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1 Introduction and Motivation

Due to the low value of the vertical component of the Earth’s rotation the tropics possess
dynamical properties that are quite different in nature to other regions of higher latitude.
One property is that the equator acts as a wave guide due to the changing in sign of the
Coriolis parameter.

Linear equatorial wave theory (Matsuno, 1966) has shown that equatorially trapped
waves (particularly Rossby and Kelvin waves) are important waves in determining large
scale climatic processes such as the El Niño-Southern Oscillation (ENSO; e.g. Philander,
1990; Clarke, 2008). Other factors that determine properties like ENSO periodicity and
strength are stochastic processes (Kleeman, 2008). There are, however, nonlinear equa-
torial processes that are well observed and are thought to impact on phenomena such as
ENSO, but many of these processes remain relatively poorly understood from a theoretical
point of view.

In the rest of this section, we shall examine previous studies on nonlinear equatorial
waves. We shall also review a class of waves that are highly nonlinear in nature and have
been observed for several decades now, however, recent insights by linear resonance theory
have shown to give insights into their dynamics. The end of this section briefly reviews the
properties of the equatorial β-plane, and the consequences for theoretical models of using
such an approximation.

Section 2 examines the hydrostatic, inviscid, Boussinesq and rigid-lid momentum and
continuity equations on a sphere and then transforms them to the Mercator projection. In
section 3 we examine the linear shallow water equations in geopotential coordinates, but, we
use some inspiration from the Mercator projection by using a tanh profile for the coriolis pa-
rameter (the “extended β-plane”), rather than the traditional linear β-plane approximation.

The modal equations and dispersion relations for the extended β-plane are then derived
and investigated in section 4. Finally, section 5 examines the effects of weak nonlinear
resonance using a multiscale expansion to derive the coupling coefficints for a system of
three baroclinic Rossby waves interacting. Finally, a summary and a discussion of potential
future works is presented in section 6.
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1.1 Previous Studies of Equatorial Nonlinear Wave Dynamics

There is a large literature on linear equatorial wave dynamics. The nonlinear literature, on
the other hand, is somewhat smaller. Furthermore, most of the studies have used either a
single layer, or reduced gravity model with only a handfull of studies including baroclinic
waves. Herewith, we shall give a brief overview of the classes of nonlinearities and waves
that have been studies.

Boyd (1980b) studied the nonlinear Kelvin wave. The linear Kelvin wave is a disper-
sionless wave, and as such, nonlinear effects are very small. Using the method of strained
coordinates, he showed how nonlinearity can cause frontogenesis, an alteration in the phase
speed and breaking. Boyd (1980a) examined how long equatorial Rossby waves can be
described by the Korteweg-de Vries equation (Korteweg and de Vries, 1895) or the modi-
fied Korteweg-de Vries equation. Boyd (1983) examines how highly dispersive waves (short
Rossby waves, the Yanai wave and inertia-gravity waves) can be described by the nonlinear
Schrödinger equation and propagate as a solitary wave packets of permanent form.

More recently Le Sommer et al. (2004) have shown that there is a dynamical split be-
tween fast nonlinear waves (fast Yanai and inertia-gravity waves) and slow nonlinear waves
(slow Rossby and Kelvin waves).

Ripa (1983a,b) examines nonlinear resonance in a one layer reduced gravity model in
the equatorial β-plane using the method of Ripa (1981). In those studies, the various types
of interactions are classified into 19 categories and the properties of waves in the various
categories are investigated.

Recently, it has been shown in that nonlinear resonance between two equatorially
trapped baroclinic Rossby waves and one free barotropic Rossby wave are possible (Reznik
and Zeitlin, 2006, 2007a,b).

1.2 An example of observed Nonlinear Equatorial Waves

Tropical Instability Waves (TIWs; Düing et al., 1975; Legeckis, 1977) are an equatorial wave
in which the dynamics are still relatively poorly understood, despite the fact that they are a
dominant feature of the monthly variability of the equatorial Pacific and Atlantic. In addi-
tion, TIWs are climatologically important, as it is thought that TIWs are closely associated
with dynamics of the El Niño-Southern Oscillation (Yu and Liu, 2003)

TIWs are seen as cusps on the front north equatorial front (the front that delineates the
equatorial cold tongue; see figure 1). TIWs are seen on the southern front as well, but the
amplitudes are typically much smaller than on the northern side. It has been shown in the
Pacific that there are two distinct periods of 17 and 33 days (Lyman et al., 2007), although
the shorter period wave does not appear to exist in the Atlantic (von Schuckmann et al.,
2008).
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Figure 1: Sea Surface temperature signature of tropical instability waves,seen in imagery
from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager, from Willett
et al. (2006)
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Various process studies have indicated that the waves are caused by instability in the
intense zonal mean flow (for instance Philander, 1976, 1978; Proehl, 1996). Lawrence and
Angell (2000) suggested that modification of the phase of TIWs by Rossby waves helps
to explain some of the meridional asymmetry displayed by TIWs. More recently, it has
been suggested that TIWs could be described as a linear unstable resonance between two
baroclinic equatorial Rossby waves (Lyman et al., 2005). While linear analysis has offered
some insights into the dynamics of TIWs, it is thought that these waves are nonlinear in
nature (Philander, 1978; Kennan and Flament, 2000).

1.3 The Equatorial β-plane

The equatorial β-plane has been used extensively in the study of equatorial wave dynamics.
The equatorial β-plane is not universally valid, particularly for barotropic waves (Boyd,
1985).

While the validity of using linear equations for the barotropic waves is somewhat lim-
ited, previous studies examining nonlinear resonance at the equator have avoided purely
baroclinic systems. The reason stated by Reznik and Zeitlin (2007a) is that because of the
rapid decay of the parabolic cylinder function (the function that describes the meridional
structure of many equatorially trapped waves) for baroclinic waves, the nonlinear interac-
tion of baroclinic waves is also small. On the other hand, the large meridional extent of
barotropic waves allows for greater interaction.

2 Equations on a Sphere and the Mercator Projection

2.1 Equations on a Sphere

We begin by noting that in spherical coordinates, where θ is latitude, φ is longitude and
r is the radial distance from the centre of the Earth, the divergence operator and gradient
operators are (see chapter 4.12 of Gill, 1982),

∇ · F ≡ 1
cos θ

{
∂

∂φ

(
Fφ
r

)
+

∂
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(
Fθ cos θ

r

)
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r2Fr cos θ
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r cos θ
,
∂θ%

r
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)
, (2)

where F is some arbitrary vector and % is an arbitrary scalar. As the radial length scales
are much smaller than the lateral length scales, we may treat r as a constant, ar, unless we
are taking a derivative with respect to r. The divergence and gradient operators become
(to a good approximation for the oceans),

∇ · F ≈
∂φFφ
ar cos θ

+
∂θ(Fθ cos θ)
ar cos θ

+ ∂rFr (3)
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We can thus say that the inviscid, Boussinesq, hydrostatic lateral momentum equation in
spherical coordinates is,

u,t + u · ∇u +
[
f0 +

u

ar cos θ

]
er ∧ u sin θ = −∇p

ρ
, (5a)

where we have ignored the horizontal component of the Earth’s rotation and the radial
metric terms, both of which follow naturally from assuming that the radial length scale is
much smaller than the lateral. Here, u = (u, v) is the zonal and meridional velocity and
the gradient operator only operates in two dimensions in the momentum equation and e
indicates a unit vector. Furthermore, we note that f0 is the value of the radial component
of the Earth’s rotation vector (the Coriolis parameter) at the North Pole. We also note that
∇u ≡ (∇u,∇v), where ∇ is that defined in equation (2). The terms are, from left to right,
the rate of change of velocity, the advective term, the Coriolis term, a metric term and
the pressure gradient term. As we are considering an incompressible fluid, the continuity
equation becomes,

∇ · (u, w) = 0 , (5b)

where w is the radial velocity and the gradient operator is acting in all three directions.
Written in their full form, the lateral momentum equations and the continuity equation is,

u,t +
uu,φ
ar cos θ

+
vu,θ
ar

− vf0 sin θ − uv tan θ
ar

= −
p,φ

ρar cos θ
(6a)

v,t +
uv,φ

ar cos θ
+
vv,θ
ar

+ uf0 sin θ − u2 tan θ
ar

= −
p,θ
ρar

(6b)

uφ
ar cos θ

+
(v cos θ),θ
ar cos θ

+ w,r = 0 , (6c)

where we have used the comma notation to denote partial derivatives (see Aris, 1962).

