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Abstract

The Extended Kadomtsev-Petviashvili (eKP) equation is studied as a model for
weakly two-dimensional interactions of two-layer solitary waves. It is known that closed
forms for two-soliton solutions to the Kadomtsev-Petviashvili (KP) equation can be
found by means of Hirota’s bilinear transform, but it is determined that no such solution
can be found for eKP. A numerical model is developed that agrees with analytical results
for reflection of KP solitary waves from a wall. Numerical reflection experiments are
carried out to determine whether nonlinear eKP interactions lead to amplitude increases
similar to those seen in KP interactions. It is found that when the cubic nonlinear term
is negative, the interaction amplitude does not exceed the maximum allowed amplitude
for an eKP solitary wave solution, except in the case where the incident wave amplitude
is close to this maximum amplitude. When coefficient of the cubic nonlinear term
is positive, stationary solutions that are qualitatively different than those of the KP
equation are found.

1 Introduction

Long water waves whose amplitudes are small compared to the mean depth are quite com-
mon in many geophysical settings, such as free surface disturbances and as interfacial dis-
turbances in a 2-layer system (internal waves). Solitary waves have an extensive history of
observations in such settings. Attempts at describing such waves have led to many simplified
models. Among the simplest is the Korteweg de Vries (KdV) equation for unidirectional
propagation. The KdV equation captures the important aspects of long, finite-amplitude
waves: nonlinear steepening due to advection and dispersion from nonhydrostatic pressure.

Additional effects can be included by small modifications to the KdV equation. If
transverse variation is small but nonzero, the Kadomtsev-Petviashvili (KP) equation can
be used. One can view the KP equation as a model for three dimensional interactions of long
waves. (The term ‘three dimensional’ is misleading although it is standard — though the KP
equation is derived by considering depth variation, it describes a function independent of the
vertical coordinate.) On the other hand, if unidirectional internal waves are being considered
and the mean layer depths are nearly equal, the Extended KdV (eKdV) equation, which
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includes cubic nonlinearity, is a better asymptotic approximation to the governing equations.
It is also a useful phenomenological model for large-amplitude waves. Combining the two
effects results in the Extended KP (eKP) equation. The inclusion of both effects in a model
is advantageous because internal solitary waves occur with some regularity where currents
flow over bathymetry, as do three dimensional interactions of these waves. The modeling of
such interactions using the eKP equation is the focus of this study.

In the following two sections, the above equations are given and known closed-form
solutions are discussed, as are limitations of the machinery used to generate those solutions.
Then in subsequent sections, a numerical model to study three dimensional interactions of
internal waves is described, numerical results are presented, and the behavior of numerical
solutions of the KP and eKP equations are compared and contrasted. Recommendations
for the use of eKP as a viable model for 3D interactions of internal waves are made.

2 KdV, mKdV, KP, and mKP

The derivation of KdV and KP from the governing equations for inviscid single- or two-layer
flow is not trivial. Here, the equations are simply stated for a two-layer model (without
rotation), and the dependence of coefficients on physical parameters is stated as well. See
[9] for a derivation.

Korteweg-de Vries and Kadomtsev-Petviashvili

It makes sense to first present the KdV and KP equations for 2-layer internal waves, although
it will be seen briefly that these are often not the best equations to use. Let h; (i = 1,2) be
the equilibrium depths of the layers. There are three relevant parameters:
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where a is the scale of the wave amplitude, and L, and L, are the length scales in the -
and y-directions. These parameters are all assumed small. If they are of the same order,
then neglecting lower order terms within the governing equations leads to the KP equation,
given here in dimensional form:

(nt + (CO + é4177) Nz + B"’]www) + ﬁnyy =0, (2)
x

where 7 is the interfacial disturbance. A rigid lid and flat bottom have been assumed. The
coefficients are known functions of the stratification and equilibrium layer depths:

