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1 Introduction

Stratified flows are ubiquitous in nature. They occur in oceans, atmospheres and in the
interiors of planets and stars. The density stratification in these systems can be caused
by thermal gradients, i.e., the system is warm on one side and cold on the other, or by
compositional gradients, such as induced by salt in the ocean (or other materials that
impact the density of a fluid parcel). Stably stratified fluids are fluids in which the density
gradient acts to stabilize the system against mixing. It is then often of interest to understand
when mixing and transport can occur in the direction of the density gradient and how much
transport can theoretically occur depending on the strength of the stratification. Turbulent
properties such as the total heat and compositional fluxes, the total dissipation in the
system, can be investigated using bounding techniques and direct numerical simulations.

In this report, we investigate simple stratified shear flows that are driven by an external
body-force. Unlike flows that are driven on the boundaries, the forcing applies everywhere
in the fluid. We investigate their energy stability properties and show that energy stability
can be achieved in the case of strong stratifications for certain classes of stratified flows.
We show how, at least in two dimensions, bounds for the viscous dissipation of the system
can be extended from the unstratified case to the stratified case for any strength of the
stratification. We then show that there exists a parameter regime in which the transport
efficiency, i.e., the ratio of energy dissipation by vertical transport of heat to the total energy
input per time, approaches one. This is confirmed by 2D direct numerical simulations.

We then further use direct numerical simulations to determine the dependence of the
heat transport on the stratification. We find that there exist at least three regimes: For
very strong stratification the laminar solution of the system is linearly stable and the heat
transport is zero. In the regime of intermediate stratification, the system displays a bursting
behavior, i.e., we observe mixing events followed by longer periods of episodic relaminar-
ization of the flow. In the regime of weak stratifications the flow is fully chaotic. In two
dimensions, we find that the flow field is dominated by large vortices at the forcing length
scale, that advect the temperature field and dominate heat transport.
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1.1 General Setup

The governing equations are the Boussinesq equations, in which density fluctuations are
neglected except in the buoyancy force. In addition, we decompose the temperature field
into a steady mean field with constant gradient T0z, and a fluctuating field T so that the
full set of equations reads

∂u

∂t
+ u · ∇u = −∇p+ αgTez + ν∇2u + F0f(kz)ex, (1a)

∂T

∂t
+ u · ∇T + wT0z = κT∇2T, (1b)

∇ · u = 0, (1c)

where
ρ

ρ0
= −αT (2)

defines the thermal expansion coefficient α. The other input parameters for this system
are the gravitational constant g, the thermal diffusivity κT , the kinematic viscosity ν, the
forcing amplitude F0 (with dimensions of an acceleration), and the forcing length scale k.
Using the scales [U ] = (F0/k)1/2, [t] = (kF0)

−1/2, [L] = k−1, and [T ] = T0z/k, we can
nondimensionalize the governing equations (1a) to (1c). In addition, we assume that the
perturbation equations are periodic in all directions so the nondimensional forcing profile
f(kz) must be a periodic function of the vertical coordinate. We also assume without loss
of generality that f(kz) is an odd function. After nondimensionalization, the governing
equations become

∂u

∂t
+ u · ∇u = −∇p+ RiTez +

1

Gr
1/2
u

∇2u + f(z)ex, (3a)

∂T

∂t
+ u · ∇T + w =

1

Gr
1/2
T

∇2T, (3b)

∇ · u = 0, (3c)

where all quantitaties are nondimensional and where we introduced three nondimensional
numbers that are based on the forcing amplitude F0. These nondimensional numbers are
given by

Ri =
αgT0z
kF0

, Gr1/2u =
F0

ν2k3
and Gr

1/2
T =

F0

κ2Tk
3

= Pr2Gr1/2u , (4)

where Pr = ν/κT is the Prandtl number. The nondimensional number Gr
1/2
u is equivalent

to a Reynolds number, but is based on the forcing amplitude and therefore usually called

Grashof number. Equivalently, Gr
1/2
T corresponds to the Péclet number, but is based on

the forcing amplitude.
The laminar solution of the system can be expressed in terms of the forcing function

f(z) and Gr
1/2
u with no background temperature fluctuations

uL = −Gr1/2u

(
∂−2z f(z)

)
ex, (5a)

T0 = 0. (5b)
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In the case of a Kolmogorov flow, the forcing profile f(z) is given by sin(z) and the velocity
field of the laminar solution is

uL = Gr1/2u sin(z)ex. (6)

2 Energy stability of stratified shear flows

In this section we introduce the concept of energy stability to investigate some of the
nonlinear stability properties of forced stratified shear flows. The first half of this section
deals with the general case, where temperature perturbations can evolve freely. The second
half of this section deals with the low Péclet number approximation and how it impacts
energy stability. We find in the latter case that because the temperature perturbations are
slaved to the perturbations in vertical velocity, we can derive a Richardson number criterion
for energy stability, whereas we cannot derive such a result easily for the general case.

2.1 Energy stability theory

In this subsection, we investigate the energy stability of viscous stratified shear flows in two
dimensions and apply it to the system introduced in the previous section. This is done by
investigating the time evolution of an energy-like functional for perturbations to the laminar
solution in Eq. (5a). We begin by letting u = uL + ũ, where ũ = (ũ, w̃) is the perturbation
velocity field. The governing equations then become

∂ũ

∂t
+ uL · ∇ũ + ũ · ∇uL + ũ · ∇ũ = −∇p+ RiTez +

1

Gr
1/2
u

∇2ũ + f(z)ex, (7a)

∂T

∂t
+ uL · ∇T + ũ · ∇T + w̃ =

1

Gr
1/2
T

∇2T, (7b)

∇ · ũ = 0, (7c)

and the “energy” equation for the perturbation velocity field ũ and the perturbation tem-
perature field T takes the form

1

2
〈ũ2 + γ2T 2〉t =

(
Ri− γ2

)
〈w̃T 〉+ Gr1/2u 〈ũw̃∂−1z f〉 − 1

Gr
1/2
u

〈|∇ũ|2〉 − γ2

Gr
1/2
T

〈|∇T |2〉, (8a)

