
Lecture 8

Bounds for Rotating Fluids

P. Constantin

Notes by U. Riemenschneider and S. Plasting

1 Introduction

Bounding problems in ßuid turbulence have classically been concerned with Þnding bounds
on one point quantities such as the time and space averaged dissipation rate F(Re) =
ν
!!∇u!2". Another class of problem is to Þnd bounds on two point quantities which
depend both on the system control parameter and on a space- or time-like parameter. An
example of such a quantity is the energy spectrum E(k;Re) = 1

t

# t
0 |�u(k)|2dt, where k is the

magnitude of the wave number, which is the density of the contributions to the kinetic energy
on the wave-number magnitude axis. The total kinetic energy is 1

2t

# t
0 !u!2dt =

#∞
0 E(k)dk

.
This lecture deals with deriving rigorous upper bounds on transport quantities and

energy spectra for rotating ßuid systems. We present results for bounds on one and two point
quantities which are derived by following the Constantin-Doering-Hopf bounding approach.

2 Bounds for Rayleigh-Bénard Convection

The effect of rotation on convective heat transport is an important issue in astrophysical and
geophysical applications. Here we shall consider the heat transport through a ßuid layer
conÞned between two parallel plates heated from below with Þxed temperature on both
top and bottom plates, which is rotating with a constant rate around an axis of rotation
perpendicular to the plates. No-slip boundary conditions will be assumed throughout. The
non-dimensional equations for Boussinesq convection with rotation are

1

Pr

$
∂u

∂t
+ u ·∇u

%
+ E−1�k× u+∇p = ∆u+Ra�kT (1)

∇ · u

∂T

∂t
+ u ·∇T = ∆T

where the Prandtl number is deÞned as Pr = ν/κ, the Ekman number is inversely propor-
tional to the rotation rate, and the Rayleigh number is the standard non-dimensionalised
temperature difference across the ßuid layer.

In the limit of inÞnite Prandtl number one can neglect the inertial terms of the left
hand side of Equation (1). In the remaining system of equations T is the active scalar
and the velocity vector u is linearly dependent on T . In the bounding analysis of this
problem the full momentum equation can be utilised as a pointwise constraint due to its
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linearity. Following the derivation in [1] we are able to show that the following equations
in the vertical component of velocity w = �k · u and the vertical component of vorticity
ξ = �k · (∇× u) fully determine the dynamics of the convective state

∆2w − E−1∂ξ
∂z
= −Ra∆HT (2)

−∆ξ − E−1∂w
∂z

= 0 (3)

subject to the boundary conditions

w =
∂w

∂z
= 0 = ξ at z = 0, 1.

Multiplying Equation (2) by w, Equation (3) by ξ, adding and integrating we deuce that
the following E-independent bound holds pointwise in time

!∆w!2 + 2!∆ξ!2 ≤ Ra2 (4)

where we use a normalised L2 norm

!f!2 = 1

L2

& 1

0

& L

0

& L

0
|f(x, y, z)|2dx dy dz.

Equation (3) can be rearranged to

∂w

∂z
= −E∆ξ (5)

The previous two expressions together imply that for strong rotation rates (E → 0) horizon-
tal variations in w are restricted and a stratiÞcation is set up such that a purely conductive
state is realised.

The total non-dimensional heat transport is quantiÞed by the Nusselt number which is
deÞned as the long-time average of the vertical heat ßux

N = 1 +

'& 1

0
b(z, t)dz

(
where

b(z, t) :=
1

L2

& L

0

& L

O
w(x, y, z, t)T (x, y, z, t)dx dy.

and &·' is used to denote the long-time average

&f' = lim sup
t=→∞

1

t

& t

0
f(s)ds.
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Figure 1: A plethora of upper bounds on the heat transport, N , in Rayleigh-Bénard con-
vection for inÞnite Prandtl number.

Figure (1) shows the results of several upper bounding studies for the inÞnite Prandtl
number problem. Upper bounds on N − 1 are plotted against the Ekman number. The top
most upper bound is a uniform bound in E [2]. Intersecting this bound are two other upper
bounds. The bound to the left has the proper qualitative dependence on rotation in that
convection is suppressed in the limit of strong rotation (E → 0) which is suggested by the
relations in (4) and (5) [3]. In the absence of rotation (E = ∞) a logarithmic bound has
been obtained [4], which is illustrated by the dotted line in the Þgure. Allowing for Þnite
E they Þnd in [1] that there is a region in which the optimal bound is lowered from R2/5

and connects to the logarithmic bound at some higher Ekman number.