- Coillilg R 1 ~ ~
5 ﬁva 725007 C(%:g,hm hOZ

3 hy—hy
— )=

2" hihy
wherq co is the linear wave speed andAg’ is the reduced gravity. If we scale n, x and y by
H = hy + he, t by H/cg, and let h; = h;/H (i = 1,2), and furthermore make the change of
variables (x,t — x — t,t), so that we are in a slowly evolving frame moving at the linear
wave speed, (2) becomes
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(e + camme + Blaas), + ¥y = 0, (4)

1ha
It should be underlined that formally, the KP equation describes propagation of two or
more waves in nearly the same direction (in this case, positive z). Propagation cannot be
in the negative x direction. The angle with the z-axis must be small. This is the difference
between glancing interactions of plane waves (where there is a small, but nonzero, angle
between propagation directions) and oblique interactions (where the angle is not small).
This is important to keep in mind because closed-form solutions to (4) exist and are not
limited by these constraints.

If there are no transverse effects (if L, = oo, v — 0), then (4) reduces to the KdV
equation:

aq

Nt + a1z + ﬂnmﬁz =0. (6)

Extended KAV and Extended KP

In many situations, o can be small. If it is small enough (formally, if it is O(A)), then in
order to balance dispersion with advection the regime of interest becomes B ~ O(A?), and
a higher order term is included:

(e + 01 + 20?1z + Baaz), + V1lyy = 0, (7)
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The coefficient as is negative definite. Again, neglecting transverse variation gives the eKdV
equation,

N+ a1z + aon® N + Bazs = 0. (9)

3 Solitary Wave Interactions

Equation (7) has the following solitary wave solution [4]:

b+ (1 — b)cosh” [k (x + my — ct)]
where the above parameters satisfy the relations
—a2mo ¢ . _ o . 2
= ————— k=5, ¢=—(2a1 +a), c=¢é+ym°. 11
2a1 + agmp 443 6 (2en 210) 7 (11)

Here 79 is the wave amplitude, k is the wavenumber in the z-direction, c¢ is the phase
speed, and m is the aspect ratio, that is, the tangent of the angle between the direction
of propagation and the x-axis. Note that (10) and (11) reduce to solitary waves for the
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Figure 1: (a) A wave crest (solid line), or plane wave, propagating at an angle 0 to the z-
axis. (b) exact solitary wave solutions. A single KdV solitary wave (plus signs) is compared
with eKdV solitary waves (solid lines) of different amplitudes, all less than 7¢ ez = 0.2524.

KP (a3 = 0), eKdV (m = 0), and KdV (a2 = m = 0) equations. Also note that, while
the KP and eKP equations describe (weakly) 2-dimensional systems, the above solution is
essentially 1-dimensional. For ag < 0,797 > 0. That is, ng carries the sign of «q, so for
definiteness we assume «q is positive. Also, when «s is negative, as is generally the case for
internal waves, 19 has a maximum value of

To,max = _al/a2' (12)

Figure 1(a) shows the configuration of the wave. The crest moves in the positive z-direction
with angle ¢ to the y-axis. (m is equal to tan(¢).) Figure 1(b) shows a KdV solitary wave
(at a given y) against several eKdV solitary waves of varying amplitudes, all of which are
less than the maximum amplitude given above. Putting terminology introduced earlier in
context, we will talk about waves with smaller ¢ (smaller m) as glancing and with larger
(larger m) as more oblique.

The interactions of multiple solitary waves traveling in the same direction (same m) have
interesting behavior. A large-amplitude wave that is initially behind a small-amplitude wave
will travel faster and eventually catch up with the smaller wave. When that happens, there
is a transient nonlinear interaction, but each wave asymptotically retains its identity and
structure as t — o0, except for a positive and negative phase shift of the larger and smaller
wave, respectively (figure 2). KdV and eKdV solitary waves exhibit this behavior, as do
KP and eKP solitary waves traveling in the same direction (but as mentioned above, the
latter two cases essentially reduce to KdV and eKdV).