2.2 The Mercator Projection

We now set about transforming the equations from spherical coordinates to Mercator coor-
dinates. Firstly, we note that the unit vectors for each coordinate system are equivalent,

ex =eφ (7a)
ey =eθ (7b)
ez =er , (7c)

Here, x is the zonal distance from a reference x = 0 and y is the meridional distance from
y = 0 (the equator), such that −∞ < y < ∞ while, −π/2 < θ < π/2. In addition, z is
the radial distance from the bottom of the ocean, ar. Spherical coordinates and Mercator
coordinates are thus related by,

x = arφ (8a)

y = ar tanh-1(sin θ) (8b)
z = r − ar , (8c)
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z = H1D2

z = H1 + η1(x, y, t)

ez

z = 0 η2 ≡ 0

z = H0 η0 ≈ 0

D1 z = H0ρ1

ρ2

Figure 2: The shaded region is the (constant depth) ocean floor, the dashed line indicates
mean sea level and the solid line represents the free surface. H is distance from mean sea
level to the ocean floor, and η(x, y, t) is the deviation of the free surface from mean sea
level.

which essentially projects the sphere onto a cylinder of height 2ar. Applying this transform
to the spherical equations (6) yields,

u,t +
uu,x

sech(y/ar)
+

vu,y
sech(y/ar)

− vf0 tanh(y/ar)−
uv tanh(y/ar)
ar sech(y/ar)

= − p,x
ρ sech(y/ar)

(9a)

v,t +
uv,x

sech(y/ar)
+

vv,y
sech(y/ar)

+ uf0 tanh(y/ar)−
u2 tanh(y/ar)
ar sech(y/ar)

= − p,y
ρ sech(y/ar)

(9b)

[u sech(y/ar)],x + [v sech(y/ar)],y + w,z sech2(y/ar) = 0 (9c)

where we note from equations (8) that x,φ = ar, y,θ = ar
cos θ , z,r = 1 sin θ = tanh(y/ar) and

cos θ = sech(y/ar). If we now make the substitution U = u sech(y/ar) and V = v sech(y/ar)
(which is equivalent to the cos θ substitution made by Longuet-Higgins, 1965),

sech2(y/ar)U,t + UU,x + VU,y − sech2(y/ar)Vf0 tanh(y/ar) = −p,x
ρ

sech2(y/ar) (10a)

sech2(y/ar)V,t + UV,x + VV,y +
(U2 + V2) tanh(y/ar)

ar
+ sech2(y/ar)Uf0 tanh(y/ar) = −p,y

ρ
sech2(y/ar)

(10b)

U,x + V,y + sech2(y/ar)w,z = 0 (10c)

If we now examine these equations for a two layer fluid (which is illustrated in figure 2),
where we label each layer with i = 1, 2, 1 being the top layer and 2 being the lower layer
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and η0 being the free surface. In both layers we use the hydrostatic approximation,

p,z = −ρg , (11)

If we also employ the rigid lid approximation, we write the pressure for the top layer as
P = rho1gη0 and we ignore the deviations of the surface elsewhere in the equations, η0 = 0.
Furthermore, linearising gives a more simple expression for the momentum equation of the
top layer,

U1,t − V1f0 tanh(y/ar) = −P,x (12a)
V1,t + U1f0 tanh(y/ar) = −P,y . (12b)

In the bottom layer we make the Boussinesq approximation in addition to the same approx-
imations to the top layer,

U2,t − V2f0 tanh(y/ar) = −(P,x + g′η1,x) (12c)
V2,t + U2f0 tanh(y/ar) = −(P,y + g′η1,y) . (12d)

Here, the Boussinesq approximation means that we have assumed that ρ1/ρ2 ≈ 1. Note
that we have written g′ = g(ρ2 − ρ1)/ρ2 to represent the “reduced gravity”. Integration
of the continuity equation across each layer, assuming that the layers are immiscible, the
bottom is impermeable, η2 = 0 and that deviations of the interface between the fluids from
its resting state are small w(ηi) ≈ ∂tηi, we obtain the conservation equation for each layer,

− sech2(y/ar)η1,t + (D1U1),x + (D1V1),y = 0 (13a)

sech2(y/ar)η1,t + (D2U2),x + (D2V2),y = 0 . (13b)

To arrive at these expressions, we note that the rigid lid approximation implies that,
η0,t � η1,t and η0 � D1; and the small amplitude assumption implies that η1 � D1

and η1 � D2.

It is important to note that one of the important factors in the validity of the lineariza-
tion, is that the equatorial Rossby radius of deformation (Gill and Clarke, 1974) must be
small when compared to the radius of the Earth, Ro � ar. We note that this is true for
baroclinic modes, whose wave speed is 0.5–3.0ms−1, however, it is only marginally true for
the barotropic modes, whose wave speed is ∼ 200ms−1 (chapter 11.5 of Gill, 1982), and as
such, the barotropic results must be interpreted very carefully.

If we now define a mean velocity U and a shear velocity R = (R,S),

H0U = D1(U1,V1) +D2(U2,V2) (14a)
R = (U2 − U1,V2 − V1) . (14b)

We may combine equations (12) and (13),

U,t + f0 tanh(y/ar)ez ∧U +
∇(P + g′η1)

H0
= 0 (15a)

R,t + f0 tanh(y/ar)ez ∧R + c2∇h = 0 (15b)
∇ ·U = 0 (15c)

sech2(y/ar)h,t +∇ ·R = 0 (15d)
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where c2 = g′D1D2/H0, h = H0η1/(D1D2). We note that c is the baroclinic phase speed.
Employment of the rigid lid approximation implies that the mean velocity field is non-
divergent, and as such, we may define a stream function, ψ,

U =
(
−∂ψ
∂y

,
∂ψ

∂x

)
. (16)

We now assume that the solutions to equations (15) are separable, having the form

ψ(x, y, t) = Ψ(y)
[
Aeiϕ +A∗e−iϕ

]
(17a)

R(x, y, t) = Ξ(y)
[
iAeiϕ − iA∗e−iϕ

]
(17b)

S(x, y, t) = Φ(y)
[
Aeiϕ +A∗e−iϕ

]
(17c)

h(x, y, t) = G(y)
[
iAeiϕ − iA∗e−iϕ

]
, (17d)

where ϕ = kx− ωt, noting that k is the wavenumber and ω is the frequency. Here A is the
amplitude of the wave and A∗ is the complex conjugate of the amplitude.

Using the definition of the streamfunction, equation (16), and taking a combination of
equations (15a) and (15c), we obtain an equation for the evolution of the streamfunction,

∇2ψ,t + f ′(y)ψ,x = 0 , (18)

where f(y) = f0 tanh(y/ar). We note that the barotropic equation is uncoupled from the
baroclinic equations.