3 Bounds on the Energy Spectrum

We now turn our attention to a problem for which an upper bound on the scaling of the
energy spectrum in rotating turbulence has been caculated.

3.1 Motivating Experiment of H. L. Swinney

The motivation is a recent experiment by Baroud, Plapp, She and Swinney [5] for which
Kolmogorov�s theory for two-dimensional turbulence does not justify the scaling of the
energy spectrum in the inverse cascade region. In the Experiment quasi-two-dimensional
ßow is studied in a rapidly rotating cylindrical annulus. The resulting velocity measurements
yield a self-similar probability distribution function for longitudinal velocity differences,
which are strongly non-Gaussian. The resulting energy spectrum is described by E(k) ∼ k−2
rather than the expected E(k) ∼ k−5/3 from Kolmogorov�s theory. We shall outline a brief
background to Kolmogorov�s statistical study of turbulence, followed by a description of
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Figure 2: Typical correlation curves. R is the correlation coefficient and l the separation of
sample points. For large separation R tends to zero and for no separation R = 1.

the experiment which. A rigorous upper bound for the energy spectrum is then presented
under the assumption of quasi-geostophy.

3.2 Background on Turbulence (See also [6])

The most successful statistical theory of turbulence is that of Kolmogorov, which involves
scaling laws for the structure function Sp(l) ≡ &δv(l)p' ∼ lζp of velocity increments δv(l) =
v(x+ l) − v(x), where l denotes the separation between two points. An often studied and
very important question regarding turbulence is whether the statistics are self-similar across
a wide range of spatial scales, or equivalently whether the probability distribution functions
(PDFs) of the velocity increments have a functional form independent of the separation l.

Correlation curves such as in Figure 2 provide a method to study the scale and structure
of turbulent motion. Supposing u1 and u2 are deviations from the mean ßow at different
positions but at the same instance, u1u2 is known as a space correlation. Usually most
attention is given to longitudinal or lateral correlations, i.e. to points separated parallel
or perpendicular to the velocity components respectively. Correlations depend on both the
direction and magnitude of l and different behaviors in different directions may provide
information about the structure of turbulence. When l = 0, u1 = u2 (provided they
are in the same direction) and the correlation coefficient R is by deÞnition equal to 1,
where R = u1u2/(u

2
1u
2
2)
1/2. As l increases the velocity ßuctuations become more and more
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independent of one another and R asymptotes to 0. A negative region in the correlation
curve (Þgure 2 B) implies that u1 and u2 are on average in opposite directions.

A correlation curve therefore gives an idea of the distances over which motions at differ-
ent points signiÞcantly affect one another. This statistical analysis gives rise to the structure
functions describing the spatial structure of the turbulent motion.

Using Fourier transforms an equation in terms of spectral functions may be obtained
alternatively to the correlation functions. In the inertial range these depend only on the
wave number k and the energy dissipation &, E = E(k, &).

E(k) =
1

t

& t

0
|�u(k)|2dt (6)

and dimensional analysis then gives

E(k) = A&2/3k−5/3 (7)

where A is a numerical constant. This is the famous �Kolmogorov -5/3 law� which applies
for ßows of a high Reynold number under two hypothesis: 1) local isotropy and homogene-
ity, and 2) the existence of a wave number range independent of viscosity and large-scale
properties at sufficiently large Reynolds numbers.

3.3 The Experiment

Kolmogorov�s theory was developed without considering rotation, for planetary ßows how-
ever, such as the Earth�s atmosphere and ocean, this assumption may not apply since the
Rossby number which measures the relative importance of the inertial and Coriolis forces
in the Navier-Stokes equation is small,

R =
|u ·∇u|
2|Ω× u| =

L

2UΩ
+ 1. (8)

The experiment carried out by Swinney using a rotating annular tank was the Þrst
to determine the statistical properties of turbulence in a low Rossby number ßow. The
experimental setup was as follows. An annular tank was Þlled with water and covered by a
solid lid; the inner radius of the tank was 10.8 cm and the outer radius 43.2 cm. The depth
of the tank increased from 17.1 cm at the inner radius to 20.3 cm at the outer radius to
simulate the β-effect of the earths� surface, for more details see [7]. A counter rotating jet
was induced in the ßow, by continuous pumping of water in to and out of the tank through
two concentric rings at the bottom of the tank. A sketch of the setup is shown in Figure 3
and a more detailed description of it may be found in [5].