This solution is also interesting because it can be described by an exact analytical
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Figure 2: Interaction of two eKdV solitary waves. The larger wave, initially behind (a),
eventually passes through the smaller one (b), but the two waves asymptotically retain their
identity (c).

solution. In general, trains of N solitary KdV or eKdV waves (where N is finite) can be
described by inverse scattering theory [11] or by Hirota’s Bilinear Method ([11], or [5]).
The former is more powerful, but the latter is algebraic in nature and very easy to apply.
Hirota’s method involves finding a dependent-variable transform of the equations such that
the solitary wave solutions have the form of exponentials.

Exact solution for KP reflection

It turns out that Hirota’s method also yields exact solutions of the KP equation (2) for
two-dimensional solitary wave interactions. Miles ([6],[7]) derived the interaction pattern
and investigated its properties, and found behavior qualitatively different than the 1-D case.
We first summarize Miles’s solution. Given two solitary wave solutions to the KP equations
with wavenumbers k; (i = 1,2), and propagation directions such that their angles with
respect to the x-axis have tangents m;, the following solution is found [8]:

9
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and ¢;, k;, m; satisfy (11) with ag = 0. There are several things to notice about this
solution. First, since the phase lines are not aligned, we can take the limit 8o — 0 or oo
with 61 constant (and vice versa), and this limit has the form (10); that is, the waves retain
their identities after interacting with each other. Second, the interaction parameter A5 can
be negative when
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<m1—m2>e< %(kl—ka), ?(kwkz))z@m_, 2m), (15)

and it turns out that solutions in this parameter range, while mathematically admissable,
are nonphysical (this point will be returned to briefly). Third, the interaction can be much
larger in amplitude than a superposition of the two waves. In fact, for waves of the same
amplitude, the amplitude increase can be up to four-fold, as compared with a two-fold
increase from linear superposition.

Slightly changing focus, we can consider the kinematic resonance condition for three
solitary waves:

kl + ](22 = ](23, mlkl + m2k2 = m;;kg, w1 + Wy = W3 (wi = Ciki), (16)

where w is frequency. In fact, given two KP solitary waves, a third satisfying (16) exists
only if one of the bounds of (15) is acheived.

It must be stressed that (16) is an algebraic constraint, and alone is not a sufficient
condition for resonant interaction of solitary waves. However, Miles showed that the limiting
form of (13), as the upper bound of (15) is approached, is equal to

B <@> k%6291 +k%e—202 +(k1 +k2)26201—202 (17)

ai 1+ 201 4 e=262)?

Furthermore, it can be shown that this solution is asymptotic to three interacting waves —
the two waves considered in (13) and a third wave that is resonant with the first two. This
can be shown by holding constant one of each of the three phase variables involved, and
letting the other two go to zero or co. Figure 3 shows (13) both for an oblique interaction
and for a near-resonant interaction. Both are symmetric, i.e. k1 = ko and mq; = —mso.
The large interaction in 3(b) resembles a third resonant wave, although it is not actually a
resonant wave until the angle predicted by (15) is reached.

The above discussion can be applied to glancing reflections of solitary waves against a
wall. The results are the same since the condition of no normal flow (1, = 0) at the wall
allows one to extend the solutions by symmetry. The theory allows for regular reflection,
as described by (13) with k; = ko and my = —meg, for my > myes, where

12 /
Mypes = —ﬁkl = M7 (18)
Y Y

where 79 is the amplitude of the incident wave. If, however, mi < my.s, regular reflection
is no longer allowed. Instead, the interaction is described by (17), where the subscripts
1 and 2 correspond to the incident and reflected waves, respectively, and a third wave is
resonant. This third wave, which has no transverse wavenumber and travels parallel to the
wall, is know as the mach stem by analogy with a phenomenon seen in gas dynamics.
Since the transverse wavenumber of the mach stem is zero, and the waves are in resonance,
the amplitude of the mach stem and of the reflected wave can be inferred from the kinematic
resonance constraint (16):
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Figure 4: Mach reflection. The incident wave (— —) moves into the wall with phase velocity
c1, and the reflected wave (— - —) moves away at cg. The intersection of the incident and
reflected waves with the mach stem (—) moves away from the wall. Taken from [7].