To find the baroclinic modal equation we may take various combinations of equa-
tions (15b) and (15d) to eliminate R, and then applying the solutions in equation (17),
we find two modal equations,

−ω2 sech2(y/ar)G+ kf(y)Φ + c2k2G− ωΦ,y = 0 (19a)

−kωΦ + f(y)ω sech2(y/ar)G− f(y)Φ,y − kc2G,y = 0 (19b)

Rearranging equation (19a) in terms of G(y), we get,

G =
ωΦ,y − kfΦ

c2k2 − ω2 sech2(y/ar)
. (20)

Differentiating with respect to y, we find

G,y =
k(f ′Φ + fΦ,y)− ωΦ,yy

ω2 sech2(y/ar)− c2k2
+

1
ar

(kf(y)Φ− ωΦ,y)
2ω2 tanh(y/ar) sech2(y/ar)
(ω2 sech2(y/ar)− c2k2)2

. (21)

We note that under the assumption that the wave length must be much smaller than the
radius of the Earth, the second term in equation (21) will be small relative to other terms,
and as such, we shall ignore it. Substitution of equations (20) and (21) into equation (19b)
yields a modal equation in Φ,

Φ,yy +
{

sech2(y/ar)
[
ω2

c2
− f2(y)

c2

]
− k2 − kf ′(y)

ω

}
Φ = 0 . (22)
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We wish to nondimensionalize the barotropic and baroclinic modal equations by introducing
the length and time scales,

L∗ =
(
c

β

) 1
2

(23a)

T∗ =
1
βL∗

. (23b)

where we have noted that the equatorial Rossby radius of deformation is an appropriate
length scale. Associated with these length scales are the dimensionless variables,

ω =
ω̃

T∗
(24a)

k =
k̃

L∗
(24b)

f0 = βL∗f̃0 (24c)

We also note that as we are considering the case close to the equator (see chapter 3.17 of
Pedlosky, 1987),

ar ≈
f0

β
. (25)

Substitution into equation (18) for the barotropic case and equation (22) for the baroclinic
case yield, respectively,

Ψ,ỹỹ −

{
k̃2 +

k̃f̃ ′(ỹ)
ω̃

}
Ψ = 0 (26a)

Φ,ỹỹ +

{
sech2(ỹ/f̃0)

[
ω̃2 − f̃(ỹ)

]
− k̃2 − k̃f̃ ′(ỹ)

ω̃

}
Φ = 0 . (26b)

Using the Mercator projection as a motivation for a tanh profile for the Coriolis parameter,
we examine the more familiar two layer shallow water equations in geopotential coordinates.

3 The β-Plane and “Extended” β-Plane

We begin by stating the inviscid, linear shallow water equations for a two layer fluid in
geopotential coordinates,

ui,t + f(y)ez ∧ ui +
∇pi
ρi

= 0 (27)

ηi−1,t − ηi,t +∇ · ([Di + ηi−1 − ηi]ui) = 0 , , (28)

for i = 1, 2. Here, the pressure, pi, is given by,

p1 = P (29a)
p2 = P + g′η1 . (29b)
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Similarly with section 2.2 we employ the rigid lid approximation, which implies that P =
gρ1η0 but that η0 = 0 anywhere else it appears in an equation. We also utilise the Boussi-
nesq approximation, assuming that ρ1/ρ2 ≈ 1.

Again, as in section 2.2, we define a mean velocity, U = (U, V ) and a shear velocity,
R = (R,S),

H0U = D1u1 +D2u2 (30a)
R = u2 − u1 . (30b)

Applying these definitions to the momentum equation (27), and continuity equation (28) in
conjunction with the rigid lid approximation and small amplitude assumption gives,

U,t + f(y)ez ∧U +∇Q = 0 (31a)

R,t + f(y)ez ∧R + c2∇h = 0 (31b)
∇ ·U = 0 (31c)

h,t +∇ ·R = 0 , (31d)

where, Q = P + g′η1, h = H0η1/(D1D2) and c2 = g′D1D2/H0. We may take various
combinations of equations (31) and assume solutions of the same form as in equations (17)
to get a barotropic equation for Ψ,

Ψ,yy −
{
k2 +

kf ′(y)
ω

}
Ψ = 0 (32)

and a baroclinic equation for Φ

Φ,yy +
{
ω2

c2
− f2(y)

c2
− k2 − kf ′(y)

ω

}
Φ = 0 . (33)

Through the use of equations (31), we can find expressions for the modal functions for Ξ
and G,

G(y) =
ωΦ,y − kf(y)Φ
c2k2 − ω2

(34a)

Ξ(y) =
c2kΦ,y − ωf(y)Φ

c2k2 − ω2
. (34b)

We may non-dimensionalize the modal equations (32) and (33) using the definitions in
equations (23),

Ψ,ỹỹ −

{
k̃2 +

f̃ ′(ỹ)k̃
ω̃

}
Ψ = 0 (35)

Φ,ỹỹ +

{
ω̃2 − f̃(ỹ)2 − k̃2 − k̃f̃ ′(ỹ)

ω̃

}
Φ = 0 . (36)
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Furthermore, using the scaling

G =
G̃

c
, (37)

we may non-dimensionalize the modal expressions for h and R,

G̃(ỹ) =
ω̃Φ,ỹ − k̃f̃(ỹ)Φ

k̃2 − ω̃2
(38a)

Ξ(y) =
k̃Φ,ỹ − ω̃f̃(ỹ)Φ

k̃2 − ω̃2
. (38b)

The traditional β-plane approximation locally approximates the effects of the curvature
of the Earth by assuming a plane surface (thus ignoring the geometric effects), but allows
the coriolis parameter to vary linearly with latitude. The traditional equatorial β-plane is
generally written as f(y) = βy. In dimensionless form the coriolis parameter is f̃(ỹ) =
ỹ, f̃ ′(ỹ) = 1. We can see that in this case, we may assume a solution of the form ψ̃ =
ei(k̃x̃+l̃ỹ−ω̃t̃), which gives a modal equation,

ω̃ =
−k̃

k̃2 + l̃2
. (39)

Importantly, the modal equation for the β-plane has no trapped wave solutions, unlike the
modal equation (26a) for the Mercator projetion. We note also that with the β-plane ap-
proximation, the solution for the meridional modal function is a parabolic cylinder function
(see Miller, 1965), yielding a dispersion relation of the form,

ω̃3
m − (k̃2 + 2m+ 1)ω̃m − k̃ = 0 m = 0, 1, 2, . . . . (40)

Both equations are common in the literature and specifically, are in agreement with Reznik
and Zeitlin (2006, 2007a,b), as is equations (38) when the β-plane approximation is sub-
stituted. We further note that there is an additional solution for the trapped waves, cor-
responding to Φ ≡ 0, which yields a dispersion relation of ω̃ = k̃. This solution is the
equatorial Kelvin wave (Matsuno, 1966).

Another special case of equation (40) is that when m = 0. In this instance, there are
three branches. One is spurious, yielding the unphysical relation ω̃ = −k̃, which is un-
bounded. The other two branches are described by ω̃(ω̃ − k) = 1. This dispersion relation
corresponds to the Yanai wave (Matsuno, 1966).

In addition to the traditional β-plane approximation, there is also the δ-plane approx-
imation (Yang, 1987) which is a second order Taylor expansion of the Coriolis parameter.
Our aim in the present study is to use the full expression for the coriolis parameter, but, to
ignore the metric terms (and thus, ignore geometric effects).

4 Meridional Structure and Dispersion Relations

We begin by deriving the properties of the system discussed in section 3.
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4.1 Solving for the Meridional structure

Taking the barotropic modal equation (35), and using our chosen coriolis profile, f̃(ỹ) =
tanh(Ỹ ), where Ỹ = ỹ/f̃0, we find that the modal equation becomes,

Ψ
,eY eY +

{
αT + γT(1− λ2)

}
Ψ = 0 (41)

where, λ = tanh(Ỹ ) and

αT = −k̃2f̃2
0 (42a)

γT = −f̃2
0 k̃/̃ω . (42b)

If we use the chain rule, Ψ
,eY = Ψ,λλ,eY , noting that λ

,eY = 1−λ2, we transform equation (41)
to, {

(1− λ2)Ψ,λ

}
,λ

+
(
γT +

αT

1− λ2

)
Ψ = 0 . (43)

Using the same procedure, the baroclinic modal equation (36) becomes,

{
(1− λ2)Φ,λ

}
,λ

+
(
γC +

αC

1− λ2

)
Φ = 0 , (44)

where,

αC = f̃2
0 (−f̃2

0 − k̃2 + ω̃2) (45a)

γC = −f̃2
0 (f̃2

0 + k̃/̃ω) , (45b)

noting that the subscript T indicates barotropic and subscript C indicates baroclinic. Note
that subsequent statements regarding α and γ that do not explicitly indicate whether it is
discussing the barotropic or baroclinic case are equally valid for the barotropic and baro-
clinic variables.