= (Γ− 1)

(
1

Gr
1/2
u

〈|∇ũ|2〉+
γ2

Gr
1/2
T

〈|∇T |2〉

)
, (8b)

where

Γ =

(
Ri− γ2

)
〈w̃T 〉+ Gr

1/2
u 〈

(
∂−1z f

)
ũw̃〉

1

Gr
1/2
u

〈|∇ũ|2〉+ γ2

Gr
1/2
T

〈|∇T |2〉
. (9)

Here, the inverse derivative in the vertical of the forcing function is given by (∂−1f)(z) =

−Gr
1/2
u ∂zuL and is a measure of the shear applied to the flow. The angled brackets 〈(.)〉

denote the domain average (defined in the appendix). Since the second term in parentheses
on the right hand side of (8b) is positive, this equation tells us that, for the energy to decay
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in time, Γ needs to be less than 1. We are therefore interested in the maximum of Γ over
all possible divergence-free flow fields, and over all possible temperature fields. This can be
rexpressed as a maximization problem for the constrained Lagrangian

L =

(
Ri− γ2

)
〈w̃T 〉+ Gr

1/2
u 〈

(
∂−1z f

)
ũw̃〉+ 〈p∇ · ũ〉

1

Gr
1/2
u

〈|∇ũ|2〉+ γ2

Gr
1/2
T

〈|∇T |2〉
, (10)

where the divergence term in the numerator was introduced to satisfy the divergence-free
constraint. The field p serves as the associated Lagrange multiplier. We need to find
the maximum of the functional L with respect to the dynamical fields and the minimum
with respect to the optimization constant γ2. This can be done via the associated Euler-
Lagrange equations derived from the first variation of L. The Euler-Lagrange equations in
two dimensions are given by the following four equations

Gr1/2u

(
∂−1z f

)
w̃ − ∂xp+

2Γ

Gr
1/2
u

∇2ũ = 0, (11a)

(
Ri− γ2

)
T + Gr1/2u

(
∂−1z f

)
ũ− ∂zp+

2Γ

Gr
1/2
u

∇2w̃ = 0, (11b)

(
Ri− γ2

)
w̃ +

2Γγ2

Gr
1/2
T

∇2T = 0, (11c)

∇ · ũ = 0, (11d)

where the first one comes from the variation of L with respect to ũ, the second one comes
from the variation of L with respect to w̃, the third one comes from the variation of L with
respect to T and the last one comes from the variation of L with respect to p. Here, Γ is
now treated as an eigenvalue of these PDEs. If Γ < 1 then minγ2 maxu,T,p L < 1 and the
perturbations decay at least exponentially (apply Poincaré’s inequality to equation (8b)).
We now seek to solve the previous set of equations in order to determine the part of the
parameter space for which the laminar solution is energy stable and the flow remains laminar
for arbitrary perturbations. The equations can be simplified by taking the curl of the first
two equations to remove the Lagrange multiplier. This leaves us with the following simplified
set of equations

−
(
Ri− γ2

)
∂xT + Gr1/2u fw̃ −Gr1/2u

(
∂−1z f

)
(∂xũ− ∂zw̃) = − 2Γ

Gr
1/2
u

∇2 (∂zũ− ∂xw̃) , (12a)

(
Ri− γ2

)
w̃ = − 2Γγ2

Gr
1/2
T

∇2T, (12b)

∇ · ũ = 0, (12c)

which can be simplified further by introducing the stream function φ for the components
of the velocity field, i.e., ũ = ∂zφ and w̃ = −∂xφ. This automatically satisfies the incom-
pressibility constraint and allows us to rewrite the problem in terms of a system of linear
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partial differential equations for two unknown fields only:

−
(
Ri− γ2

)
∂xT −Gr1/2u f∂xφ− 2Gr1/2u

(
∂−1z f

)
∂xzφ = − 2Γ

Gr
1/2
u

∇4φ, (13a)

−
(
Ri− γ2

)
γ2

∂xφ = − 2Γ

Gr
1/2
T

∇2T. (13b)

Finally, taking the Laplacian of the first equation and using the second one to replace the
temperature field leaves a single partial differential equation for the stream function

−
Gr

1/2
T

2Γ

(
Ri− γ2

)2
γ2

∂xxφ−∇2(Gr1/2u f∂xφ+ 2Gr1/2u

(
∂−1z f

)
∂xzφ) = − 2Γ

Gr
1/2
u

∇6φ. (14)

Expanding all fields in Fourier series (see appendix) in the x-direction results in a set of
linear ordinary differential equations for the Fourier coefficients in the z-direction

Gr
1/2
T

2Γ

(
Ri− γ2

)2
γ2

k2xφ̂−ikx
(
∂zz − k2x

)
(Gr1/2u fφ̂+2Gr1/2u

(
∂−1z f

)
∂zφ̂)+

2Γ

Gr
1/2
u

(
∂zz − k2x

)3
φ̂ = 0,

(15)
where φ̂ is the Fourier transform of the stream function and kx is the horizontal wavenumber.
This is a periodic boundary value problem in the vertical direction, which can either be
solved using finite differences or by rewriting all z-dependent fields in terms of Fourier
series as well, and then solving for the determinant of the resulting infinite dimensional
matrix.