mi 1253 1243
, Mo2 = k‘%, kmach = (1+ )kl’ To,mach =
Myes (071 Myes a1

mq

k> (19)

mach*

Mo = Myes, k2 = k1
In this case, if ko < kq, the interaction pattern will move away from the wall with time,

and thus the mach stem will grow in length. This configuration is shown in figure 4. The
maximum amplitude, or runup, at the wall can then be calculated as a function of m:

-1
Timazx _ 4 (1 + \Y 1- (mres/m)2) mM > Myes (20)

o (1 + m/mres)2 m < Myes
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Figure 5: Theoretical KP runup at wall versus m (tangent of incident angle)

(see figure 5), which is useful since it is easy to verify by lab or numerical experiment.

Modified KP Interactions

It may be apparent to the reader that the word soliton has not used liberally up to this
point, although the term applies to the interacting solitary waves described above. One can
use the term to describe solitary waves that can pass through each other and still retain
their identity, in which case the term applies, in a very limited way, to eKP solitary waves
(see below). But one could also think of solitons in a loose sense as solitary wave solutions
that are amenable to the various transform methods (e.g. Hirota’s Bilinear method) used
to make analytical headway in describing their interactions. It is shown in [2] that the same
bilinear transform methods that work quite well on KdV, eKdV, and KP (as well as many
other nonlinear wave equations that support solitons) break down when applied to the eKP
equation, except for the degenerate case in which all solitary waves are traveling in the same
direction. Further, it can be shown that the eKP equation does not pass the Painlevé test, a
criterion in determining whether an equation is completely integrable. This does not prove
that eKP is non-integrable, but it demonstrates that exact solutions will, at the very least,
not be easy to find. For that reason, the focus of this study is numerical in nature; since
(20) predicts a large amplitude increase, while (10) gives a maximum amplitude constraint
when a cubic term is present, it is unclear what the results of such an experiment will be.

4 Numerical Model

There is a difficulty inherent in solving (7) numerically. If we integrate the equation in z,
assuming that disturbances are locally confined, then
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a condition known as the "mass condition.” In particular, a given initial condition must
satisfy this constraint; otherwise it can be shown there are waves present with infinite
group speed which propagate to x = —oo [1]. Alternatively, one can examine the evolution
equation that results from an integration in x:

o0
N+ camme + aen®ne + Bear — 7/ Nyydz = 0. (22)
xT

If a discretized form of (21) is not satisfied, then disturbances will appear instantaneously
far behind the initial condition. To avoid this problem, eKP is written in the form given in
section 2, but with the time derivative left in the y-momentum equation [9]:

N+ a1 + a2n®ne + Buas +Vy =0, (23)
Vt—Vz-H?y:Q (24)

The time derivative is neglected in the derivation of eKP for asymptotic consistency, but
here is left in in order to regularize the equation, and the numerical model now solves for
both n and V.

Most of the numerical experiments involved a single solitary wave with a transverse
component (m # 0) directed into a wall (y = 0) as an initial condition. In this case V
was held at zero at y = 0 for all ¢, and was set to the analytical solution for such a wave
at yp, which was effectively considered to be y = +oo (figure 6). 1 and V were solved on
grids that were coincident in x but staggered in y. In the y-direction, the topmost and
bottom-most points were V-points, so boundary conditions were imposed on V but not
on 7 (unless the domain was doubly-periodic). Spatial derivatives were approximated by
centered differences. First derivatives in x were 4th order, while all others were 2nd order.
The nonlinear terms were approximated by straightforward multiplication (no averaging
was done). The timestepping scheme was an Adams-Bashforth predictor-corrector method
involving two previous timesteps, where the two initial steps were done by Heun’s method.
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Very often a simulation was restarted using the final state as a new initial condition; in this
case the two previous timesteps were not saved. A few doubly-periodic simulations were
done where the initial condition was a superposition of different solitary waves, but the bulk
of the numerical experiments done were with the wall model described above.