With the chosen form of the coriolis parameter, f̃(ỹ), we now have the same differential
equation for the barotropic and baroclinic equations, which are second order ordinary dif-
ferential equations, namely the associated Legendre equation.

In the case where α < 0 we have discrete eigenvalues given by (Drazin and Johnson,
1989)

αm = −
{

(γ + 1/4)
1
2 − (m+ 1/2)

}2
m = 0, 1, 2, . . . , N . (46)

We note that from its definition, equation (42a), that αT is always less than zero, and as
such the barotropic modes are always trapped. On the other hand, αC is not necessarily
zero, and it has trapped modes only when ω̃2 < f̃2

0 + k̃2 (see section 4.3).

The solutions for the batotropic case are proportional to associated Legendre functions
(see, for example Stegun, 1965),

Ψ(λ) = CΨP
µ
ν (λ) +DΨQ

µ
ν (λ) , (47)
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where Pµν (λ) and Qµν (λ) are the associated Legendre functions of the first and second kinds
respectively. CΨ and DΨ are constants of integration. Noting that the associated Legendre
function of the second kind, Qµν (λ), goes unbounded as λ → 1, we thus say DΨ = 0, thus
leaving,

Ψ(λ) = CΨP
µ
ν (λ) . (48)

Analogously for Φ(Ỹ ),
Φ(λ) = CΦP

µ
ν (λ) . (49)

The integer N is determined by the criterion in the bracket {·}, on the right hand side of
equation (46), that is, N = [(γ + 1/4)

1
2 − 1/2] + 1. In this instance the square brackets [·]

denote the integral part, which take a real number greater than zero as an argument and
rounds it down to the nearest integer. If the integral part is already an integer, then the +1
is omitted from the expression. The eigenfunctions for the associated Legendre functions,
equations (48) and (49), are given by µ = (γ+ 1/4)

1
2 − (m+ 1/2) and exist if there is a root,

ν(ν + 1) = γ.

We note from equation (42b) that for m > 0, γT > 0∀ k̃. On the other hand, we
note from equation (45b) that γC is not necessarily greater than zero. This point shall be
elaborated upon in section 4.3.

4.2 Barotropic dispersion relations

Substitution of αT and γT into the eigenvalue relation, equation (46), gives the barotropic
dispersion relation,

ω̃ = − k̃f̃2
0

k̃2f̃2
0 + |k̃|f̃0(m+ 1

2) +m(m+ 1)
. (50)

The first four modes for the barotropic waves are plotted in figure 3. We can see that they
attain a maximum value in frequency-wavenumber space. For reasons that will become
clear later, we wish to find the maximum frequency and its relative size compared to f̃0.

We note that the maximum occurs at a turning point in wavenumber-frequency space.
As such, in order to find the maximum frequency, we need to find where the gradient of the
dispersion relation, equation (50), is zero (which, incidentally, corresponds to a zero group
velocity). Thus, the maximum value of ω̃ occurs when,

k̃f̃0 = −
√
m(m+ 1) , (51)

where we have chosen the negative root for k̃ based on the anti-symmetric nature of ω̃.

Substitution of equation (51) into the dispersion relation gives the maximum frequency,
ω̃max, as a function of f̃0. A more useful measure, however, is the ratio of the maximum
frequency to f̃0,

ω̃max

f̃0

=
1

2
√
m(m+ 1) + (m+ 1

2)
(52)
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Figure 3: The first four meridional modes for the barotropic dispersion relation, equa-
tion (50). Note, that f̃0 has been scaled out of the plot by making ω̃/f̃0 the dependent
variable and k̃f̃0 the independent variable.

We can thus see that ratio of the maximum frequency for barotropic modes to f̃0 remains
constant and that the ratio ω̃max/f̃0 decreases with increasing mode number.

Interestingly, we note through the use of the symmetry condition, k̃(ω) = −k̃(−ω̃), that
the phase speed for the modes considered must be negative (i.e. westward).

4.3 Baroclinic dispersion relation

For the baroclinic case, we firstly consider the case for αC < 0, necessitating that −k/ω > f2
0 ,

which, similarly to the barotropic case, indicates that the phase speed is negative and is
also bounded in absolute value. Furthermore, by the definition of αC, we also require that,

ω2 − f2
0 < k2 , (53)

The discrete dispersion relation – from equation (46) – is therefore given by,

k̃2 + f̃2
0 − ω̃2 =


(
f̃2
0 −

k̃

ω̃
+

1
4f̃2

0

) 1
2

− m+ 1/2
f̃0


2

. (54)

As f̃0 → ∞, we see that equation (54) reduces to the dispersion relation of Reznik and
Zeitlin (2006, 2007a,b), equation (40) when we expand for large f̃0. When equation (53)
is not satisfied, this implies that there is a continuous spectrum in wavenumber-frequency
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Figure 4: The blue line is ω̃/f̃0 =
√
k̃2/f̃2

0 + 1, which deliniates the continuous spectrum of

frequency-wavenumber solutions from the discrete spectrum and the red line is ω̃ = k̃ which
is the dispersion relation for equatorial Kelvin waves.

space.

Solutions for the discrete eigenvalues of the barotropic and baroclinic modes may all
be found using associated Legendre functions. More general solutions to the associated
Legendre equation can be found with the use of hypergeometric functions (see, for instance
Oberhettinger, 1965). Again, following Drazin and Johnson (1989), we find that the solution
for equation (43) is given by,

Φ(Ỹ ) = a2ip[sech(Ỹ )]−ipF (ǎ, b̌; č; [tanh(Ỹ )]/2) , (55)

where a = a(αC) is a constant of integration, p2 = αC, ǎ = 1
2 − ip + (γC + 1

4)
1
2 , b̌ =

1
2 − ik − (γc + 1

4)
1
2 , č = 1− ip and F is the hypergeometric function. Specifically, we note

that for this type of function, the solutions for αC > 0 yields a continuous spectrum for the
baroclinic modes.

Similarly to the equatorial β-plane, we get a solution for Φ ≡ 0, which again corre-
sponds to an equatorial Kelvin wave, of the form G(y) = sechf

2
0 (Y ). Again similarly to the

β-plane, m = 0 has a spurious branch for ω̃ = −k̃ and the remaining solution is the Yanai
wave. Finally, the modes that correspond to m = 1, 2, . . . are the trapped low-frequency
Rossby waves. We can see that the high frequency branch of the dispersion relation for
m = 1, 2, . . . actually lie within the continuous spectrum. Figure 4 shows the regions in
frequency-wavenumber space where discrete and continuous solutions exist.
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4.4 Resonance Conditions

We wish to investigate two different classes of interaction. The first is where we have three
waves that lie within the discrete spectrum, and the second is where we have two waves in
the discrete spectrum interacting with a third wave that lies in the continuous spectrum (re-
call, baroclinic waves that lie in the continuous spectrum satisfy the relation ω̃2 > k̃2 + f̃2

0 ).
Most of the discussion in the remainder of this section pertains to the latter scenario, as
there are some additional constraints that the waves from the discrete spectrum must sat-
isfy in order to form part of a resonant triad.

Resonant triads (that is, the non-linear interaction between three waves) have resonance
conditions of the form,

k1 + k2 + k3 = 0 (56a)
ω1 + ω2 + ω3 = 0 . (56b)

If we consider the case where one of the waves in the triad lies in the continuous spectrum,
we note that the frequency of the continuous spectrum has a minimum value of f̃0, we need
to investigate the circumstances under which the resonance conditions will be satisfied with
two waves from the discrete spectrum (which we label waves 1 and 2), and one from the
continuous spectrum (which we label wave 3). A necessary (but not sufficient), condition
for resonance to occur is for ω̃1max + ω̃2max > f̃0, where ω̃max is the maximum frequency of
a particular mode. As can be seen from equation (52), a combination of any two barotropic
Rossby waves (m ≥ 1) will not be able to satisfy this condition. However, if a Rossby wave
is interacting with a Yanai wave (m = 0) or Kelvin wave (m = −1), then there may be
circumstances where this condition may be satisfied.