2.2 Example: Constant vertical shear

In this section, we investigate the energy stability of a flow field with constant vertical
shear (∂zuL = S). In this case, we do not need a forcing term as 〈∇2uL〉 = 0. We therefore
set f = 0. While the total flow field uL + ũ is no longer periodic in z in this case, we
can still assume that the perturbation field ũ is periodic. Also note that because there is
no external forcing, we need to define the nondimensional parameters slightly differently.
Given a constant shear profile uL = Sz, where S is the shear, we define the velocity scale
U = SL, where L is the vertical extent of the domain. Length scales are normalized by L.
The governing equations then look essentially the same as for the forced case with only the
nondimensional numbers defined differently

∂u

∂t
+ u · ∇u = −∇p+ RiTez +

1

Re
∇2u, (16a)

∂T

∂t
+ u · ∇T + w =

1

Pe
∇2T, (16b)

∇ · u = 0. (16c)

The nondimensional numbers based on the new length scale and velocity scale are given by

Ri =
αgT0z
S2

, Re =
SL2

ν
and Pe =

SL2

κT
. (17)
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In this case, the analog of Eq. (15) (with Re, Pe instead of Gr
1/2
u and Gr

1/2
T ), with nondi-

mensionalized laminar solution uL = z, reduces to a set of algebraic equations in Fourier

space (essentially setting Gr
1/2
u

(
∂−1z f

)
= −1 in Eq. (15)). Requiring nontrivial solutions

allows us to determine the eigenvalues Γ. In this constant shear case there is no coupling
of the Fourier modes and we have

Pe

2Γγ2
(
Ri− γ2

)2
k2xφ̂+ 2kxkz

(
k2x + k2z

)
φ̂− 2Γ

Re

(
k2x + k2z

)3
φ̂ = 0, (18a)

⇒

(
Γ2 − ReΓ

kxkz

(k2x + k2z)
2 − PeRe

(
Ri− γ2

)2
4γ2

k2x

(k2x + k2z)
3

)
φ̂ = 0. (18b)

The term in parentheses in Eq. (18b) needs to be 0. In order for this equation to have
nontrivial solutions, the eigenvalues Γ need to satisfy

Γ =
Rekxkz

2 (k2x + k2z)
2 ±

√
Re2k2xk

2
z

4 (k2x + k2z)
4 + PeRe

(Ri− γ2)2

4γ2
k2x

(k2x + k2z)
3 , (19a)

=
Rekxkz

2 (k2x + k2z)
2

1±

√
1 +

Pe

Re

(Ri− γ2)2

γ2
(k2x + k2z)

k2z

 . (19b)

The term involving the Richardson number under the square root is minimal for γ2 = Ri.
Therefore, we have the case Γ = 0 and the case

min
γ2

Γ =
Rekxkz

(k2x + k2z)
2 . (20)

Here, Γ is positive if kx and kz are either both positive or both negative. Without loss of
generality, we assume positivity. Maximizing Γ with respect to kx gives

min
γ2

max
kx

Γ = Re
3
√

3

16

1

k2z
, (21)

for kx = kz/
√

3. The smallest (nondimensional) vertical wavenumber is given by 2π (see
appendix Fourier transform) which maximizes Γ:

min
γ2

max
kz ,kx

Γ = Re
3
√

3

64π2
. (22)

We require the maximum Γ to be less than 1 for energy stability. Hence, we arrive at a
Reynolds number criterion for energy stability:

Re <
64π2

3
√

3
. (23)

This implies that there is a critical Re above which the system will not be energy stable.
Unfortunately, the critical Re is independent of the Richardson number, i.e, energy stability
cannot be guaranteed for any Ri since there is always a value of Re above which the flow is
not energy stable. In other words, even for very large Richardson numbers, the system is
not energy stable and insight into the nonlinear evolution of arbitrary perturbations cannot
be gained this way.
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2.3 Example: Kolmogorov flow

In this section, we explore the first steps of the forced case for f = sin(z). The laminar
solution is of Kolmogorov type and the governing equations are given by Eqs. (3). Taking
Eq. (15) and expanding φ̂ in a Fourier series (see appendix) in the z-direction as

φ̂kx(z) =
∑
kz

φ̃kx,kz exp(ikzz). (24)

This leaves us with terms of the form

f (q)φ̂
(p)
kx

= ip
∑
kz

kz
pφ̃kx,kzf

(q)eikzz, (25)

where f (q) denotes the q-th derivative of f and φ̂(p) denotes the p-th derivative of φ̂. This
determines the degree of mode coupling due to the presence of the shear forcing f . In the
case of a Kolmogorov flow with f = sin(z), the derivatives f (q) are given by

f (q) =
1

2
iq−1

(
eiz + (−1)q+1e−iz

)
. (26)

Taking the Fourier transform of the derivatives of the stream function φ into account, the
quadratic coupling terms take the simple form(

f (q)(z)φ̂
(p)
kx

)
kz

=
1

2
ip+q−1

(
(kz − 1)pφ̃kx,kz−1 + (−1)q+1(kz + 1)pφ̃kx,kz+1

)
. (27)

Here, the subscript kz denotes the Fourier coefficient associated with the vertical wavenum-
ber kz. This relation allows us to rewrite Eq. (15) in terms of Fourier components, i.e.,
construct a simple matrix equation in wavenumber space

Γ

Gr
1/2
u

φ̃kx,kz = Γ−1a(kx, kz)φ̃kx,kz + Gr1/2u b(kx, kz)φ̃kx,kz−1 + Gr1/2u c(kx, kz)φ̃kx,kz+1. (28)

Setting Γ = 1 implies that the critical Grashof number, at a given horizontal wavenumber
kx, at which instability occurs, is given by the solution of

a(kx, kz)φ̃kx,kz + Gr1/2u b(kx, kz)φ̃kx,kz−1 + Gr1/2u c(kx, kz)φ̃kx,kz+1 −
1

Gr
1/2
u

φ̃kx,kz = 0. (29)

The kx and kz-dependent coefficients define a matrix with

a(kx, kz) =
Gr

1/2
T

(
Ri− γ2

)2
kx

2

4γ2
(
kx

2 + kz
2
) , (30a)

b(kx, kz) =
kxkz

2(2kz − 1)− kx3(1− 2kz)

2
(
kx

2 + kz
2
)3 , (30b)

c(kx, kz) =
kxkz

2(2kz + 1) + kx
3(1 + 2kz)

2
(
kx

2 + kz
2
)3 . (30c)

We can find the critical Grashof number by determining for which Gr
1/2
u the determinant of

this matrix is zero. Because the determinant defines a function of Gr
1/2
u , this problem can

be solved with a root-finding algorithm. However, these last steps will be subject of future
work.
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2.4 The low Péclet number approximation