Since no wave was expected to propagate faster than the incident wave, n and V were
set to zero at zr. However, conditions at xj were not as straightforward, and were handled
as follows: the solution on the first two gridpoints in the z-direction was extrapolated
linearly backward. This was in order to allow any disturbances, which presumably would
be traveling to x = —oo in the frame in which (23) and (24) are defined, to pass through
xp, rather than reflect back into the domain. In addition, a linear damping of the form

N = .. —p(@)n
Vi= ... —pulx)V

was added, where p (> 0) is nonzero only in a small neighborhood of . This is justified
physically by the assumption that the incident wave, its reflection, and their interaction are
the fastest-moving disturbances in the system, and so long as they are sufficiently resolved
away from x, then what happens near z; should not affect their behavior. Resolution was
often higher in x than in y. The timestep was made short enough to avoid a CLF-type
instability. The upper bound was determined more empirically than by theoretical means
due to the nonlinearity of the equations.

A simple rescaling (not given here) of 7, x, y and ¢ (where x and y are scaled identically
so that angles are preserved) allows us to replace a1, 3, and v as given in section 2 with
any values we choose. For programmatic ease, these parameters were set to 1.5, 0.125, and
0.5, respectively. Values of ay were found by (8) and then applying the same scaling.

5 Numerical Results

In the wall experiment, if 7 is scaled to the amplitude of the incident wave, ng, then (23)
becomes

ﬁt + a1no <77 - ﬁ2> ﬁx + ﬁﬁxww (25)

0,maz
where 70 mqr Was defined in section 3. If the nondimensional parameter 79/70,maqz is zero,
we recover KP (or, according to our model, a regularized version of KP), so the larger
this parameter, the more departure we expect from KP reflection behavior. So numerical
experimentation began by benchmarking the numerical model’s ability to reproduce known
results. Except where explicitly stated, the values of a1, § and  in all of the experiments
described below were 1.5, 0.125, and 0.5, respectively, and a.o was computed using hl = 0.67.

Unidirectional eKP

As mentioned above, one should be able to generate a 2-soliton solution to the eKP equation,
as long as both solitary waves are traveling in the same direction. Though it does not involve
reflection, this is still an important result. A doubly periodic domain was used, with a large
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Figure 7: Doubly periodic domain used to simulate eKP soliton interactions. The initial
condition is shown here; the narrower wave crest is larger in amplitude.

wave behind a small wave as an initial condition (figure 7). This simulation was shown to
produce the typical 1-D soliton interaction pattern. Figure 2 actually shows cross-sections
of snapshots of this simulation for m = 0.4.

KP and eKP Reflection

Figures 8(a)-8(c) show the development of a KP interaction pattern for different incident
angles. In all KP experiments, the incident amplitude g = 0.12, m,..s = 0.6. Figures are
shown for my,cigent greater than, equal to, and less than the resonant value. For mncigent =
0.8, the reflection pattern is symmetric, with the maximum wall amplitude ~ 2.67. For
Mincident = 0.6, the resonant angle, we see a mach stem slowly forming with amplitude
close to 41p. Theory predicts a mach stem will not grow at the resonant angle, and that
the maximum amplitude achieved is 47; however, since this is a numeric approximation it
is perhaps not surprising that resonance is not acheived exactly. The fact that stem growth
is very slow and amplitude increase is close to 4 is encouraging. At m;pecident = 0.15, the
reflected wave is difficult to see because it is so small and obscured by its own reflection
from the far wall. It is, as predicted, clearly at a far more oblique angle than the incident
wave. Also, the mach stem has an amplitude 7,4 = 1.619 that is very close to that of the
incident wave.

