3 = U∗δ

8

1
|∇w|2dx3. (29)

and similarly for β 33331 U $(y)β1β2dx3
3333 ≤ U∗δ

8

1
|∇β|2dx3. (30)
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This implies for QUB1 :
QUB1{w, β} = ν

6|∇w|27+ η 6|∇β|27+ 2 6U $(w1w2 − β1β2)7
≥ ν

6|∇w|27+ η 6|∇β|27− 2 336U $w1w2733− 2 336U $β1β2733
≥ ν

6|∇w|27+ η 6|∇β|27− U∗δ
4

6|∇w|27− U∗δ
4

6|∇β|27
≥

(
ν − U∗δ

4

)6|∇w|27+ (η − U∗δ
4

)6|∇β|27
≥ π2

d2

(
min{ν, η}− U∗δ

4

)6
w2 + β2

7
. (31)

So QUB1{w,β} ≥ 0 if we choose δ ≤ 4ν/U∗ = 4d/Re. This is the maximum value of δ that
our estimates allow us to use.

δ ≤ 4min{η, ν}
U∗

= δQ (32)

The smallest value of Dbg (keeping QUB1 positive) is obtained for δ = min{δmin, δQ, d/2}.
So we end up with our Þnal result on the Couette ßow that if δmin < δQ we are going to
use δmin to evaluate the background dissipation, which means that if

4min{ν, η}B2
U∗
√
3νη

> 1 then D ≤ U∗2B2√
3d

#
ν

η
, (33)

or in the non-dimensional form

if 8Q >
√
3max{Re,RM} then D ≤ 2Q√

3Re
. (34)

If on the other hand δmin > δQ we are forced to use δQ in the evaluation of the background
dissipation. So if

4min{ν, η}B2
U∗
√
3νη

< 1 then D ≤ 1

8

ν

min{ν, η}
U∗3

d
+
2

3

min{ν, η}
η

B22U
∗

d
(35)

or in the non-dimensional form

if 8Q <
√
3max{Re,RM} then D ≤ 1

8
max{Pr, 1}+ 8

3

Q2

Remax{RM,Re} . (36)

The Þrst inequality (34) we have shows that for large enough magnetic Þeld the dissipa-
tion is bounded by a function with the same dependence on Re and Q as the laminar. The
prefactor has only a 15% difference. This gives an indication that the ßow should be close to
the laminar solution. If the magnetic Þeld on the other hand is not strong enough then the
dissipation becomes independent of the Reynolds number Re and has only a dependence on
the Prandtl number Pr. The increase of the bound on the dissipation with Prandtl number
is an interesting result that we cannot yet determine if it is the outcome of a bad estimate
or it corresponds to a physical mechanism for increase of the dissipation.
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Figure 5: The dissipation as a function of Q for different Prandtl numbers. The dashed
line shows the laminar solutions dissipation.
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Figure 6: The dissipation as a function of Re for different Prandtl numbers. The dashed
line shows the laminar solutions dissipation.
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Figure 7: The dissipation as a function of Re for different values of Q.
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Figure 8: The setup for the Hartmann ßow

3 Magnetic Poiseuille (Hartmann) Flow

3.1 Preliminaries

Next we turn to examine the magnetic Poiseuille or Hartmann ßow named after Hartmann
who Þrst examined this kind of ßow [4]. We consider the same set up as in §2, only this
time both the top and bottom plate are held Þxed and there is a constant pressure gradient
or a uniform force Þeld F in the i direction. The same equations govern the current setup
as in §2 with the addition of the force Þeld in the momentum equation:

∂tu+ u ·∇u = −∇P +B ·∇B + ν∇2u+ F . (37)

The non-dimensional numbers that parametrize our system are the Hartmann number de-
Þned as before, and the Grashoff number G and magnetic Grashoff GM number deÞned
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Figure 9: The laminar velocity proÞle and the magnetic Þeld lines.

as

G =
Fd3

2ν2
, GM = GPr

The energy dissipation is given by

D = ν&|∇u|2'+ η&|∇B|2' = F 3/2d1/2D (38)

where D is again the non-dimensional form of the dissipation we are going to use.

3.2 Laminar Solution

Assuming time and x− z independence again we end up with the system of equations

0 = B2 · ∂yB1 + ν∂2yU + F (39)

0 = B2 · ∂yU + η∂2yB1 (40)

B2 = constant. (41)

They can be solved easily and the solution is given by:

U =
Fd

2B2

#
η

ν

cosh
!
B2d
2
√
νη

"
− cosh

!
B2y√
νη

"
sinh

!
B2d
2
√
νη

"
 , B1 =

Fd

2B2

 sinh
!
B2y√
νη

"
sinh

!
B2d
2
√
νη

" − 2y
d

 . (42)

The laminar velocity and the magnetic Þeld lines are shown in Þgure (9). Again the limit
Q→ 0 brings us back to Poiseuille ßow.

