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Notes by Tomoki Tozuka and Huiquin Wang

1 Introduction

Malkus [1] observed kinks in Nu (Nusselt number) - Ra (Rayleigh number) relationship of
turbulent Rayleigh-Benard convection and formulated a mean Þeld theory for superposition
of convective modes using hypothesis of maximum transport in 1954. In 1963, Howard [2]

derived rigorous upper bound for Nusselt number, Nu≤c Ra 12 . Then, Busse [3, 4] improved
bounds through incorporation of the continuity equation constraint, introduced multi-alpha
solutions of variational problem, and derived upper boundM≤cRe2 (Re: Reynolds number)
for an momentum transports in shear layers in 1969. On the other hand, Doering and
Constantin [5] extended the method of Hopf to derive bounds on dissipation by turbulent
ßows in 1994 (see Lecture 6 for the detail). Nicodemus et al. [6] optimized Doering-
Constantin approach in 1997 and Kerswell [7] proved the equivalence of Doering-Constantin
and Howard-Busse methods in 1998 (see Lecture 10 for the proof) . This lecture is focused
on the Howard-Busse method.

The theory of upper bounds for functionals of turbulent ßows provides rigorous bounds
for transport properties. It also indicates characteristic properties of extremalizing vector
Þelds, which are reßected in observations of turbulent ßows and thus can provide some
insights into properties of turbulence.

2 Upper Bounds on Momentum Transport Between Two
Moving Parallel Plates

In this section, we consider a ßow between two moving parallel plates as shown in Fig. 1.
Using the distance d between two plates as length scale, and d2/µ as time scale, we write
the Navier-Stokes equation for the incompressible ßuid in the form

∂

∂t
v + v ·∇v + 2Ω×v = −∇p +∇2v (1)

∇ · v = 0 . (2)

We separate the velocity Þeld v into a mean and a ßuctuating part:

v = U+ ùv with ùv = 0 , v ≡ U(z, t) (3)

where
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· · · ≡ lim
L→∞

1

4L2

! L

−L

! L

−L
· · ·dx . (4)

We also separate the ßuctuating part of the velocity Þeld ùv into components perpendic-
ular and parallel to the plates as

ùv ≡ ùu+ k ùw with ùu · k = 0 . (5)
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Figure 1: Schematic sketch of a ßow between two moving parallel plates.

For Ω · k = 0 (e.g. Taylor-Couette case), since U does not have a z-component because
of the continuity equation, the average over planes z=constant of (1) yields

∂

∂t
U+ ùv ·∇ùu = ∂2

∂z2
U (6)

ùv ·∇ ùw = − ∂

∂z
p− 2Ω×U . (7)

Subtracting (6) and (7) from the corresponding components of (1), we obtain the
following equation for the ßuctuating velocity Þeld ùv:

∂

∂t
ùv + ùv ·∇ùv − ùv ·∇ùv+U ·∇ùv + ùv ·∇U+ 2Ω×ùv = −∇ùp +∇2ùv . (8)

After multiplying the above equation with ùv, taking the average over the entire ßuid
layer, and using the boundary conditions that ùv vanishes at z = ±1

2 , we have the energy
relationship

1

2

d

dt
%|ùv|2&+ %|∇ùv|2&+ %ùu · ( ùw ∂

∂z
)U& = 0 (9)

where

%· · ·& =
! 1

2

− 1
2

· · ·dz . (10)

The above energy relationship (9) can be further simpliÞed if we restrict our attention to
the ßuid ßow under stationary conditions:

∂

∂t
U = 0;

d

dt
%|ùv|2& = 0 . (11)
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The equation (6) under above condition yields

d

dz
U = ùwùu− %| ùwùu|& −Re · i . (12)

Hence, using the above equation, we obtain the Þnal form of the energy balance

%|∇ùv|2&+ %ùu ùw · (ùu ùw − %ùu ùw&)& −Re% ùux ùw& = 0 . (13)

Here, the identity

%ùu ùw2& − %ùu ùw&2 = %|ùu ùw − %ùu ùw&|2& (14)

has been used.
The momentum transport between two moving plates is obtained from its value at the

boundary

M ≡ −∂Ux
∂z

|z= 1
2
= % ùwùux&+Re . (15)

Since % ùwùux& ≥ 0, the momentum transport is bounded from below by the value of the
laminar solution and increases by % ùwùux& for turbulent ßow. Thus, the goal here is to derive
an upper bound for %ùux ùw& at a given value of Re and this leads us to the formulation of the
following variational problem. For a given µ, Þnd the minimum R(µ) of the functional

R(v, µ) ≡ %|∇v|2&
%uxw& + µ

%|uw − %uw&|2&
%uxw&2 (16)

among all vector Þelds with v = 0 at z = ±1
2 where

v ≡ u+ kw , u · k ≡ 0 . (17)

Thus, the Euler-Lagrange equations for a stationary value of R(v, µ) are

∇2v−∇π = w d
dz
U∗ + ku · d

dz
U∗ (18)

where

d

dz
U∗ = wu− %wu& − (R− %|∇v|

2&
2%uxw& )i (19)

Since the functional is homogeneous, the normalization %ùux ùw& = µ can be assumed.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The proof for dR(µ)dµ = %|wu−%wu&|2&

%wux&2 is as follows:

(µ∗ − µ')%|w
∗u∗ − %w∗u∗&|2&
%w∗u∗x&2

= R(v∗, µ∗)−R(v∗, µ')
≤ R(µ∗)−R(µ')
≤ R(v', µ∗)−R(v', µ')

≤ (µ∗ − µ')%|w
'u' − %w'u'&|2&
%w'u'x&2

where v∗ and v' are the extremalizing vector Þelds for µ∗ and µ', respectively. For µ∗ → µ',
the above result follows.
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Figure 2: Schematic schetch of a thermal convection in a porous medium.