It should be stressed that the theory concerns stationary solutions, not transient devel-
opment from arbitrary initial conditions. Comparing transient solutions for m,cigent = 0.6
with those for m;ycigent = 0.8 and mj,cident = 0.15 shows that a near-resonant interaction
takes a long time to develop. This can be seen by plotting the maximum wall amplitude
of n at the wall as a function of time. This is shown for the same simulations in figure
8(d). All of the plots show convergence to a stationary amplitude. The small oscillations
around this mean can be explained by failure to completely resolve the peak of the wave
crest; however, this is likely not detrimental to the overall solution.
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Figure 8: KP reflection, ng = 0.12.

Figures 9(a)-9(c) show analogous results for eKP interactions with 79 = 0.12. A value
of 0.67 was chosen for h; as given in section 2, giving 1o maez = 0.2524, and 19/10 maz ~
0.48. Comparing figures 8(a) and 9(a), we again see regular reflection, but the interaction
amplitude is smaller for the eKP case, and in fact is smaller than 1o e,. Figure 9(b),
resulting from an incident angle with tangent 0.45, appears to show a reflected wave with
angle equal to the incident, trailed by smaller crests with more oblique angles, in contrast
with the mach reflection pattern that would be seen with KP, and a maximum amplitude
just greater than 19 mag. For mipcidgens = 0.15, shown in figure 9(c), we do see a pattern that
looks qualitatively like mach reflection, although it is not clear whether this term actually
applies to the interaction. Still, with relatively little apparent transverse variation near the
wall, one can anticipate that the profile at the wall looks very similar to an eKdV solitary
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Figure 9: KP reflection, g = 0.12, h; = 0.67 (see section 2).

wave, and this was found to be the case.

Comparing the maximum runup of KP simulations to theory, figure 10(a), we see very
good agreement for angles less than the resonant angle. However, for angles larger than
the resonant angle the agreement is not so good. This is certainly an issue, and may be
a consequence of the use of regularized equations (see Discussion section). Still, all of
the qualitative aspects of the theory were captured, and for small angles the quantitative
agreement was good as well.

Figure 10(b) shows the same results as figure 10(a) along with the results from eKP
simulations for different values of 1g, where m;,cigent has been scaled to m...s, as given by
(18). Values of 1y used were 0.024, 0.05, 0.12, and 0.24, while 1g yq, = 0.2524 for all cases.
Recalling (25), notice that, for g = 0.024 and 1y = 0.05 (dots and triangles, respectively),
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the runup plot has a qualitatively similar shape to that of KP, but the maximum occurs at
a smaller (scaled) incident angle and is not as large. The same could be said of ny = 0.12,
though the maximum is barely visible, and we have seen qualitatively different results
for this amplitude. In fact, it does seem as though the eKP runup plots may coincide
with that of KP where the incident angles are small enough that 7,4 < 70,maz- These
points correspond to interaction patterns that look similar to mach reflection (cf. figure
9(c)), though there is not space to show all of the results. Again, it is stressed that the
development of these interaction patterns is transient. In a few cases, the growing ”mach
stem” reached the far wall before the wall amplitude became stationary, and in these cases,
the result given in figures 10(b), 10(c) is that taken just before this intersection occurred.

Obviously, the above statements do not apply to the case ng = 0.24, since 19/10 maz = 1.
Indeed, the runup plot for g = 0.24 is very different than the others. Figure 10(c) shows the
same results as those in figure 10(b) without scaling amplitude by 7. Here it is seen that
when 79 = 0.024,0.05,0.12, the runup is never greater than 7o e, (solid line), but is for
1o = 0.24. This contrast suggests that the range 0.12 < 19 < 79, maz should be investigated
for transition between the two behaviors, but this was not done in the current study. Figure
10(d) shows the result of one of the simulations where ng = 0.24.

