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Abstract

We study a population model in which there are two species, one of which has a
juvenile and adult life stage. The adults of the first species prey on the second species,
which in turn preys on the juveniles of the first. One version of the model represents
systems where neither species can survive on its own, although we find that both can
survive through mutual predation. To avoid extinction, the two types of predation must
be of sufficient strength and in appropriate proportion to one another. Another version
of the model represents systems where each species can survive without the other, and
there we find that mutual predation is capable of increasing both of their equilibrium
populations or creating stable limit cycles.

1 Introduction

An organism’s trophic level is the position that it occupies in the food web, defined
by the organisms that it eats and vice versa. However, few organisms occupy the same
trophic levels throughout their lives. Typically an organism’s predators and prey change
over its lifetime, as do the organisms of similar trophic level with which it competes for
food. Werner and Gilliam [2] review many examples of ecosystems in which competitive
and predatory relationships are age- and size-dependent. As an instance of the latter,
adult salamanders and newts prey on one another’s juveniles. Similarly, frogs eat insects,
while insect larva eat tadpoles. Although competition is important, we do not consider it
in this report, where our object is to explore solely the dynamics that arise in ecological
models with age-structured predation.

2 Development of the models

Any model for age-structured predation must have at least two species, and at least
one of the species must have multiple life stages. Some ecological models have used
continuous age or size variables to describe life stage, which requires partial differential
equations to describe the change of populations in time, but the simplest possibility is
to have two discrete life stages. Thus, the simplest possible model has three populations
in total: one species with one life stage and one species with both juvenile and adult
life stages. For concreteness we shall call our populations tadpoles (T), frogs (F'), and
insects (I), where the frogs eat the insects, the insects eat the tadpoles, and the tadpoles
and frogs beget one another through recruitment and reproduction. For simplicity we
shall assume that recruitment occurs at a rate proportional to tadpole biomass, that

213



reproduction occurs at a rate proportional to frog biomass, and that a constant fraction
of the biomass being transferred through predation is lost to metabolic inefficiencies.
The model as described thus far is diagramed in Figure 1. Through the “feeding/death”
fluxes in Figure 1, each population may gain biomass by feeding on the external envi-
ronment (which excludes the other two populations explicitly modeled), or lose biomass
through death. All that remains to fully define our population model is to specify the
functional forms of the predation and feeding/death terms.
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Figure 1: Biomass flux in the tadpole-frog-insect system.

2.1 Feeding or death terms

Assuming the tadpoles, frogs, and insects do not compete with one another, each pop-
ulation’s feeding/death term should be independent of the other two populations. The
simplest choice is a proportional law, which in the absence of predation creates expo-
nential growth or decay, depending on the parameter values. Unbounded exponential
growth is unrealistic, but exponential decay is feasible: it represents a case where the
two species cannot survive without predation, and we analyze such a model in Section 3.
We also wish to consider a scenario in which both species would survive without the
predation. This requires that the system have carrying capacities, which cause initially
exponential growth to saturate at finite values. We must put a carrying capacity on the
insects, but we have a choice between putting one on the frogs, the tadpoles, or both.
We shall somewhat arbitrarily place a carrying capacity on frogs and not on tadpoles.
In the biological reality of frogs and tadpoles this is usually accurate; frogs will typically
run out of environmental resources before tadpoles do. But for other species, resources
may certainly be scarcer for juveniles than for adults. We analyze the carrying capacity
model in Section 4.
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2.2 Predation terms

The simplest possible predation law is a quadratic one in which the rate of predation
is proportional to both predator and prey populations, the so-called Holling type 1
functional form [1]. Some models of age-structured predation employing these forms
were studied by Whitehead and Doering [3], but such a form fails to reflect the fact
that increasing the amount of prey beyond a certain point stops benefiting the predators
because there is a limit to how fast they can eat and metabolize the prey. The Holling
type II functional form avoids this problem by saturating as the amount of prey becomes
large:

rey population)(predator population
rate of predation = Cy (prey pop ) bop )

)

1+ Cy(prey population)

where C; and Cs are constant parameter. We have examined some models employing the
type I form, but it leads to unbounded growth in certain cases, so we shall henceforth
always use the type II form. It is not hard to justify needing a predation law with
saturation, but it is certainly not clear a priori that the type II form is the best choice.
We justify this choice in the appendix, where we derive the type II form as an asymptotic
limit of a higher-dimensional dynamical system and numerically compare the reduced
system with the higher-dimensional system.