3 Upper Bounds on the Heat Transport in a Porous Layer

In this section, we consider a thermal convection in a porous medium as shown in Fig.
2. Using the distance d between two plates as length scale, d2/κ as time scale, κ/d as
velocity scale, and (T2-T1)/R as temperature scale, we write dimensionless equations based
on Darcy-Law as

−u+ kT −∇p = B( ∂
∂t
u+ u ·∇u) ≈ 0 (20)

∇ · u = 0 (21)

∇2T = ( ∂
∂t
+ u ·∇)T (22)

where

B ≡ κK

d2ν
(23)

R ≡ γgKd(T2 − T1)
νκ

. (24)

and K is the Darcy permeability coefficient.
We separate the temperature Þeld T into a mean and a ßuctuating part

T = T + θ , with θ = 0 (25)

By subtracting the horizontal average of (22) from (22), we obtain

∂

∂t
T + u ·∇θ = ∂2

∂z2
T (26)

(
∂

∂t
+ u ·∇θ) + w∂T

∂z
− ∂

∂z
wθ = ∇2θ (27)

Assuming the statistically stationary turbulence, we integrate (26) and obtain
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∂

∂z
T = wθ − %wθ& −R (28)

By multiplying (20) by u and (27) by θ, taking the average over the whole porous layer,
and using (28), we obtain two dissipation integral relationships:

%|u|2& = %wθ& (29)

%|∇θ|2&+ %|wθ − %wθ&|2& = R%wθ& . (30)

The dimensionless heat transport across the porous layer can be obtained from its value
at the boudary:

H = −∂T
∂z
|z=± 1

2
= R+ %wθ& ≥ R . (31)

Since %wθ& is always positive from (29), the heat transport for the turbulent ßow is always
greater than that for the laminar ßow, and it is bounded from below by the value of the
laminar solution.

The goal here is to Þnd an upper bound on the heat transport or %wθ& at a given value
of R. We are thus led to the formulation of the following variational problem. For given
µ > 0, Þnd the minimum P (µ) of the functional

P (u, θ, µ) ≡ %|u|2&%|∇θ|2&+ µ%|wθ − %wθ&|2&
%wθ&2 (32)

for all Þelds u and θ, which satisfy the constraint ∇ · u = 0 and the boundary condition
w = θ = 0 at z = ±1

2 . First, from the general form of the dissipation integral

%|u|2& ≡ %∇2v∆2v&+ %|k×∇ψ|2& (33)

and the property

w = −( ∂
2

∂x2
+
∂2

∂y2
)v ≡ −∆2v (34)

it is clear that the minimum of the functional is obtained for ∇ × kψ = 0. Hence, the
variational problem now depends only on the scalar variables v and θ.

The Euler-Lagrange equations for a stationary value can be thus written as

%|∇θ|2&∇2w − [P %wθ&+ µ(%wθ& − wθ)]∆2θ = 0 (35)

%∇2v∆2v&∇2θ + [P %wθ&+ µ(%wθ& − wθ)]w = 0 (36)
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Now, the nonlinearity is only through z-dependence and the equations are linear with
respect to the x, y dependence. This property allows us to write solutions in the form of
superposition of waves. Because of the homogenity with respect to x and y in w and θ, we
can impose the following normalization conditions:

%|∇θ|2& = 1 (37)

%∇2v∆2v& = %|k×∇∇v|2& = 1 (38)

Then, we introduce the following general solutions for w and θ

w = w(N) ≡
N"
k=1

α
1
2
nwn(z)Φn(x, y) (39)

θ = θ(N) ≡
N"
k=1

α
− 1
2

n θn(z)Φn(x, y) (40)

where Φn satisÞes the equation:

∆2Φn = −α2nΦn (41)

and the orthonormalization condition

ΦnΦm = δmn . (42)

Then, the Euler-Lagrangian equations can be reduced to

(
∂2

∂z2
− α2n)wn + αnΨθn = 0 (43)

(
∂2

∂z2
− α2n)θn + αnΨwn = 0 (44)

where

Ψ ≡ P
N"
n=1

%wnθn&+ µ
N"
n=1

(%wnθn& −wnθn) . (45)

The above equations have the following properties [8]:
(1) By considering the equations for wn + θn and wn − θn, we can obtain

wn = θn . (46)
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Thus, the problem can be reduced to

(
∂2

∂z2
− α2n)θn + αnΨθn = 0 (47)

(2) The functions θn(z) are either symmetric or antisymmetric in z.
(3) Since θn ≡ θm follows from αn = αm, it can be assumed that all αn are different.
(4) For m *= n, by subtracting the n-th equation of (47) multiplied by α−1n θm from the m-th
equation multiplied by α−1m θn, and averaging it using the partial integration, we obtain an
important property

%θ'mθ'n& − αmαn%θmθn& = 0 (48)

where θ'm denotes the z-derivative of θm.
(5) Minimization of P (θn,αn, µ) with respect to αn yields

∂

∂αn
I = 0 (49)

α2n =
%θ'nθ'm&
%θnθm& . (50)
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