One might ask if a resonant interaction actually does occur in the eKP simulations.
Though (16) is not sufficient for resonance, it is necessary and can be checked. It is easiest
to check the first two conditions of (16) since they relate only to the wavenumbers and not
the phase speeds, and wavenumbers are calculated from amplitudes using (11). Further,
the requirement that one of the bounds of (15) be satisfied for the kinematic resonance
condition to apply holds for eKP as well as KP. This can be observed as follows. Consider
two (1 and 2) solitary wave solutions to eKP. Imagine that both wavenumbers (k1 and ks)
are known, and the direction of the first (m7) is known (but not of the second), and the
waves are constrained to satisfy (16) for some solitary wave with wavenumber and direction
ks and mg. From (11), we can give wavenumbers in terms of frequencies and propagation
directions:

46k2 = % —ym2,i=1,2. (26)
(

Together with (16), these two equations form a set of 5 algebraic equations for the unknowns

mo, m3, k3, ws,ws, which can then be solved for two possible values of ms. The important

thing to notice is that the above equations do not depend on «s, and so, even when eKP

solitary waves are considered, the results still correspond to the bounds of (15), even though

the corresponding phase velocities and amplitudes are different than the KP case.

Table 1 shows calculated wavenumbers for the incident and reflected waves, as well as
the mach stem, assuming solitary wave solution (10). (The term ”mach” is used here for
lack of a better one; as mentioned before, the eKP simulations show behavior qualitatively
like mach reflection.) As in Miles’ analysis, for KP we assume that the mach stem is at
right angles to the wall and the the reflected angle is the resonant angle, i.e. M qen = 0
and Myef; = Myes. By inspection, we also set my,qcn = 0 for eKP, but with out an exact
solution there is no reason to assume M. = M5, and so M, had to be measured. This
measurement is done by examination of the numerical solution of . However, the reflected
wave crest is often either not fully developed, obscured by the far wall or the stem crest,
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Figure 10: Reflection runup

very short in length, or very small in magnitude, or all of the above. Measurement of k.
is problematic for these reasons, and measurement of m,.s even more so. Still, there is
no other method of verifying whether (16) is satisfied. It can be seen from Table 1 that
agreement is not bad for KP. It is worse for eKP, but improves with decreasing amplitude.

Positive oy

In certain cases, vertical shear and stratification can conspire to make aq positive [3].
Equation (10) still applies, only now the amplitude can take on either sign (we are still
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Expt kine krefl kmach Myefl Iﬂ#?;lm Kine + krefl
KP | ng =0.12, m;n. = 0.15 | .3464 | .099 | .4322 0.6 .0866 4454
eKP | np =0.12, mj,. = 0.15 | .3011 | .1385 | .3412 | 0.52 .0869 .4396
eKP | n9 =0.05, mi =0.1 | .2199 | .0653 | .242 0.45 .0489 .2852
eKP | np = 0.024, m;n. = 0.1 | .1511 | .0465 | .1709 1.0 .0151 1976

Table 1: Incident, reflected, and mach stem wavenumbers (Kinc, krefi, and Kpqen, resp).
(the term 'mach’ is used even if it is not clear that there is resonance.) Equality of the last
column with k4., and of the second-last column with k. is required by the kinematic
resonance condition. The former criterion involves angle measurements, which are more
problematic than wavenumber measurements, while the latter does not.

using the convention that oy is positive). If 79 is positive, there is no maximum amplitude;
if ny is negative, it must be larger (in absolute value) than 2a;/ag. Several simulations
were carried out with positive aio, however the sweep of the parameter space was not nearly
as complete as for negative ag. Some results are shown in figures 11(a)-11(c). Figure 11(a)
is the result of a simulation in which 79 = 0.12 and mypcigent = 0.6, as for figure 8(b). s
is positive and set to +1, and the coefficients a1, §, and v remain as above. We see a
pattern very similar to the KP result, but with a small radiative pattern shed from both
the incident and reflected waves in the bottom left corner. More interesting are the results
where 79 is negative, as in figure 11(b). Here ny = —0.3, and mncidgent = 0.4. There is a
similar radiation pattern, but it is more developed. In fact, when the profile at the wall
is examined, the radiation pattern is shown to have the same profile as the incident wave,
and to have traveled the same distance. F‘igure 11(c) shows the development of the profile
at the wall. The larger peak is the stem seen in 11(b); the smaller peak is the intersection
of the radiated wave crests. When compared with figure 2, the wall profile of 1 looks very
similar to the interaction of two unidirectional solitons. Given that transverse variation
appears small near the wall in 11(b), it is perhaps not surprising that the profile at the
wall is similar to an eKdV solution; however, it is surprising that interaction of the incident
wave with its reflection develops into something similar to a two-soliton solution.