3 Model without carrying capacities

Let the feeding/death term for tadpoles add biomass at the rate erT', where e can take
either sign, and likewise for frogs and insects. Then, the dimensional ODE governing
the biomass of each population is
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Without frogs or insects, tadpoles should die out, and likewise for frogs, so v and ¢ must
be positive. Only the e¢; parameter may be negative. If a < -y, tadpole feeding is adding
biomass to the system, and the same is true for frogs if 5 < (. The parameters n; and ng
are metabolic efficiencies, so they must fall between 0 and 1. We now nondimensionalize
the system by
t L Tw— iT F— LF I— 11 (4)
Y I Bu v

This particular nondimensionalization is attractive because it retains unique coeflicients
on all the nonlinear predation terms and minimizes the number of free parameters
(seven). Its drawback is that the different populations are no longer in equivalent units
of biomass, so they cannot be meaningfully compared. This is tolerable because we are
more interested in qualitative system behavior than relative population biomasses. The
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nondimensional ODE is
T
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3.1 Model without predation

Without predation, the model is linear, and the T-F' system decouples from the insects:

4 (AT ~1 1 0\ /AT
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The tadpoles and frogs decay exponentially if a < b and grow exponentially if a > b,
while the insects decay exponentially if ¢ < 0 and grow exponentially if ¢ > 0. The
behaviors of the uncoupled systems split the full system rather naturally into four
separate cases. (Structurally unstable parameter values such as a = b or ¢ = 0 will
not be considered in anything that follows.) The only equilibrium of this system is the
origin, and the decoupled systems are rather boring without predation. Predation can
create stable fixed points and limit cycles for all four combinations of signs of (a — b)
and ¢, but only the case in which the T'— F' and I systems both decay without predation
is biologically reasonable, so we shall restrict ourselves to this case. Henceforth in this
section, a < b and ¢ < 0.

When [ and the T-F system both decay without predation, the mechanism by
which predation can stabilize the system is the following. Suppose that biomass enters
the system though frog feeding (¢ < ) and leaves the system through tadpole death
(v > «), with tadpole death dominating when the T-F system is isolated. In other
words, the rate of reproduction is higher than ideal. Introducing insects creates a flux
of biomass from tadpoles to frogs, where it is used to create more biomass from external
feeding, rather than lost to tadpole death. This effect can prevent the entire system
from decaying to zero, even with the additional sources of biomass loss by insect death
and metabolic inefficiencies.

3.2 Lyapunov bound

Not only is the origin linearly stable when a < b and ¢ < 0, the Lyapunov functional
L=:5T+ gF + I suffices to show that all solutions decay to the origin. This is a rather

216



narrow range of validity, but it suggests the possible importance of the ratio %. In
terms of dimensional variables,

% 77177F§

df v

Biologically, nynr is the squared geometric mean of the metabolic efficiencies, so we can
think of this term roughly as the metabolic efficiency of the entire system.

3.3 Nontrivial equilibria

At nontrivial fixed points,
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From Equation (8), I and T uniquely define F' at a fixed point. Using this equation to
eliminate F' from the latter two yields two polynomials equations in I and 7"
a(l+(1+T)=1+T+dI)(b+ bl —gI) (11)
c(14+D(1+T)+eT(1+1)=fT1+T+dI). (12)
Equation (11) is linear in 7', and Equation (12) is linear in I, so they may be used to
find explicit expressions for T'(I) and I(T'), respectively:
dI(b+ (b—g)I) B
(a+g—bI+a—>b
fT? —(c+e— f)T —c
(c+e—df)T+c
Evidently, I and T define one another uniquely. Applying T'(I) to Equation 12 gives

a cubic polynomial for I at the equilibria, so there are at most three positive real
population equilibira.

I =

isl® +ioI? + i1 4+ ig = 0, where

io = —e(a—b)? <0

i1 = (@ —b)[2e(b— g) + bd(c + €) + a(df — 2¢)]

is =d(c+e)[(a—b)(b—g)+bla+g—0b)]—elat+g—>b)*+adf(a+g—>b—bd)

i =d(b—g)[(c+e)la+g—b) — adf]
The cubic equation for I of course has explicit algebraic solutions, but they are too
messy to be of use, so although we have explicit expressions for F' and T in terms of
I, we cannot generally predict whether F' and T will be positive when I is positive.
The best we can do analytically is infer some partial information about the signs of

polynomial roots. For this, we also need the first and last coefficients of the cubic
polynomial governing 7', which we derive by applying I(T") to Equation 11:

tsT3 + toT? + ;7 + T = 0, where

T=—-c2g<0
ts = fl(c+e)(a+ g—0b) — adf].
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Theorem Leta <bandc<0.If g <bandadf < (c+e)(a+g—>b), there are either
1 or 3 positive equilibria. Otherwise, there are either 0 or 2 positive equilibria.