The purpose of the pumping at the bottom of the cylinder is to create a shear between
the Ekman layer and the ßuid in the tank and thus induce turbulence. The rapid rotation
of the tank (11.0 rad/s) produces essentially 2D ßow, except in the thin Ekman boundary
layer at the top and bottom surfaces.

Time series measurements of the azimuthal velocity midway between the inner and
outer wall of the tank were taken using hot Þlm probes. In order to Þnd a correlation of
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Figure 3: Experimental apparatus. The dimensions of the tank are shown. Note that the
tank is covered by a rigid lid. The dotted lines show the approximate positions of the
two concentric rings pumping ßuid in to and out of the tank, via the inner and outer ring
respectively.

the velocity increments an autocorrelation is used, that is, the same velocity components
at a single point (the hot Þlm probes) at different instances are correlated. This depends
on the time separation s only, however, when the turbulent motion is occurring in a ßow
with a large mean velocity, as is the case in this experiment (Umax , 22cm/s), it is possible
for the turbulence to be advected past the point of observation more rapidly than the
pattern of ßuctuations is changing. An autocorrelation will then be directly related to
the corresponding space correlation with separation in the mean ßow direction, by just
transforming the variables, s = r/U . This is referred to as Taylor�s frozen in turbulence
hypothesis.

The energy power spectrum is computed from the time series data obtained in the
experiment and they Þnd that E(k) ∼ k−2 for the inverse energy cascade.

3.4 Inverse Energy Cascade

In two-dimensional turbulence there are two conserved quantities, energy and enstrophy,
which are candidates for cascades of the Kolmogorov type (see Figure 4(a)). However, to
satisfy both conservation laws there must also be a reverse ßow of kinetic energy, from
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Figure 4: The energy cascade picture of ßuid turbulence in (a) 3-dimensions and in (b)
2-dimensions. The input scale is the characteristic wave-number at which the ßuid system
is forced. In 3-dimensional turbulence energy is transfered inviscidly from the large scales
(small k), associated with the energy input scale, to smaller scales where it is dissipated by
viscous means at the Kolmogorov lengthscale. In 2-dimensional turbulence kinetic energy
can transfer from the input scale up to larger scales. This phenomenon is known as the
inverse energy cascade. For a review article on 2D turbulence see [8].

small scales to large scales, called the inverse energy cascade (Figure 4(b)). For strictly
two-dimensional Navier-Stokes equations under homogeneous and isotropic conditions the
Kolmogorov-Kraichnan theorem predicts a k−5/3 inverse energy cascade spectrum at wave-
numbers smaller than the forcing scale (for a review of two-dimensional turbulence [8]). In
the Experiment which we assume is quasi-2D an inverse cascade is observed as small vortices,
an array of vortex Þlaments are constantly injected at the boundaries of the outlets and
inlets, merge to form larger vortices with maximum size limited only by the size of the
experimental apparatus.

3.5 Rotating Navier-Stokes Equations

The equations of motion governing a body of ßuid rotating at a constant rate about the
z-axis are

∂u

∂t
+ u ·∇u+∇π + 2Ω�k× u = ν∆u (9)

∇ · u = 0

π =
p

ρ
− 1
2

)))Ω(�k× r))))2
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where u is the relative velocity. The Coriolis force −2Ω�k × u is always perpendicular to
the velocity and hence does no work but tends to deßect moving ßuid elements to the right
(see [9] for a derivation of these equations). In the Experiment the pumping at the tank
bottom produces a counter-rotating jet in the Ekman layer which generates the turbulence
observed there.

3.6 Is the Energy Dissipation Bounded in the Experiment?

The Constantin-Doering variational approach can be used to prove the boundedness of the
energy dissipation rate for the ßuid system studied in the Experiment. The one technical
issue is to develop a background Þeld which is continuous, solenoidal and satisÞes the
necessary boundary conditions.

Natural boundary conditions for the Experiment are no-slip everywhere except at the
bottom of the cylinder where ßuid is injected through a ring of holes at a rateW and sucked
out at the same rate from a concentric ring of holes. The distance between the forcing rings,
l, is deÞned as the integral length scale. We can thus deÞne the boundary conditions as
follows

u =Wϕ(
x

l
,
y

l
)�k at z = 0

u = 0 otherwise.

where ϕ takes the values 1 at the input holes, −1 at the output holes and 0 everywhere else
on the bottom boundary.