We evaluate the dissipation again and Þnd it to be

D = F 2d

2B2

#
η

ν

*
coth

(
B2d

2
√
νη

)
− 2

√
νη

B2d

+
(43)

or in the non-dimensional form

D =
G1/2

2
√
2Q

*
coth (Q)− 1

Q

+
. (44)

D goes to G1/2

6
√
2
for Q going to zero, and D goes to G1/2

2
√
2Q
for Q going to inÞnity. Also as in

Couette ßow the dissipation goes to a Þnite limit as ν and η go to zero, keeping their ratio
(Prandtl number) Þxed.

254



0 5 10 15 20 25 30
0

5

10

15

20

25

30

Gm

G

Pr=0.2 
Pr=0.5 

Pr=1.0 

Pr=2.0 

Pr=5.0 

Q=0.0 Q=0.2 
Q=0.5 

Q=1.0 

Q=2.0 

Q=5.0 

Q=infinity 

Figure 10: Energy stability reagions for Hartmann ßow. The solid lines indicate the es-
timated stability boundaries for different values of Q. The dashed lines indicate constant
Prandtl number

3.3 Stability

Next we examine the energy stability of the Hartmann ßow. The evolution of the energy is
given by:

1

2
∂t&v2 + b2' = −&(v1v2 − b1b2)U $' − &(v1b2 − b1v2)B$1' − η&|∇b|2' − ν&|∇v|2'. (45)

Using the same inequalities as in the Couette ßow we obtain

B$1max
2 ≤

(
ν
2π2

d2
− U $max

)(
η
2π2

d2
− U $max

)
(46)

or

F 2

B22

*
B2d

2
√
νη
coth

(
B2d

2
√
νη

)
− 1
+2
≤
(
ν
2π2

d2
− Fd
2ν

)(
η
2π2

d2
− Fd
2ν

)
(47)

that gives in the non-dimensional form

G2
M

8
Q coth(Q)− 1

92 ≤ Q2(2π2 −G)(2π2 −GM). (48)

As before we Þnd that the energy stability is decreased as we increase Q. Unlike the
Couette ßow though in the limit of large Q the stability curve goes to the Þnite limit given
by G2

M < 3(2π2 −G)(2π2 −GM) Our stability results are summarized in Þgure (10).
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3.4 Background Method

Next examine the dissipation in the turbulent regime. Separating the ßow to a background
U,B1, B2 and a ßuctuating component b, v multiplying with b, v and taking the spacial
average as before we obtain

1

2
∂t&v2 + b2' = &v1B2B$1'+ &b1B2U $' − &(v1v2 − b1b2)U $' − &(b1v2 − v1b2)B$1'

−ν&|∇v|2' − η&|∇b|2'+ ν&v1U $$'+ η&b1B$$1 '+ &F · v'. (49)

Adding half the dissipation we get

∂tE + 1
2
D = &v1B2B$1'+ &b1B2U $'+ &Fv1' − &(v1v2 − b1b2)U $' − &(v1b2 − b1v2)B$1'

−1
2
ν&|∇v|2' − 1

2
η&|∇b|2'+ 1

2
ν&U $2'+ 1

2
η&B$12'. (50)

Using D = &F · u' = &FU' + &Fv1' and v = w − iV (y) and b = β − iH(y) where νV $$ =
B2B

$
1 and ηB

$$
1 = B2U

$ we can write (50) as

2∂tE −D = 2F &U' −Dbg +QUB1 (51)

with Dbg = ν&U $2'+ η&H $2' and H = −B2
η (U − &U') and

QUB1 = ν&|∇w|2'+ η&|∇β|2'+ 2&(w1w2 − β1β2)U $'+ 2&(w1β2 − w2β1)U $'
where we already picked B1 = 0 for a background proÞle.

Contrary to the Couette ßow case that the positivity of QUB1 was leading to an upper
bound on the dissipation, if QUB1 ≥ 0 then we have that D ≥ F &U' − 1

2Dbg which gives a
lower bound on the dissipation.

The velocity back ground Þeld we are going to choose is going to be

U(y) =


(U∗/δ)y if − d/2 ≤ y ≤ −d/2 + δ
U∗) if − d/2 + δ ≤ y ≤ d/2− δ
(U∗/δ)(d/2− y) if d/2− δ ≤ y ≤ d/2.