The operations required to obtain an equivalent expression relating the maximum fre-
quency to f̃0 for the baroclinic dispersion relation, equation (54) requires more subtle anal-
ysis. We begin by taking the long wave limit, k̃ → 0. We define the dimensionless phase
speed as c̃ = ω̃/̃k. We will examine two different limits,

• ω̃ → 0 as c̃→ c̃(0) (the long Rossby limit), and

• c̃→ 0 as ω̃ → ω̃(0) (the long inertia-gravity limit);

The long Rossby limiting case yields

f̃0 =

(
f̃2
0 −

1
c̃(0)

+
1

4f̃2
0

) 1
2

−
m+ 1

2

f̃0

(57a)

⇒ lim
ω̃→0

c̃(0) =
−f̃2

0

f̃2
0 (2m+ 1) +m(m+ 1)

. (57b)

The equation for c̃(0) tells us that the long wave speed is negative for all modes m ≥ 0
and positive for m = −1. Furthermore, the phase speed decreases in absolute value with
increasing mode number, m.
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The second case to consider yields the equation,

√
f̃2
0 − (ω̃(0))2 =

(
f̃2
0 +

1
4f̃2

0

) 1
2

−
m+ 1

2

f̃0

(58a)

⇒ lim
c̃→0

(ω̃(0))
2 = (2m+ 1)

(
1 +

1
4f̃4

0

) 1
2

− (2m+ 1)2 + 1
4f̃2

0

. (58b)

The left hand side of equation (58a) tells us that the frequency must always be such that
0 < ω̃(0) < f̃0. To satisfy this requirement, the right hand side of equation (58a) must be

(m+
1
2
)f̃−2

0 <

√
f̃2
0 + (4f̃2

0 )−1

⇒ m(m+ 1) < f̃4
0 , (59)

in the long wave limit. We can see from equation (59) that the Yanai wave has a solution
for all f̃0 > 0. On the other hand, the inertia-gravity waves (with m > 0 and ω̃(0) > 0) are
only trapped for k̃ = 0 if f̃4

0 is large enough. A corollary of this is that for some finite f̃0

only low mode waves are trapped.

We also wish to examine whether any trapped modes can intercept the continuous
spectrum. We determine this by recognising that the left hand side of the dispersion relation,
equation (54), is also the boundary between the continuous and discrete spectra (the blue
curve in figure 4). Equating each side to zero yields intersection conditions,

ω̃2 = k̃2 + f̃2
0 (60)

k̃

ω̃
= −m(m+ 1)

f̃2
0

+ f̃2
0 . (61)

If we set m = 0 to search for a Yanai wave, we note that the two curves intercept at
k̃2

0 = f̃6
0 (1− f̃4

0 )−1, where k̃0 is the wavenumber of intersection for the m = 0 wave. Thus,
the dispersion relation for a Yanai wave intercepts the boundary between the continuous
and discrete spectra at k̃0 when 0 < f̃0 < 1, having a discrete dispersion relation for
−∞ < k̃ < k̃0 and a continuous spectrum for k̃ > k̃0. Conversely for f̃0 > 1 they do not
intercept the Yanai wave has a discrete dispersion relation for −∞ < k̃ <∞.

Using similar reasoning, we find that inertia-gravity waves cross from discrete relations to
continuous if {m(m+1)}

1
2 < f̃2

0 < m+1, there is a solution k̃ = k̃m > 0 so that the trapped
(discrete) baroclinic modes exist only for −∞ < k̃ < k̃m and that k̃0 > k̃1 > k̃2 > . . .. Oth-
erwise, if f̃2

0 > m+1, the trapped waves exist for all k̃. If, however, m < f̃2
0 < {m(m+1)}

1
2 ,

there is a solution such that k = k̃m < 0 where the inertia gravity wave crosses from the
discrete spectrum to the continuous spectrum. Otherwise if f̃2

0 < m, there are no trapped
inertia-gravity modes.
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Figure 5: The red line is a plot of the full baroclinic dispersion relation, equation (54)
and the blue line is the low frequency approximate dispersion relation, equation (62). The
values used were m = 1 and f̃0 = 1, and was made using the implicit plotting capabilities
of Maple.

On the other hand, baroclinic Rossby waves remain trapped for all k̃, and as such,
we may justifiably use a low frequency approximation, i.e. that the ω̃2 terms are small
compared with the other terms in equation (54). This yields a dispersion relation,

ω̃ ≈ −k̃f̃2
0

k̃2f̃2
0 + f̃0(2m+ 1)

√
k̃2 + f̃2

0 +m(m+ 1)
. (62)

Figure 5 shows a plot of the full discrete dispersion relation, equation (54), and the approx-
imate low frequency dispersion relation for m = 1 and f0 = 1. The difference between the
two curves is quite small, and is of similar magnitude for higher modes. This confirms that
the low frequency relation is an appropriate approximation to use for this study. A similarly
small error is present for the first five trapped Rossby modes are plotted in figure 6 using
the low frequency approximation.

As in section 4.2 we wish to ascertain under what circumstances we may obtain triad
interactions between the discrete and continuous spectra. As we have a good approximate
dispersion relation for Rossby waves that is explicit in ω̃, we again begin by trying to find
the maximum frequency as a function of f̃0, we differentiate equation (62),

dω
dk̃

= − f̃0

k̃2f̃2
0 + f̃0(2m+ 1)

√
k̃2 + f̃2

0 +m(m+ 1)
+k̃f̃0

2k̃f̃2
0 + (f̃0k̃(2m+ 1))(k̃2 + f̃2

0 )−1

[k̃2f̃2
0 + f̃0(2m+ 1)

√
k̃2 + f̃2

0 +m(m+ 1)]2
.

(63)
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Figure 6: A dispersion relation for the first five low baroclinic frequency, trapped modes
with f̃0 = 1.

Setting the equation to zero and isolating k̃ = k̃max, and substituting back into the disper-
sion relation allows us to plot the ratio of the maximum frequency, ω̃max, to f̃0 as well as
the value of k̃ where this occurs, k̃max, as a function of f̃0. Such a plot is shown in figure 7
for m = 1.

We note that for both the barotropic case (see section 4.2) and the baroclinic case, we are
unable to find resonant triads consisting of two discrete Rossby waves and one wave from the
continuous spectrum. Again, it is necessary to use at least one Yanai or Kelvin wave in order
to satisfy the resonance conditions, equations (56). The remainder of this report shall focus
on weakly nonlinear resonant interactions between three discrete baroclinic Rossby waves.
The properties of interactions involving Yanai or Kelvin waves, as well as the continuous
spectrum are potential avenues of further research.

5 Resonant Triads

We now wish to examine “near-linear theory,” for waves of moderately small amplitude.
Small amplitude expansions to linear wave theory allow us to examine the interactions, and
energy sharing between different Fourier components (see chapter 14 of Whitham, 1974).
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Figure 7: The ratio of the value of k̃ where the maximum frequency occurs (blue line and
right axis) and the value of the ratio of the maximum value of ω̃ to f̃0 (red line and left
axis), as a function of f̃0, using the low frequency approximation for the dispersion relation,
equation (62).