In this section we derive the low thermal Grashof number equations from the forced Boussi-
nesq equations (3). This is equivalent to what is usually called the “low Péclet number
approximation”, an approximation commonly made in the context of astrophysics [7, 8, 10].
It holds for very low Prandtl numbers. At the same time, we require the Richardson number

to be large. In fact, we require it to be of order 1/Gr
1/2
T . In order to derive this approxi-

mation, we write the dynamical fields formally as asymptotic expansions in the Gr
1/2
T

u = u0 + Gr
1/2
T u1 + . . . , (31a)

T = T0 + Gr
1/2
T T1 + . . . . (31b)

The governing equations at order Gr
1/2
T reduce to Laplace’s equation for the zeroth order

temperature fluctuation
∇2T0 = 0, (32)

which, in the case of a periodic domain, requires T0 = 0. At the next order, the governing
equations read

∂u0

∂t
+ u0 · ∇u0 = −∇p0 + R̃iT1ez +

1

Gr
1/2
u

∇2u0 + f(z)ex, (33a)

w0 = ∇2T1, (33b)

∇ · u0 = 0, (33c)

where we replaced Ri by Ri = R̃i/Gr
1/2
T and assumed R̃i = O(1). This can be combined to

give a more compact set of integro-differential equations:

∂u0

∂t
+ u0 · ∇u0 = −∇p0 + R̃i∇−2w0ez +

1

Gr
1/2
u

∇2u0 + f(z)ex, (34a)

∇ · u0 = 0. (34b)

From this perspective, we see that the important nondimensional parameter that controls

the importance of the stratification is RiGr
1/2
T = R̃i. We also see that T drops out entirely

so that the energy stability can now be investigated simply by analyzing the time evolution
of the kinetic energy in the perturbation field.

2.5 Energy Stability in the low Péclet number limit: Bounds

In this section, we derive a Richardson number criterion for the energy stability of the
laminar solution of a forced stratified shear flow in the low Péclet/low thermal Grashof
number limit. We proceed as before, but this time we begin with the kinetic energy equation
for arbitrary perturbation to the laminar solution. With u = uL + ũ, we have

1

2
〈ũ2〉t = H [ũ] = R̃i〈w̃∇−2w̃〉+ Gr1/2u 〈

(
∂−1z f

)
w̃ũ〉 − 1

Gr
1/2
u

〈|∇ũ|2〉. (35)
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Here, H [ũ] is a quadratic form of the velocity perturbations only. The task at hand is to
show that for all parameters of the system there exists a value of the Richardson number
so that the quadratic form is negative semi-definite. Such a criterion defines the region of
parameter space in which the system is energy stable. We approach the problem using simple
bounding methods instead of the optimization technique used in the previous sections. We
start with a conventional estimate for the triple term involving the shear term

|〈
(
∂−1z f

)
w̃ũ〉| ≤ ||∂−1z f ||∞〈w̃ũ〉 ≤

||∂−1z f ||∞
2

(
1

a
〈w̃2〉+ a〈ũ2〉

)
. (36)

Here, we used the Young’s inequality |ab| < 1/2(a2 + b2) (see appendix). Of course, this
gives a very crude estimate, because the right hand side is positive and we want to estimate
a potentially negative term. The free parameter a introduced will give some freedom in the
rest of the derivation. Using the estimate (36) to bound the quadratic form from above, we
get

H [ũ] ≤ −R̃i〈(∇−1w̃)2〉+
Gr

1/2
u

2
||∂−1z f ||∞

(
1

a
〈w̃2〉+ a〈ũ2〉

)
− 1

Gr
1/2
u

〈|∇ũ|2〉, (37a)

≤
∑
k

Gr
1/2
u

2
||∂−1z f ||∞

(
1

a
|w̃k|2 + a|ũk|2

)
− R̃i

k2
|w̃k|2 −

k2

Gr
1/2
u

(
|ũk|2 + |w̃k|2

)
, (37b)

≤
∑
k

(
Gr

1/2
u

2a
||∂−1z f ||∞ −

R̃i

k2
− k2

Gr
1/2
u

)
|w̃k|2 +

(
a− 1

Gr
1/2
u L2

max

)
|ũk|2, (37c)

where we used the periodicity of the system to write all fields in terms of their Fourier
expansions (see appendix) and made use of the finite size of the system with largest length
scale Lmax. In the second line, we also replaced the Fourier coefficients of the temperature
field in terms of the Fourier coefficients of the vertical velocity. A sufficient criterion for
energy stability can be obtained by requiring that the expressions in the parentheses are
negative. The first parenthesis is of the form

F (X) = A−BX−2 − CX2, (38)

which has a maximum as
Fmax = A− 2

√
BC. (39)

Therefore, we can estimate the quadratic form from above by using the maximum of F(X)
for the worst-case-scenario:

H [ũ] ≤
∑
k

Gr
1/2
u

2a
||∂−1z f ||∞ − 2

(
R̃i

Gr
1/2
u

) 1
2

 |w̃k|2 +

(
a− 1

Gr
1/2
u L2

max

)
|ũk|2. (40)

We want the 1/a term in the first parenthesis to be as small as possible provided that the

second parenthesis remains negative. Hence, a suitable a is a = 1/(2Gr
1/2
u L2

max). Inserting
this into the previous estimate, we arrive at

H [ũ] ≤

GruL
2
max||∂−1z f ||∞ − 2

(
R̃i

Gr
1/2
u

) 1
2

 〈w̃2〉 − 1

2Gr
1/2
u L2

max

〈ũ2〉 < 0. (41)
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We can then pick a Richardson number to let the expression in the first parenthesis remain
negative for all other system parameters, i.e.,

R̃i >
L4
max

2
||∂−1z f ||2∞Gr5/2u . (42)

We see that the Richardson number needs to be very large when Gr
1/2
u is large or when

the size of the domain itself is very large. Interestingly, it depends on the shear only
through the maximum value of ∂−1z f and the “shape” of f does not enter. In contrast to
the general case, we now have a stability criterion that does indeed depend on Ri through
R̃i, i.e., the strength of the stratification. This is a direct consequence of the fact that the
temperature field is completely determined by the vertical velocity, a key assumption of this
approximation.