(52)
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with U∗ and δ undetermined parameters. U(y) and H(y) are shown in Þgure (11). Evalu-
ating the background dissipation and F &U' we get:

F &U' − 1
2
Dbg = FU∗ − FU∗

(
δ

d

)
− νU

∗2

d2

(
d

δ

)
− B

2
2U

∗2

2η

:
2

3

(
δ

d

)
−
(
δ

d

)2;

) FU∗ − νU
∗2

d2

(
d

δ

)
− B

2
2U

∗2

2η

2

3

(
δ

d

)
(53)

where we dropped out terms of order (δ/d)2.
The above expression takes its minimum value when δ = δmin =

√
3νη/B2 and U

∗ =
U∗min = (

√
3/4)(Fd/B2)

2
η/ν

Now we turn to the quadratic term QUB1 and try to determine the constraint on on δ
and U∗. The calculation is identical with the Couette ßow and gives that for QUB1 ≥ 0 we
have to have U∗δ ≤ 2min{ν, η} = (U∗δ)Q. All we have to do now is to Þnd the values of
U∗ and δ that give the maximum possible of 2F &U'−Dbg with out violating the constraint
QUB1 ≥ 0. If U∗minδmin ≤ (U∗δ)Q then the obvious choice for U∗ and δ is U∗min and δmin
that gives

If U∗minδmin =
3Fdη

4B22
≤ 2min{ν, η} thenDbg ≥

√
3F 2d

4B2

#
η

ν
(54)

or in dimensionless form

If 3max{G,GM} ≤ 16Q2 thenD ≥
√
3

2

4
G1/2

2
√
2Q

5
(55)

If the condition U∗minδmin ≤ (U∗δ)Q is violated then we have to evaluate the maximum of
2F &U' − Dbg over U∗ and δ under the constraint that U∗δ = (U∗δ )Q after some algebra we
end up with

if
3Fη

4B22
≥ 2min{ν, η} then Dbg ≥ 4

√
2d

3
√
3

(
F − 2B

2min{ν, η}
3η

)3/2#
min{ν, η}

ν
(56)

or in dimensionless form

if 3max{G,GM} ≥ 16Q2 then D ≥ 4
√
2

3
√
3

(
1− 4Q2

3max{G,GM}
)3/2

min{1,Pr−1/2}

(57)

As in the Couette case for strong enough magnetic Þeld the Þrst inequality (55) indicates
that the bound is very close (15% difference) to the laminar dissipation. On the other hand
for small enough magnetic Þelds the bound on the dissipation becomes independent of Q
and Re and decreases as the inverse square root of the Prandtl number for Pr > 1. This
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Figure 12: The dissipation as a function of Q for different Prandtl numbers. The dashed
line shows the laminar solutions dissipation.

result is not in contradiction with the related result of the Couette ßow that was giving a
linear increase with the Prandtl number. The reason for the difference is the deÞnition for
the non-dimensional dissipation. If we had chosen �D = Dd/&u'3 as our non dimensional
dissipation we would have

�D =
Dd
&u'3 =

Dd
(D/F )3 =

F 3d

D2 =
1

D2

that gives the same scaling with Couette ßow. The Þgures below (12,13,14) summarize our
results.

4 Discussion

We have examined the dissipation for two different kinds of ßows in conducting ßuids
with an imposed vertical (to the ßow) magnetic Þeld, namely magnetic Couette ßow and
Hartmann ßow. We have derived bounds on the dissipation and determined the bounds
behavior at high Reynolds and magnetic Reynolds number. One of our basic results is that
the dissipation is tending to the laminar value if the magnetic Þeld is strong enough. If
the magnetic Þeld is not very strong and the Reynolds number is large the dissipation is
independent of Re and Q and scales as the Þrst power of the Prandtl number if Pr > 1
and is independent of it otherwise. The next Þgure (15) shows a quantitative comparison of
experimental data [5] with our bound. The data show measurments of the drag coefficient
Cf as a function of Q. The coefficient Cf is deÞned as:

Cf =
Fd

&U'2 =
dD
&U'3 =

�D =
1

D2
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Figure 13: The dissipation as a function of Re for different Prandtl numbers. The dashed
line shows the laminar solutions dissipation.
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Figure 14: The dissipation as a function of Re for different values of Q.
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Figure 15: The drag coefficient Cf as a function of Q
.

Although there is a two orders of magnitude difference from our bound which is not suprizing
for the rough estimates we used, the bound seems to capture the behavior of the dissipation
up to a prefactor.
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