Proof The I polynomial is cubic, and I uniquely defines F' and T, so there are at
most three real, positive equilibria. It is clear from Equation 8 that F is positive when
I and T are, so it suffices to know when the I and T polynomials have corresponding
positive roots. There are three ways in which the number of positive roots of the I or T'
polynomials may change. Firstly, a root may remain real but leave the positive octant
if 49 or tg becomes negative, but we have eliminated this possibility by assumption.
Secondly, the number of positive equilibria may change by two when a pair of equilibria
become complex simultaneously, a saddle-node bifurcation. Thirdly, an equilibrium
may move off to infinity when i3 or t3 pass through zero. By dividing parameter space
into four regions in which i3 and ¢3 do not change sign, we are assured that the number
of equilibria within each region may change only by saddle-node bifurcations. These
regions are

I={is>0,t3>0}={g<b, adf <(c+e)(a+g—10b)}
IT={i3<0, t3>0}={g >0, adf <(c+e)(a+g—0)}
IIT={i3>0, t3 <0} ={g<b, adf > (c+e)(a+g—10b)}
IV={is<0,t3<0t={g>0b, adf > (c+e)(a+g—10)}.

If we know the number of positive equilibria at one point in each parameter region, we
know the number of positive equilibria at all points in that parameter region, modulo
2. So, we chose one such test point in each parameter region and computed the equi-
libria numerically, inferring from this the possible number of positive equilibria in each
parameter region. The results are tabulated in Table 1. Evidently, there may be 1 or
3 positive equilibria in parameter region I, and 0 or 2 otherwise. Parameter region I
is defined precisely by the condition that ¢ < b and adf < (¢ +e)(a + g —b), so the
theorem is proved.

Table 1: Number of nontrivial equilibria in each of the four parameter regions, as inferred
from a test points, (a,b,c,d, e, f,g), in parameter space.

Parameter region

Test point

Number of positive
equilibria at test point

Number of positive
equilibria in region

I (0.9,1,-0.5,1,1.5,0.1,0.5) 1 Lor3
17 (0.9,1,-0.5,1,1.5,0.1,2) 2 0 or 2
171 (0.9,1,—-0.5,100,1.5,0.1,0.5) 0 0 or 2
IV (0.9,1,—0.5,100,1.5,0.1, 2) 0 0 or 2

By the preceding theorem, we have partial information about the number of equilib-

ria inside and outside region I. Because a saddle-node bifurcation creates two equilibria
of opposite stability, we also know that there can be at most two stable equilibria inside
parameter region I, and at most one stable equilibrium outside it. We would of course
like precise conditions on when the saddle-node bifurcations occur, thereby further di-
viding our parameter regions into ones in which the numbers of positive equilibria are
exactly known. This requires knowing when I or T' become complex. Since I and T are
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governed by cubic equations, this can in principle be determined from the discriminants
of those equations. The I equation has one real and two complex roots precisely when

A1 = 18igzigiyig — disio + i5i3 — 4izis — 27i%iz < 0,

and likewise for the coefficients of the T equation, so the parameter regimes we seek
are divided by the surfaces on which the discriminants vanish. Unfortunately, these
inequalities are prohibitively messy when expressed in terms of the problem parameters.
In biological modeling, one is more interested in qualitative behaviors than the precise
values at which bifurcations occur, so we will be content to observe the saddle-node
bifurcations numerically.

3.4 Numerical exploration of parameter space

Asymptotic analysis shows that the predation parameters cannot be small compared to
the population decay rates if predation is to stabilize the decay. In fact, numerical exper-
iments reveal that the predation parameters must typically be about an order of mag-
nitude larger than the decay rates. In light of this, we shall fix (a,b,c) = (0.9,1,—0.1)
and expect interesting behavior when predation parameters are O(1).

3.4.1 Looking for bifurcations

When (d,e, f,g) = (0.2,1,0.2,0.5), there are three positive equilibria, the maximum
number possible, so we choose this as a starting point from which to explore the four-
dimensional space of predation parameters. Linearizing the system about these equilib-
ria and computing matrix eigenvalues numerically, we find that none of the fixed points
are stable. Biologically, we are interested in regimes where there are stable fixed points,
so we use the bifurcation continuation package MATCONT to continue these equilibria
in parameter space. Arbitrarily choosing the parameter e in which to continue the equi-
libria, we obtain the bifurcation diagram of Figure 2. We have chosen the coordinate I
for the ordinate of our bifurcation diagrams because the value of I sometimes becomes
unrealistically small, and we wish to see when this is so.