2.6 Energy Stability in the low Péclet number limit: Analysis

We now want to investigate the full energy stability similar to what was done in section
2.1. For that we start in the same fashion, i.e., by using the perturbation energy equation.
From there, we can straightforwardly derive the Euler-Lagrange equations for the problem
and understand the differences to the full problem. The kinetic energy equation in the low

Gr
1/2
T limit is given by Eq. (35). From this, we can define a quadratic form H[u] that can

be written in a similar way as before

H[ũ] = −R̃i〈|∇−1w̃|2〉+ Gr1/2u 〈
(
∂−1z f

)
w̃ũ〉 − 1

Gr
1/2
u

〈|∇ũ|2〉, (43a)

=
1

Gr
1/2
u

〈|∇ũ|2〉

−R̃i〈|∇−1w̃|2〉+ Gr
1/2
u 〈

(
∂−1z f

)
w̃ũ〉

1

Gr
1/2
u

〈|∇ũ|2〉
− 1

 , (43b)

=
1

Gr
1/2
u

〈|∇ũ|2〉 (Γ− 1) , (43c)

(43d)

where

Γ =
−R̃i〈|∇−1w̃|2〉+ Gr

1/2
u 〈

(
∂−1z f

)
w̃ũ〉

1

Gr
1/2
u

〈|∇ũ|2〉
. (44)

We need to determine the maximum of Γ over all divergence-free vector fields ũ as before.
This leads to an equivalent maximization problem for the Lagrangian

L =

−R̃i〈|∇−1w̃|2〉+ Gr
1/2
u 〈

(
∂−1z f

)
w̃ũ〉+ 〈p∇ · ũ〉

1

Gr
1/2
u

〈|∇ũ|2〉

 . (45)
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Analogously, the maximum has to solve the following Euler-Lagrange equations in two
dimensions

Gr1/2u

(
∂−1z f

)
w̃ +

2Γ

Gr
1/2
u

∇2ũ− ∂xp = 0, (46a)

2R̃i∇−2w̃ + Gr1/2u

(
∂−1z f

)
ũ+

2Γ

Gr
1/2
u

− ∂zp = 0. (46b)

These are similar to the ones for the general case, but now include a nonlocal term in the
second equation that helps to control the vertical component of the perturbation velocity
field. Again, taking the curl and introducing a stream function φ yields the following
integro-partial differential equation

2R̃i∂x
(
∇−2∂xφ

)
−Gr1/2u f∂xφ− 2Gr1/2u

(
∂−1z f

)
∂xzφ = − 2Γ

Gr
1/2
u

∇4φ. (47)

As an example, although slightly artificial, we consider again the constant shear case, i.e.,
we investigate the energy stability of the solution uL = Sz with respect to spatially periodic
perturbations ũ. Just like in Section 2.2, we consider the system to be unforced and the
velocity scale to be SL, with L being the vertical domain size (i.e, we consider Re, Pe

instead of Gr
1/2
u and Gr

1/2
T ). Otherwise, we can proceed as outlined and we again expand

φ in a Fourier series (essentially setting Gr
1/2
u

(
∂−1z f

)
= −1 in Eq. (47)) to obtain

R̃ik2x
k2x + k2z

φ̂− kxkzφ̂+
Γ

Re

(
k2x + k2y

)2
φ̂ = 0, (48)

which allows for nontrivial solutions only if Γ is

Γ =
Rekxkz

(k2x + k2z)
2 −

ReR̃ik2x

(k2x + k2z)
3 . (49)

The maximum value of Γ over all wavenumbers kx and kz therefore can be calculated by
the point in wavenumber space where the gradient of Γ with respect to kx, kz is zero (this
can be done quickly using polar coordinates). This gives

Γmax =
Re

4R̃i
. (50)

The Richardson number criterion for energy stability is given by Γmax ≤ 1, i.e.,

R̃i ≥ 1

4
Re. (51)

This criterion differs from the one obtained in the previous section in that the power-law
dependence on Re is more advantageous. This of course stems from the fact that before we
have used relatively crude estimates, whereas here, we calculated the optimal bound.

As we have seen now, in the limit of low Péclet numbers, energy stability can be achieved
for large enough R̃i, because the temperature perturbation drops out of the equations. It
is this slaving of the temperature perturbation to the vertical velocity perturbation that
constitutes the main difference between the low Péclet number limit and the general case.
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3 Exact upper bounds for body-forced stratified flows

In this section we develop some exact upper bounds for body-forced stratified shear flows in
two-dimensional doubly periodic domains. Bounds for energy injection and dissipation in
body-forced flows have been investigated in the unstratified case by [5, 1] and for stratified
boundary-forced flows by [4, 11]. In [5] the authors derive general bounds on the energy
injection in the three-dimensional case, whereas the authors of [1] derive bounds on the
energy dissipation in two dimensions using the enstrophy budget. Here, we apply similar
mathematical arguments to body-forced stratified flows and show that the arguments used
for the unstratified case still hold in the stratified case.

For convenience, the calculations in this section are based on the dimensional momentum
equation (1a). The system is assumed to be two dimensional. We start by defining the
viscous energy dissipation ε and enstrophy dissipation χ as

ε = ν〈|∇u|2〉 = ν〈|ω2|2〉, (52a)

χ = ν〈|∇ω|2〉 = ν〈|∇2u|2〉, (52b)

where ω = ∇ × u is the vorticity (a scalar in two dimensions) of the flow field and the
overbar denotes a long time average (defined in appendix). Using these two definitions and
the Cauchy-Schwarz inequality (see appendix), we can bound the viscous energy dissipation
in terms of the root-mean-square velocity U and the enstrophy dissipation

ε2 = ν2〈|ω2|2〉2 ≤ ν2U2〈|∇ω|2〉 = νU2χ. (53)

By bounding the enstrophy dissipation χ, we can therefore simultaneously find a bound for
the viscous energy dissipation ε. The enstrophy equation can be obtained by taking the
curl in two dimensions of Eq. (1a), multiplying by ω and integrating over the entire volume
and taking a long time average. This yields

χ = 〈ψω〉 − αg〈ω∂xT 〉, (54)

where ψ = ∇×F0f(kz)ex is the curl of the forcing. In the calculations that follow, we will
also need the total energy and temperature equations, which can be obtained by taking the
dot product of the momentum equation with the velocity field and integrating over space
and time:

−αg〈wT 〉+ ε = 〈F0f(kz)u〉. (55)

Similarly, multiplying Eq. (1b) by T and integrating over the entire volume and time gives
the temperature equation

〈wT 〉 = − κT
T0z
〈|∇T |2〉. (56)

The first term in Eq. (54) is treated in [1] and bounded as

〈ψω〉 ≤ k2fU〈|F0f(kz)|2〉1/2 (57)

by integration by parts and Cauchy-Schwarz inequality. Here, k2f = 〈|∇2f |2〉1/2/〈|f |2〉1/2 is
a forcing length scale that is equal to k for Kolmogorov-type forcings. The second term on

12



the right hand side can be bounded using Young’s and the Cauchy-Schwarz inequality (see
appendix)

| − αg〈ω∂xT 〉| ≤ αg〈|ω|2〉1/2〈|∇T |2〉1/2 =
αg

ν1/2
ε1/2〈|∇T |2〉1/2, (58a)

=

(
αgT0z
νκT

)1/2

ε1/2
(
αgκT
T0z
〈|∇T |2〉

)1/2

, (58b)

≤ 1

2

(
αgT0z
νκT

)1/2(
ε+

αgκT
T0z
〈|∇T |2〉

)
, (58c)

=
1

2

(
αgT0z
νκT

)1/2 (
ε− αg〈wT 〉

)
=

1

2

(
αgT0z
νκT

)1/2 (
〈uF0f(kz)〉

)
, (58d)

≤ 1

2
(RiPeRe)1/2 k2fU〈|F0f(kz)|2〉1/2, (58e)

where we made use of energy and temperature equations. Here, the three nondimensional
numbers are defined in terms of the root-mean-square velocity U

Ri =
αgT0z
U2k2f

, Re =
U

νkf
and Pe =

U

κTkf
. (59)

We therefore obtain the following bound for the enstrophy dissipation χ:

χ ≤ k3fU3 〈|F0f(kz)|2〉1/2

kfU2

(
1 +

1

2
(RiPeRe)1/2

)
. (60)

In order to complete the calculation, we also need to find a bound for 〈|F0f(kz)|2〉1/2/kfU2.
This can be done by multiplying the x-momentum equation with F0f(kz) and averaging
over the entire volume and time (see [1] for the details) to get

〈|F0f(kz)|2〉1/2 ≤ kfU2
(
c1 +

c2
Re

)
, (61)

where c1 and c2 are constants that depend only on the shape of the forcing function f .
Using Eq. (61) we finally obtain

χ ≤ k3fU3
(
c1 +

c2
Re

)(
1 +

1

2
(RiPeRe)1/2

)
. (62)

This bound for the enstrophy dissipation can be used to bound the energy dissipation.
Using Eq. (53), we find a bound for the nondimensional viscous energy dissipation ε/kfU

3

in terms of Ri, Re and Pe

ε

kfU3
≤ 1

Re1/2

(
c1 +

c2
Re

)1/2(
1 +

1

2
(RiPeRe)1/2

)1/2

. (63)

This bound illustrates nicely that in two dimensions, the nondimensional viscous energy
dissipation approaches 0 asymptotically as Re−1/4. This is different in the unstratified case,
where it approaches 0 asymptotically as Re−1/2 (see [1]), but our result reduces to that of
[1] when Ri = 0. In both cases however, the viscous energy dissipation approaches 0 as the
Reynolds number approaches infinity. This is consistent with turbulence phenomenology
where the viscous dissipation is zero for infinite Re in two dimensions.
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4 Numerical experiments

In this section, we test some of our theoretical results with direct numerical simulations, and
present additional results that relate the heat flux through the fluid to input parameters.

4.1 Model setup

In all that follows, we present two-dimensional simulations in a doubly-periodic box of
dimensions 5π × 2π. The resolution varies from 64 to 256 Fourier modes in the vertical
and from 364 to 512 modes in the horizontal. The forcing is of Kolmogorov type, with
f(z) = sin(z). In addition, we explore the scaling behavior of vertical heat transport for

a variety of Gr
1/2
u , Gr

1/2
T and Ri. The code used is pseudo-spectral and uses Fast Fourier

Transforms in horizontal and vertical directions.

4.2 Typical results

Typical realizations of the simulations are shown in Figs. 2 and 3 for small and large Ri

respectively. We find that, given Gr
1/2
u and Gr

1/2
T , for strong stratifications (large Ri),

the system systematically displays a bursting behavior, i.e., with periodic relaminarization
interrupted by bursts of mixing. For weak stratifications (small Ri) the system displays a
quasi-stationary turbulent behavior and the flow field is large scale, with vortices on the
same scale as the forcing. We calculate time-averaged quantities by running the simulations
for a sufficiently long time and then begin the averaging process after the transient period
is over.

Figure 1: This figure shows two example time series for the large Ri case presented in
Fig. 3 (black line) and the low Ri case presented in Fig. 2 (red line). In the case of strong
stratification (large Ri) the root-mean-square velocity grows linearly with time until shear
instabilities cause mixing. This happens on a quasi-periodic basis. The lower Ri case by
contrast, exhibits stationary turbulent flows.
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Figure 2: This figure shows a series of typical snapshots of the temperature field for a

simulation at Gr
1/2
T = 100,Ri = 0.001,Gr

1/2
u = 500. The flow is dominated by large scale

vortices that lead to filamentation of the temperature field and hence to sharp gradients in
the temperature field.
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Figure 3: This figure shows a series of snapshots of the horizontal velocity for a bursting

simulation at Gr
1/2
T = 100,Ri = 1000,Gr

1/2
u = 500. One can see how the flow goes unstable

and then relaminarizes.
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4.3 Transport efficiency

An important quantity characterizing a system with stratification is the transport efficiency.
It is the ratio of the potential energy used for vertical buoyancy transport to the total energy
input into the system, i.e, how much of the injected energy is used for transporting heat
compared to being dissipated by viscosity? This efficiency is thus defined as

η =
−Ri〈wT 〉
〈fu〉

=
−Ri〈wT 〉
−Ri〈wT 〉+ ε

. (64)