5.1 Nonlinear Equations

We need to examine a non-linear model to identify the important terms for the wave inter-
actions. We use the baroclinic momentum and continuity equations (3.6a-d) of Benilov and
Reznik (1996), which are modified here for an extended f(y) profile,

∇2ψ,t+J(ψ,∇2ψ) +
D1D2

H2
0

(∂xx − ∂yy)
[(

1 +
D1 −D2

H0
h− D1D2

H2
0

h2

)
RS

]
− D1D2

H2
0

∂xy

[(
1 +

D1 −D2

H0
h− D1 −D2

H2
0

h2

)(
R2 − S2

)]
+ f ′(y)ψ,x = 0 (64a)

R,t+J(ψ,R)−R · ∇(ez ∧∇ψ)

− 2D1D2

H2
0

hR · ∇R− D1D2

H2
0

RR · ∇h+ c2∇h = −f(y)ez ∧R (64b)

h,t+J(ψ, h) +∇ ·R + ((D1 −D2)H−1
0 −D1D2H

−2
0 )∇ · (hR)−∇ ·

(
h2R

)
= 0 (64c)

where J(A,B) = A,xB,y−A,yB,x is the Jacobi operator. We also recall that h = H0η1/D1D2

and c2 = g′D1D2H
−1
0 . From these equations, we obtain the non-dimensional equations using
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the length and time scales defined in equations (23),

∇̃2ψ̃,t̃ + f̃ ′(ỹ)ψ̃,x̃ = −J(ψ̃, ∇̃2ψ̃)−$(∂x̃x̃ − ∂ỹỹ)[(1 + qh̃−$h̃2)R̃S̃]

−∂x̃ỹ[(1 + qh−$h̃2)(R̃2 − S̃2)] (65a)

R̃,t̃ + ∇̃h̃+ f̃(ỹ)ez ∧ R̃ = −J(ψ̃, R̃)+R̃ · ∇̃(ez ∧∇ψ̃)−$qR̃ · ∇̃R̃

+$
[
2h̃R̃ · ∇̃R̃ + R̃R̃ · ∇̃h̃

]
(65b)

h̃,t̃ +∇ · R̃ = −J(ψ̃, h̃)−∇̃ · (h̃R̃) +$∇̃ · (h̃2R̃) , (65c)

where, $ = D̃1D̃2/H̃
2
0 and q = (D̃1 − D̃2)/H̃0.

5.2 Solutions

Let us now consider an asymptotic, multitimescale solution (Bretherton, 1964) to the above
equations , such that,

ψ̃ = ε1ψ̃(1)(x̃, ỹ, t̃, τ̃) + ε2ψ̃(2)(x̃, ỹ, t̃, τ̃) + . . . (66a)

R̃ = ε1R̃(1)(x̃, ỹ, t̃, τ̃) + ε2R̃(2)(x̃, ỹ, t̃, τ̃) + . . . (66b)

S̃ = ε1S̃(1)(x̃, ỹ, t̃, τ̃) + ε2S̃(2)(x̃, ỹ, t̃, τ̃) + . . . (66c)

h̃ = ε1h̃(1)(x̃, ỹ, t̃, τ̃) + ε2h̃(2)(x̃, ỹ, t̃, τ̃) + . . . , (66d)

where, ε is a small parameter and τ̃ = εt̃ is a slow time variable. Recalling equations (17),
we assume that the solutions take the form,

ψ̃(1)(x̃, ỹ, t̃, τ̃) =
3∑
j=1

Ψ(1)
j (ỹ)

[
Aj(τ̃)eiϕ̃j +A∗j (τ̃)e

−iϕ̃j
]

(67a)

R̃(1)(x̃, ỹ, τ̃) =
3∑
j=1

Ξ(1)
j (ỹ)

[
iAj(τ̃)eiϕ̃j − iA∗j (τ̃)e

−iϕ̃j
]

(67b)

S̃(1)(x̃, ỹ, τ̃) =
3∑
j=1

Φ(1)
j (ỹ)

[
Aj(τ̃)eiϕ̃j +A∗j (τ̃)e

−iϕ̃j
]

(67c)

h̃(1)(x̃, ỹ, τ̃) =
3∑
j=1

G̃
(1)
j (ỹ)

[
iAj(τ̃)eiϕ̃j − iA∗j (τ̃)e

−iϕ̃j
]
, (67d)

where a superscripted asterisk, ∗ , indicates a complex conjugate, ϕ̃ ≡ k̃x̃−ω̃t̃ and j = 1, 2, 3
identifies the wave in the triad. Here, we have assumed that the amplitude of the waves is
slowly varying. We substitute the first two orders of our expansion into equations (65a) to
(65c) and equate powers of ε (Luke, 1966). For the barotrpic equations, we equate terms
that are multiplied by ε,

ε∇̃2ψ̃
(1)

,t̃
+ εf̃ ′(ỹ)ψ̃(1)

,x̃ =0

∇̃2ψ̃
(1)

,t̃
+ f̃ ′(ỹ)ψ̃(1)

,x̃ =0 , (68)
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which may be recognised as the linear equation (18). Doing the same for h̃ and R̃ yields,

h̃
(1)

,t̃
+∇ · R̃(1) =0 (69a)

R̃
(1)

,t̃
+ ∇̃h̃(1) + f̃(ỹ)ez ∧ R̃(1) =0 (69b)

which can be recognised as the linear equations (31b) and (31d) respectively.

Similarly, we may equate terms that are multiplied by ε2,

∇̃2ψ̃
(2)

,t̃
+ f̃ ′(ỹ)ψ̃(2)

,x̃ = −∇̃2ψ̃(1)
,τ +Nψ (70a)

R̃
(2)

,t̃
+ h̃

(2)
,x̃ − f̃(ỹ)S̃(2) = −R̃(1)

,τ +NR (70b)

S̃
(2)

,t̃
+ h̃

(2)
,ỹ + f̃(ỹ)R̃(2) = −S̃(1)

,τ +NS (70c)

h̃
(2)

,t̃
+∇ · R̃(2) = −h̃(1)

,τ +Nh (70d)

where we note that via use of the chain rule ∇̃2ψ̃
(1)
,τ τ,t = ∇̃2ψ̃

(1)
,τ ε, and similarly for R̃(1)

,τ ,
S̃

(1)
,τ and h̃(1)

,τ . Here, the nonlinear terms Nψ, NR and Nh are given by,

Nψ = −J(ψ̃(1), ∇̃2ψ̃(1))−$(∂x̃x̃ − ∂ỹỹ)R̃(1)S̃(1) − ∂x̃ỹ(R̃(1) 2 − S̃(1) 2) (71a)

NR = −J(ψ̃(1), R̃(1)) + R̃(1) · ∇̃ψ̃(1)
,x̃ −$qR̃(1) · ∇̃R̃(1) (71b)

NS = −J(ψ̃(1), S̃(1)) + R̃(1) · ∇̃ψ̃(1)
,ỹ −$qR̃(1) · ∇̃S̃(1) (71c)

Nh = −J(ψ̃(1), h̃(1))− ∇̃ · (h̃(1)R̃(1)) . (71d)

If we apply the resonance conditions, equations (56), to these nonlinear equations, we
note that both the left hand side and the right hand sides have terms that are proportional
exp(iϕ̃j). For example, if we apply the resonance condition for the j = 1 wave, then terms
that are not discarded are those that are proportional to exp(iϕ̃1) and exp(−i[ϕ̃2 + ϕ̃3]). In
order to find a compatibility condition we substitute our assumed barotropic streamfunction
solution, equation (67a) into equation (70a) to yield,

iω̃jΨ
(2)
j,ỹỹ + (k̃j f̃ ′ − ω̃j k̃

2
j )iΨ

(2)
j = FΨ

j , (72)

where FΨ
j may thought of as a forcing function arising from the nonlinear wave interactions

and is given by,
FΨ
j = (k̃2

jΨ
(1)
j −Ψ(1)

j,ỹỹ)Aj,τ̃ +Nψ
j , (73)

in which Nψ
j are the non-linear terms from equation (71a) that are proportional to exp(iϕ̃j).