A result similar to figure 11(b) is shown in [10], though in that study the Modified KP
equation (which is similar to eKP with positive ag and no quadratic term) was being inves-
tigated. Also, the profile of the intersection of the radiated wave crests was not examined
in that study.

The investigation of positive ao was not taken further — it was meant only as a brief
exploration of different behavior and possible starting point for further study.

6 Discussion

We have seen that a numerical model which gives reasonable agreement with theory concern-
ing the glancing interaction of two KdV solitary waves (figs. 5, 10(a)) produces somewhat
different behavior when two eKdV solitary waves interact, with the degree of difference de-
pending on the magnitude of the incident amplitude relative to 79 ma.. When the interaction
amplitude is close to the maximum possible amplitude of an eKdV solitary wave, we see
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Figure 11: Positive as
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Figure 12: Runup results comparing different regularization schemes, where ¢ is as in (27).
0 = 1 corresponds to the results shown in figure 10(a), and 6 = 0.1 gives results closer to
theory.

what appears to be dispersion occurring near the intersection of the interacting waves. This
is not surprising because the nonlinear term in the eKP equation is small when amplitude
is close to 1o,maz, but there is no reason to expect the dispersive term to be small.

In some cases, the eKP simulation results in a pattern that resembles a mach stem and
a nonsymmetric reflected wave, as in the KP simulations. However, it is not clear whether
this is a stationary solution, or whether it is a resonance of three solitary waves. Long-time
simulations (e.g. figure 9(c)) seem to suggest that such a pattern is stationary and would last
until effects of the far wall became important. Table 1 suggests that the kinematic resonance
condition is not satisfied. However, there are difficulties in measuring the properties leading
to this conclusion. We have also seen that when the incident amplitude is near the maximum
amplitude (figs. 10(d), 10(c)) the interaction does not resemble KP interaction at all.

It was suggested above that the disagreement with theory with respect to wall amplitude
in KP reflection when mjpcigent > myres (figure 10(a)) may be a result of regularization in
the numerical model. This claim was investigated by generalizing (24) to

5Vt - Vz + Ty = 07 (27)

where § is a parameter between 0 and 1. Preliminary results (figure 12) show better agree-
ment with theory for m;ncident > Mres when § is small.

7 Conclusions and further work

One of the early goals of this study was to find a closed form solution for the eKP equation
(aside from the degenerate one where all waves move in the same direction). The literature
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seemed to suggest that such a solution would be extremely difficult to find. Indeed, the
fact that some results were highly dispersive seems to indicate that the eKP equation,
unlike the KP equation, does not have soliton solutions for three dimensional solitary wave
interactions.

That issue aside, the results of this study constitute a tool to gauge the KP and
eKP equations as representative models of internal waves with small transverse variation.
Oceanographic data was not used in this study; however, the two models exhibit qualita-
tively different behavior, and this behavior can be compared with that of actual internal
solitary waves. For instance, tidal flow over bathymetry may cause glancing internal solitary
wave interaction with some regularity, and might be useful to be able to predict the nonlin-
ear amplitude increase based on known parameters such as stratification and background
currents.

The results shown in figure 12 suggest that the disagreement with theory shown in
figure 10(a) is due to regularization, and that a different regularization such as (27) with ¢
small might yield better agreement. However, this must be investigated further, and this
investigation is the subject of ongoing work.

The investigation of the eKP equation with positive g was not very extensive, but it
still yielded interesting results. There were small radiative waves in all eKP simulations
(including those with negative ag, although they are not visible in the plots shown), but
we saw from figures 11(b), 11(c) that these radiative waves may have interesting structure.
Further analysis of the parameter space is certainly warranted.
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