On phenomenological grounds, one can argue that, at least in two dimensions, the viscous

dissipation ε tends to zero in the limit of Gr
1/2
u →∞. This is true if Gr

1/2
T is fixed as Gr

1/2
u

increases, because the viscous dissipation approaches zero as long as the root-mean square
velocity approaches a constant, while the transport of heat reaches a fixed value. This is

equivalent to saying that the transport efficiency η tends to 1 for large Gr
1/2
u . We can

use the nondimensional temperature equation (essentially Eq. (56)) to replace the vertical
transport term in the definition of η and we arrive at

η =

Ri

Gr
1/2
T

〈|∇T |2〉

Ri

Gr
1/2
T

〈|∇T |2〉+ 1

Gr
1/2
u

〈|∇u|2〉
. (65)

The phenomenological argument goes as follows: The energy of the velocity field cascades
to large scales in two dimensions, which leads to weak gradients. Meanwhile the T field
is advected by the velocity field and develops sharp gradients as a result, regardless of
Ri. Hence, the transport efficiency therefore approaches 1 in two dimensions. In three
dimensions, the situation is generally more complicated, because the viscous dissipation

might not approach 0 for large Gr
1/2
u . The tracer field might cascade to small scales, but

the velocity field is dominated by small scales as well. As Gr
1/2
u approaches infinity (again

typically equivalent to the large Reynolds number limit), the viscous dissipation does not
approach zero but approaches a finite value. We expect that the transport efficiency will
approach a value smaller than 1 which then may depend on the Prandtl number.

We first calculated the transport efficiency for various Gr
1/2
T and Ri, and varying Gr

1/2
u ,

to show that the transport efficiency approaches 1 as Gr
1/2
u increases. We also wish to

determine at which point η ≈ 1. Fig. 4 shows the transport efficiency, heat transport and

root-mean-square velocity as functions of Gr
1/2
u for different parameter pairs (Ri,Gr

1/2
T ) and

(Ri,Pr). We find that the heat transport approaches a constant value as Gr
1/2
u increases,

in agreement with a temperature field that is dominated on small scales. As expected, the

root-mean-square velocity of the flow does not diverge as Gr
1/2
u , but instead also appears to

converge to a constant. We find that η −→ 1 as predicted, although the rate of convergence
seems to depend on the Prandtl and Richardson numbers.

4.4 A scaling for the heat transport based on the Richardson number

In this section, we derive simple scaling laws for the heat flux 〈wT 〉 of the flow, based on
numerical simulations and heuristic arguments.
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Figure 4: The left panel shows transport efficiency vs Gr
1/2
u . Top right panel shows the heat

transport vs Gr
1/2
u and the bottom right panel shows the root-mean-square velocity vs Gr

1/2
u .

As expected, the transport efficiency approaches 1 for large Gr
1/2
u and the root-mean-square

velocity remains finite.

4.4.1 The gradient Richardson number

We define a gradient Richardson number in terms of the horizontally-averaged (indicated
here as [(.)]) temperature and velocity fields as

J = Ri
1 + ∂z[T ]

(∂z[u])2
. (66)

The linear stability of stratified shear flows has been studied at length in [9, 6, 12, 3, 2], and

reveals J to be a critical parameter. At high Gr
1/2
T , the flow is linearly unstable, provided

J is less than an O(1) constant, whose exact value depends on the forcing selected. At low

Gr
1/2
T , high Ri flows can also be unstable as shown in [7].

4.4.2 Small Richardson numbers, Ri < 1

For low Richardson numbers (Ri < 1), our simulations suggest that 〈wT 〉 ∝ 1/Ri. We also
find that the horizontally-averaged flow projects onto the forcing with

〈fu〉 ∼ O(1). (67)

For constant Gr
1/2
T , Gr

1/2
u , this projection remains of order 1 regardless of the Richardson

number as long as Ri < 1. Balancing the heat transport in the energy equation for large
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Figure 5: This figure shows the total heat flux through the system 〈wT 〉, as a function of
the Richardson number. There appear to be two scaling regimes. For low Ri, the flow field
is dominated by large vortices that advect the temperature field; we find that 〈wT 〉 ∝ Ri−1.
For high Ri, the system displays a bursting behavior with periods of relaminarization; we
find that 〈wT 〉 ∝ Ri−1/2.

Gr
1/2
u (viscous dissipation approaches 0) then yields

Ri〈wT 〉 ∼ 〈fu〉 ∼ O(1)⇔ 〈wT 〉 ∼ 1

Ri
, (68)

which qualitatively explains the scaling behavior of the heat transport for low Richardson
numbers. However, detailed investigations would be necessary to confirm that this scaling
holds unambiguously since there is no apriori reason for why 〈fu〉 ∼ O(1) independently
of the Richardson number. Furthermore, it will be interesting to determine whether the
prefactor depends on other quantities, such as the Prandtl number, for instance in the limit

Gr
1/2
u −→∞.

4.4.3 Large Richardson numbers, Gr
1/2
u > Ri > 1

At large Richardson numbers, the flow shows a “bursting” behavior (see Fig. 6) which
is characterized by times during which the flow field is laminar, with a form [u](z) ≈
a(t) sin(z), where a(t) is a linearly growing function of time. This is halted when the
gradient Richardson number drops roughly below 1 (see Fig. 7), at which point the shear
goes linearly unstable. The perturbation energy decays again, and the process starts over.
This can be used to estimate the heat flux. Indeed, assuming weak temperature gradients as
in the laminar solution, we have that a sinusoidal horizontally-averaged horizontal velocity
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Figure 6: This figure shows, from top left to bottom right, an example of a series of

horizontally averaged horizontal velocity profiles from the numerical simulation for Gr
1/2
T =

100,Ri = 1000,Gr
1/2
u = 500. It illustrates that the averaged flow projects strongly onto the

laminar solution.
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Figure 7: This figure shows a time series for the minimal gradient Richardson number of

the flow field for a simulation with Gr
1/2
T = 100,Ri = 1000,Gr

1/2
u = 500. As J drops below

a value of about 0.2 the flow becomes linearly unstable.