One can generate a smooth continuation of these boundary conditions in to an incom-
pressible background Þeld UB as follows: deÞne χ(z) a smooth function satisfying χ(0) = 1,
χ$(0) = 0 and χ(H) = 0, χ$(H) = 0, where H is the height of the cylinder, which de-
creases rapidly over a small distance δ from z = 0 (Figure 5). Now deÞne ψ(x, y) as the
two-dimensional solution of

∆Hψ + ϕ = 0 (10)

where ∆H = ∂2

∂x2
+ ∂2

∂y2
is the horizontal Laplacian. Then it is easy to check that the

following velocity proÞle is both incompressible and satisÞes the boundary conditions of the
experiment

UB(x, y, z) =W

 lχ$(z)(∂xψ)(xl ,
y
l )

lχ$(z)(∂yψ)(xl ,
y
l )

χ(z)ϕ(xl ,
y
l )

 . (11)

Theorem 1: If Wl
ν < c for some c > 0 then ∀ initial conditions u0

lim sup
t→∞

1

t

& t

0

!|∇u|2" ≤ εB where εB ≤ c W
3

H
(12)

Proof idea: This bound on the energy dissipation rate can be calculated using the
Constantin-Doering background ßow method [10] with background Þeld UB.
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Figure 5: A sketch of the function χ.

A stronger form of Theorem 1 can be proved if we assume that velocity variations in the
vertical are much smaller than variations in the horizontal. So assuming that

!|δw|2" ≤ γ !|δu|2 + |δv|2"
where γ is a small number we can assert a stronger theorem.

Theorem 1a: If Wl
ν < cγ−1/2 for some c > 0 then ∀ initial conditions u0

lim sup
t→∞

1

t

& t

0

!|∇u|2" ≤ εB where εB ≤ c W
3

H

3.7 Non-linear Taylor Proudman Theorem

For ßows with low values of the Rossby number Ro = L/(2UΩ), and the Ekman number
E = ν/(2L2Ω) a balance between the Coriolis force and the pressure gradient can be
assumed in Equation (9), ∇π + 2Ω�k × u = 0. This balance is called the geostrophic
balance. A simple consequence is that Ω�k ·∇u = 0 or in words u has no vertical variation
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and is therefore two-dimensional. This property of geostrophic ßows is known as the Taylor-
Proudman Theorem.

A similar theorem has recently been proved for the three-dimensional Euler equations
with large Ω. This adds weight to the theoretical study of geostrophic ßows for ßow scenarios
with low Rossby number and E + Ro. (For example in the Experiment Ro = O(10−2)
while E = O(10−6).)

The momentum equation is now

∂u

∂t
+ u ·∇u+∇π + 2Ω�k× u = 0 (13)

where u is again the relative velocity. In the following discussion the vorticity is denoted
as ω =∇× u.

Theorem 2: If we assume that the velocity Þeld u is smooth and we measure time in units
of the local eddy turnover time |∇u|−1∞ , where | |∞ is the maximum norm, and deÞne

a = sup |ω|
Ω , then

Two surfaces z = z1 and z = z2 initially separated by a distance
L = z2− z1 cannot get closer than (1− 3a)L in each time step.

3.8 Quasi-Geostrophy and E(k) ∼ k−2
Using the simplest form of the quasi-geostrophic equations [11], which describe the departure
from the geostrophic balance for strongly rotating ßuids, to produce a rigorous upper bound
E(k) ≤ Ck−2 valid in the inverse cascade region for the energy spectrum can be derived
[12]. This a priori result supports the inverse energy cascade observed in the Experiment.

Active scalar surface quasi-geostrophic equation

∂tθ + v ·∇θ + wEΛθ = f (14)

with two-dimensional velocity v incompressible, ∇ · v = 0, and the dissipative term wEΛθ
has a coefficient wE > 0 that comes from the Ekman pumping at the boundary.

The large forcing scale is deÞned by

k−1j :=

.
k−1| �f(k, t)|2

/
.
| �f(k, t)|2

/ (15)

and the theorem states that E(k) ≤ Ck−2 for k ≤ kf where C is independent of the forcing
scale kf .
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