Similarly, combining equations (70b) to (70d), we find a forced modal equation for the
second order effects,

iω̃jΦ
(2)
j,ỹỹ +

{
−ω̃j f̃2 − ω̃j k̃

2
j + ω̃3

j − k̃j f̃
′
}
iΦ(2)

j = FΦ
j , (74)
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where FΦ
j is the baroclinic forcing term due to interaction with other waves and is given by,

FΦ
j =Φ(1)

j (ω̃2
j − k̃2

j )Aj,τ̃ + (∂t̃t̃ − ∂x̃x̃)N S
j A

∗
2A

∗
3

+ (k̃jΞ
(1)
j,ỹ + f̃ ω̃jΞ

(1)
j )Aj,τ̃ + (∂x̃ỹ − f̃∂t̃)N

R
j A

∗
2A

∗
3

+ (f̃ k̃jG̃
(1)
j + ω̃jG̃

(1)
j,ỹ )Aj,τ̃ + (f̃∂x̃ − ∂t̃ỹ)N

h
j A

∗
2A

∗
3 , (75)

where NR, N S and N h are the nonlinear terms that are proportional to exp(iϕ̃j).

Equations (72) and (74) have compatibility conditions,∫ ∞

−∞
FΨ
j Ψjdỹ = 0 (76a)∫ ∞

−∞
FΦ
j Φjdỹ = 0 , (76b)

where Ψj and Φj are functions that satisfy the modal equations (43) and (44), respectively.
Although there appear to be two compatibility conditions, there is indeed only one case
required, as for a barotropic mode Φj(ỹ) ≡ 0 and for the baroclinic case, Ψj(ỹ) ≡ 0.

In the next section, we examine form of N for three trapped Rossby waves, which will
eventually allow us to find the equations for the evolution of the wave amplitude.

5.3 Triad Interactions of Three Baroclinic Rossby Waves

We wish to examine the interaction of three baroclinic waves. Firstly, we use the graphical
technique (for example, Simmons, 1969) to illustrate the possibility of resonant interactions.
The approximate baroclinic Rossby wave dispersion relation, equation (62), is plotted in
figure 8. The origin of the m = 1, 2, 4, 5 waves (blue curves) is translated to an arbitrary
point along the m = 3 baroclinic wave (the red line) while m = 1, 2, 4, 5 are also plotted in
black. As can be seen, there are many possible intersections for just the first five modes,
and indeed further possibilities may be found by translating the origin of the blue lines
to a different place on the red line, or, considering a different mode to m = 3, or indeed,
considering more modes than just the first five.

We note that in the purely baroclinic case, there will be no barotropic terms, as ψ̃(1) ≡
0. This allows us to expand the nonlinear terms in the forcing function, equation (75).
To illustrate, we begin by considering the wave labelled 1. We examine the non-linear
terms, equation (71), paying particular attention to those terms that are proportional to
exp(−i[ϕ̃2 + ϕ̃3]),

NR
1 = i$q

(
k̃1Ξ

(1)
2 Ξ(1)

3 + Φ(1)
2 Ξ(1)

3,ỹ + Ξ(1)
2,ỹΦ

(1)
)
e−i(ϕ̃2+ϕ̃3) + . . . (77a)

NS
1 = $q

(
k̃2Φ

(1)
2 Ξ(1)

3 + k̃3Ξ
(1)
2 Φ(1)

3 − ∂ỹ[Φ
(1)
2 Φ(1)

3 ]
)
e−i(ϕ̃2+ϕ̃3) + . . . (77b)

Nh
1 = i

(
∂ỹ[Φ2G̃3 − G̃2Φ3] + k̃1[Ξ2G̃3 − G̃2Ξ3]

)
e−i(ϕ̃2+ϕ̃3) + . . . , (77c)
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Figure 8: A rich array of three wave resonant interactions can be found in the system under
consideration. The approximate low frequency dispersion relation for baroclinic Rossby
waves with f̃0 = 1 is plotted for m = 1, 2, 4, 5 (black lines) and m = 3 (red line). The origin
for the m = 1, 2, 4, 5 waves is translated along the m = 3 relation to an arbitrary point.
Intersection of the blue lines with black lines indicate resonant triads.

where . . . represents terms that are not proportional to e−iϕ̃1 , and are thus ignored. The
terms shown are NR

1 , N S
1 and N h

1 in equation (75) for the forcing term. In order to find
the forcing term, we need to operate on the nonlinear terms,

N R
1 =$q(k1∂ỹ + f̃ ω̃1)

(
k̃1Ξ

(1)
2 Ξ(1)

3 + Φ(1)
2 Ξ(1)

3,ỹ + Ξ(1)
2,ỹΦ

(1)
)

(78a)

N S
1 =$q(ω̃2

1 − k̃2
1)
(
k̃2Φ

(1)
2 Ξ(1)

3 + k̃3Ξ
(1)
2 Φ(1)

3 − ∂ỹ[Φ
(1)
2 Φ(1)

3 ]
)

(78b)

N h
1 =(ω̃1∂ỹ + f̃ k̃1)

(
∂ỹ[Φ2G̃3 − G̃2Φ3] + k̃1[Ξ2G̃3 − G̃2Ξ3]

)
(78c)

where

N R
1 = −(∂x̃ỹ − f̃∂t̃)N

R
1 , N S

1 = −(∂t̃t̃ − ∂x̃x̃)N S
1 , N h

1 = −(f̃∂x̃ − ∂t̃ỹ)N
h
1 .

We can see that the equivalent expressions for N2 and N3 can be found by swapping indicies.

As the governing equation for the nonlinear interactions, equation (74), is a forced
modal equation, we use the compatibility condition – noting that Φ(1)

1 satisfies the modal
equation (44) – to yield an equation for the time evolution of the amplitude,

A1,τ̃

∫ ∞

−∞
(ω̃2

1 − k̃2
1)
(
Φ(1)

1

)2
+Φ(1)

1 (f̃ ω̃1 + k̃1∂ỹ)Ξ
(1)
1 + Φ(1)

1 (f̃ k̃1 + ω̃1∂ỹ)G̃
(1)
1 dỹ

= A∗2A
∗
3

∫ ∞

−∞
Φ(1)

1 N R
1 + Φ(1)

1 N S
1 + Φ(1)

1 N h
1 dỹ . (79)
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Before being able to solve such an equation, we use the relations G̃ and Ξ in terms of
Φ, equations (38). It is known that Φ is an associated Legendre function, equation (49).
Substituting, we find that,

(ω̃2
1 − k̃2

1) (Φ1)
2 + Φ1(f̃ ω̃1 + k̃1∂ỹ)Ξ1 + Φ1(f̃ k̃1 + ω̃1∂ỹ)G̃1

= Φ1Φ1,ỹỹ
k̃2

1 + ω̃2
1

k̃2
1 − ω̃2

1

− Φ1(Φ1f̃),ỹ
2k̃1ω̃1

k̃2
1 − ω̃2

1

− Φ2
1f̃

2 k̃
2
1 + ω̃2

1

k̃2
1 − ω̃2

1

+ f̃Φ2
1,ỹ

k̃1ω̃1

k̃2
1 − ω̃2

1

− Φ2
1(k̃

2
1 − ω̃2

1) ,

(80)

where we have dropped the superscript, (1), for brevity, as all modal functions are first
order. In order to garner information about the time evolution of the amplitude of the
waves, we need to find out information about the integrals in equation (79). We begin
with the left hand side. Firstly we note that from the approximate baroclinic dispersion
relation, equation (62), |k̃| > |ω̃| for |k̃| > 0 and as such, k̃2 − ω̃2 > 0. We also note from
the dispersion relation that ω̃k̃ < 0 for |k̃| > 0.