profile, [u] = a(t) sin(z), is linearly unstable if

J ∼ O(1)⇒ O(1) ∼ Ri

a(t)2 maxz {sin(z)2}
⇒ a(t)2 ∝ Ri. (69)

This then implies that 〈fu〉 ∼
√

Ri. For large values of Gr
1/2
u , as previously seen, the viscous

dissipation term approaches zero, which then leads to the following balance in the energy
equation

Ri〈wT 〉 ∼ 〈fu〉 ∼
√

Ri⇔ 〈wT 〉 ∼ 1√
Ri
. (70)

4.4.4 Very large Richardson numbers, Ri & Gr
1/2
u

For very large Richardson numbers, the laminar solution is itself linearly stable as shown by
[12, 3, 2]. We can estimate the region of the parameter space where the laminar solution is
linearly stable using the Miles-Howard criterion for linear stability of stratified shear flows
in the inviscid limit [9, 6]. Using our nondimensionalization, we find that the flow is stable
provided

J ∼ O(1)⇒ O(1) ∼ Ri

Gr
1/2
u

⇒ Ri ∝ Gr1/2u . (71)

Because the laminar solution is stable, we have no vertical heat transport as T = 0 in this
case,

〈wT 〉 = 0. (72)

Our simulations show that this limit is indeed attained provided Ri & Gr
1/2
u .
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5 Conclusion and Summary

We have shown that energy stability for stratified shear flows can be achieved for large

enough Richardson numbers in the limit of small Gr
1/2
T (similar to a small Péclet number

limit). In the general case, the same approach is unsuccessful, in the sense that we find
that the energy stability is independent of Ri. In two dimensions, bounds for the viscous
dissipation of the system can be extended from the unstratified case to the stratified case.
We have shown that standard bounding techniques for forced flows can be applied in much
the same way for all values of the Richardson number.

We also argued (at least for the two dimensional case) that the transport efficiency
(or mixing efficiency), i.e., the ratio of energy dissipation by vertical transport of heat to

the total energy input per unit time approaches 1 in the limit of large Gr
1/2
u . This is

because energy cascades to large scales in two dimension, whereas the temperature field
remains filamented. The dependence of the heat transport on the Richardson number

was investigated for constant Gr
1/2
T . We found that there are at least three regimes. For

Ri & Gr
1/2
u the laminar solution is linearly stable. In the regime of large Gr

1/2
u > Ri > 1,

the system displays a bursting behavior. The bursting can be explained by a mean flow
profile that strongly projects onto the forcing with an amplitude that periodically grows
trying to approach the laminar solution. Because the amplitude of the laminar solution

is proportional to Gr
1/2
u , it is not linearly stable in this regime, and the system becomes

linearly unstable when the amplitude reaches a critical value. In the regime of small Ri
the flow is fully chaotic, i.e., the flow field is dominated by large vortices at the forcing
length scale that advect the temperature field. The heat transport is no longer achieved by
episodic bursts, but is now achieved by the transport induced by these large scale vortices.
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A Averages

We define the volume average in n-dimensions as

〈(.)〉 =
1

V

∫
(.) dΩ, (73)

where V is the Volume of the domain and dΩ is the volume element. We define the long
time average (.) as

(.) = lim
T→∞

(
1

T

∫ T

0
(.) dt

)
, (74)
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and the horizontal average [(.)] as

[(.)] =
1

Lx

∫ Lx

0
(.) dx, (75)

where Lx is the horizontal domain size.

B Fourier series

We define the Fourier series of a real-valued zero-mean function f(x) on the periodic domain
[0, L1]× . . .× [0, Ld] as follows:

f(x) =
∑
k

exp (ik · x) f̂k, (76)

for k = 2πn, where n = (n1/L1, . . . , nd/Ld) with positive and negative integers ni. Here,
Li denotes the domain size in the i-th direction and f̂k is the potentially complex Fourier
coefficient associated with the wavenumber vector k. The largest domain size is given by
Lmax = max (L1, . . . , Ld) and the total volume is given by V = L1 · . . . · Ld. We define the
norm of the wavenumber vector to be k = |k| with k ≥ 2π/Lmax.

C Basic Inequalitites

C.1 Young’s inequality

Young’s inequalities can be derived from first principles in the following way:

(a+ b)2 = a2 + 2ab+ b2, (77a)

(a− b)2 = a2 − 2ab+ b2, (77b)

⇒ −1

2

(
a2 + b2

)
≤ ab ≤ 1

2

(
a2 + b2

)
. (77c)

Therefore, the product 2ab can be sandwiched between the sum of the squares. This is
useful when it comes to estimating products, since sums greatly simplify the treatment of
integrals (compared to products).

C.2 Hoelder’s inequality

We prove a simple form of Hoelder’s inequality for scalar functions [5]. Given two function
f and g, where we only need that g is bounded and f is integrable, we have that at every
point

f(x)g(x) ≤ |f(x)g(x)| ≤ sup
y

[|g(y)|] |f(x)|. (78)

Now, we can use this under the integral so that we arrive at the integral inequality∫
f(x)g(x) dx ≤ sup

y
[|g(y)|]

∫
|f(x)| dx. (79)

This can be used when information on shape or the boundedness of function is available.
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C.3 Poincaré’s inequality

Poincaré’s inequality can be used to estimate norms of zero-mean functions in terms of the
norm of their derivative (or gradient) [5]. We restrict ourselves to finite periodic domains
ω of dimension d with largest extent Lmax. Using Parseval’s theorem, we have∫

|∇f |2 dΩ = V
∑
k

k2f2k ≥ V
∑
k

4π2

L2
max

f2k =
4π2

L2
max

∫
|f |2dΩ. (80)

This allows for useful estimates when dissipation rate terms are involved, i.e., terms of the
form 〈|∇u|2〉.

C.4 Cauchy-Schwarz inequality

The Cauchy-Schwarz inequality is useful when dealing with product of functions under an
integral [5]. If f and g are square integrable scalar functions∣∣∣ ∫ f(x)g(x) dx

∣∣∣2 ≤ ∫ |f |2 dx

∫
|g|2 dx. (81)
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