We use integration by parts and the property that Φ(ỹ) → 0 as ỹ → ±∞, to note the
following, ∫ ∞

−∞
ΦΦ,ỹỹdỹ = ΦΦ,ỹ

∣∣∣∣∞
−∞

−
∫ ∞

−∞
Φ2
,ỹdỹ

= −
∫ ∞

−∞
Φ2
,ỹdỹ (81a)

1
2

∫ ∞

−∞
f̃Φ2

,ỹ =
1
2

(
f̃Φ2

∣∣∣∣∞
−∞

−
∫ ∞

−∞
Φ2f̃ ′dỹ

)
= −1

2

∫ ∞

−∞
Φ2f̃ ′dỹ (81b)∫ ∞

−∞
Φ(Φf̃),ỹdỹ = Φ2f̃

∣∣∣∣∞
−∞

− 1
2

∫ ∞

−∞
f̃Φ2

,ỹdỹ

=
1
2

∫ ∞

−∞
Φ2f̃ ′dỹ , (81c)

We say that Υ1 is equivalent to equation (80) and use the results of equations (81) to obtain,∫ ∞

−∞
Υ1dỹ = − 1

k̃2
1 − ω̃2

1

∫ ∞

−∞
(k̃2

1 + ω̃2
1)Φ

2
,ỹ +

3k̃1ω̃1

2
f̃ ′Φ2

1 + Φ2
1f̃

2(k̃2
1 + ω̃2

1) + Φ2
1(k̃

2
1 − ω̃2

1)
2dỹ .

(82)
We furthermore note that one property of the associated Legendre function is that it is either
symmetric or anti-symmetric. In the present case it is the meridional mode number, m, that
determines whether the modal function is symmetric or anti-symmetric – see equation (46).
We also note that f̃(ỹ) is an anti-symmetric function and that f̃ ′(ỹ) > 0 is a positive,
symmetric function. Using these properties we find the following for the various terms in
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equations (80) and (81), ∫ ∞

−∞
Φ2
,ỹdỹ > 0 (83a)∫ ∞

−∞
Φ2f̃ ′dỹ > 0 (83b)∫ ∞

−∞
f̃2Φ2dỹ > 0 (83c)∫ ∞

−∞
Φ2dỹ > 0 , (83d)

Use of these results tells us that the integral of Υ1, equation (82) is negative.

With respect to the right hand side of equation (79) we find, after much algebra, that,

Φ1N
R

1 = −$q

 k̃1Φ1(ω̃1f̃ + k̃1∂ỹ)
[
k̃2k̃3Φ2,ỹΦ3,ỹ − k̃2ω̃3f̃Φ2,ỹΦ3 − ω̃2k̃3f̃Φ2Φ3,ỹ + ω̃2ω̃3f̃

2Φ2Φ3

]
(k̃2

2 − ω̃2
2)(k̃

2
3 − ω̃2

3)

+Φ1
k̃1k̃2(Φ2,ỹỹΦ3),ỹ − k̃1ω̃2[(Φ2f̃

′Φ3),ỹ + (f̃Φ2,ỹΦ3),ỹ] + ω̃1f̃ [k̃2Φ2,ỹỹΦ3 − ω̃2Φ3(f̃Φ2),ỹ]
k̃2

2 − ω̃2
2

+ Φ1
k̃1k̃3(Φ2Φ3,ỹỹ),ỹ − k̃1ω̃3[(Φ2f̃

′Φ3),ỹ + (f̃Φ2Φ3,ỹ),ỹ] + ω̃1f̃ [k̃3Φ2Φ3,ỹỹ − ω̃3Φ2(f̃Φ3),ỹ]
k̃2

3 − ω̃2
3

}
(84a)

Φ1N
S

1 = $q(k̃2
1 − ω̃2)

{
Φ1(Φ2Φ3),ỹ − k̃2k̃3

(
Φ1Φ2,ỹΦ3

k̃2
2 − ω̃2

2

+
Φ1Φ2Φ3,ỹ

k̃2
3 − ω̃2

3

)

+f̃Φ1Φ2Φ3

(
k̃3ω̃2

k̃2
2 − ω̃2

2

+
k̃2ω̃3

k̃2
3 − ω̃2

3

)}
(84b)

Φ1N
h

1 =
Φ1(f̃ k̃1 + ω̃1∂ỹ)[k̃3(f̃Φ2Φ3),ỹ − ω̃3(Φ2Φ3,ỹ),ỹ]

k̃2
3 − ω̃2

3

−Φ1(f̃ k̃1 + ω̃1∂ỹ)[k̃2(f̃Φ2Φ3),ỹ − ω̃2(Φ2,ỹΦ3),ỹ]
k̃2

2 − ω̃2
2

+
Φ1k̃1(f̃ k̃1 + ω̃1∂ỹ)[(k̃2k̃3 − ω̃2ω̃3)(f̃Φ2,ỹΦ− f̃Φ2Φ3,ỹ) + (k̃2ω̃3 − k̃3ω̃3)(f̃2Φ2Φ3 − Φ2,ỹΦ3,ỹ)]

(k̃2
2 − ω̃2

2)(k̃
2
3 − ω̃2

3)
.

(84c)

The sign of the integrals of equation (84) are not as easy to determine as that for equa-
tion (82). We can simplify these equations, again through the use of integration by parts
and the property of the modal functions that Φ → 0 as ỹ → ±∞,∫ ∞

−∞
Φ1∂ỹFdỹ = −

∫ ∞

−∞
Φ1,ỹFdỹ , (85)
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where F = F (ỹ). When integrating equations (84), we can thus replace all terms of the
form Φ1∂ỹF with −Φ1,ỹF , making the equations somewhat more transparent. Unfortu-
nately, there was insufficient time to fully examine what conditions determine the sign of
the integrals of equations (84).

We can thus write down the coupling coefficient for time evolution equation (79) of the
amplitude of wave 1,

δ1 =

∫∞
−∞Φ1N R

1 + Φ1N S
1 + Φ1N h

1 dỹ∫∞
−∞Υ1dỹ

. (86)

The coupling coefficients δ2 and δ3 can now be trivially gained by changing the labels appro-
priately in equation (86), which gives the standard, ordinary coupled differential equations
for the time evolution of amplitude of a weakly non-linear triad interaction,

A1,τ̃ = δ1A
∗
2A

∗
3 (87a)

A2,τ̃ = δ2A
∗
1A

∗
3 (87b)

A3,τ̃ = δ3A
∗
1A

∗
2 . (87c)

The sign of the coupling coefficients is important, as, if they are single signed, then we shall
encounter explosive instability (Coppi et al., 1969), which is an unphysical circumstance in
the situation we are considering. We have already seen that the sign the integral of Υ1,
equation (82), is fixed. Thus, the sign of the coupling coefficients is determined by the sign
of the sum of the integrals of equations (84), which is the numerator in equation (86).

In practise, it is not particularly practical to attempt to evaluate the coupling coefficient,
equation (86), analytically and a future possibility would be to numerically integrate these
equations.

6 Conclusion and Discussion

The governing equations for the equations on a Mercator projection centred about the
equator were derived. We took inspiration from these equations to examine an “extended
β-plane” in which we use the standard Cartesian, geopotential coordinates except employ-
ing the use of a tanh profile for the coriolis parameter, rather than the usual linear profile
of the standard equatorial β-plane.

The properties of the solutions of such a system were investigated, with the finding that
both a discrete and continuous spectrum exist for baroclinic waves, while only the discrete
spectrum exists for barotropic waves. There exist many avenues for potential future study
of these systems, a few of which shall now be discussed.

6.1 Potential Future Work

As with any interesting line of enquiry, we are left with more questions than answers. A
brief list of potential future works, based upon this project is presented.
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• Examine the properties of the Mercator projection including the metric terms, and
compare with the solutions on a sphere, as described by Longuet-Higgins (1964, 1965).

• Examine the properties of interactions between a Rossby wave and a Yanai or Kelvin
and the continuous spectrum.

• The derivation and numerical evaluation of the Manly-Rowe relations for the system
of 3 baroclinic Rossby waves considered in section 5.3. Such an evaluation would help
to ascertain whether any observed phenomena may be explained by such interactions
(viz-a-viz the motivation given in section 1).

• It may be beneficial, and easier to conduct manipulations and further studies into
these phenomena if the system were described using a Lagrangian or Hamiltonian
method (for example, Ripa, 1981).

• The re-derivation of the system with a background shear (which is a more realistic
set up for near equatorial oceanic dynamics).
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