Continuing in e, we find a saddle-node bifurcation (LP), a subcritical Hopf bifurca-
tion (H™), and a neutral saddle (N.S). These are all bifurcations of codimension 1, as
we would expect to find when varying only one parameter. To access the higher-level
structure of parameter space, we would like to find higher-codimension bifurcations.
The MATCONT package can in general only find bifurcations up to codimension-2, so
we shall settle for this, though ideally we would like to find bifurcations of codimension
up to the dimension of our parameter space. Codimension-2 bifurcations are typically
found by continuing a codimension-1 bifurcation in two parameters, so we shall continue
all of the bifurcations of Figure 2. Continuing in e and g yields the bifurcation diagram
of Figure 3, in which we see two types of codimension-2 bifurcations: Bogdanov-Takens
bifurcations (BT'), and generalized Hopf bifurcations (GH), also known as Bautin bifur-
cations. Continuing the codimension-1 bifurcations of Figure 2 in any other combination
of two parameters does not yield any other types of codimension-2 bifurcations.

In the neighborhood of a Bogdanov-Takens bifurcation, there are guaranteed to be
a saddle-node bifurcation and a Hopf bifurcation (both of which we have seen already),
and also a saddle homoclinic bifurcation. In the neighborhood of a generalized Hopf
bifurcation, there are guaranteed to be both supercritical- and subcritical Hopf bifur-
cations, and a fold bifurcation of limit cycles. Although we are only assured of these
system behaviors in local neighborhoods of the codimension-2 bifurcations, we can rea-
sonably expect to see them all around parameter space.
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Figure 3: Continuation in e and g of the Hopf bifurcation of Figure 2.
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Before exploring the effects of each parameter, we would like to find a baseline point
in parameter space at which all parameters are of similar magnitude, and at which a
stable fixed point exists. There is always a stable fixed point near a Hopf bifurcation,
so we continue the Hopf bifurcation of Figure 2 in various pairings of the predation
parameters, arriving at a point where (d, e, f, g) is near (2,4,2,2). We shall use this
and other nearby values as our baseline parameter points.

3.4.2 Overall predation strength

To study the effect of the overall predation strength in the system, we fix the ratios
between all four predation parameters and vary them proportionally. The resulting
diagrams are shown in Figure 4, where we have used two sightly different parameter
ratios to exhibit one case each where the Hopf bifurcation is supercritical or subcritical.
In any of the bifurcation diagrams that follow, the predation parameter ratios could
be chosen to realize either type of Hopf bifurcation, but the distinction is not very
important because limit cycles in this system are not robust biologically, for the following
reason. In the chosen regime of a, b and ¢, the coordinates of the stable fixed point
appear to always be such that I < T, F. As the limit cycle emerging from a Hopf
bifurcation grows, the oscillations become strongly nonlinear, consisting of a fast part
and slow part. During the slow part of the cycle, the value of I is very small. Without
traveling very far in parameter space, either the limit cycle is destroyed in a homoclinic
bifurcation, or I becomes so small during the slow part of the cycle that in the non-
continuum of reality, the insect population would go extinct, bringing the same fate
to the frogs and tadpoles. If we altered the model to include stochasticity or discrete
populations, we could reasonably expect it to display this biologically-realistic extinction
during such troughs of I. The type of Hopf bifurcation controls whether or not a stable
limit cycle coexists with a stable fixed point, but since the limit cycle is a much less
robust structure than the fixed point, the distinction is not very important.

It is evident from Figure 4 that the system has no stable fixed points or limit
cycles when the predation is too weak. This is expected, since the predation must
stabilize the exponential decays of the uncoupled systems, and it makes clear that
predation cannot do this as a mere perturbation on the uncoupled systems. As predation
increases, the fixed point not only remains stable, but its basin of attraction enlarges.
Simultaneously, however, the equilibrium insect population decreases toward zero, and
the frog and tadpole populations decrease asymptotically toward identical finite values.
When the basin of attraction is too small, a perturbation could send the system across
the separatrix and onto a trajectory heading toward the origin (extinction). When
the equilibrium insect population is too small, it is vulnerable to eradication by some
catastrophic event, in which fate the frogs and tadpoles would follow. The fitness of the
insect population would be maximized at some intermediate predation strength that
balances these two factors.

3.4.3 Relative strengths of the two types of predation

The parameters d and e convey the strength of the insect-tadpole predation, and the
parameters f and g do likewise for the frog-insect predation. To study the effect of the
relative strengths of the two types of predation, we vary the insect-tadpole predation
parameters in fixed proportion while holding the other two constant, and likewise for the
frog-insect parameters. The resulting bifurcation diagrams are presented in Figure 5,
and they both suggest the same conclusions. The process in which insects move biomass
from tadpoles to frogs is essential to stabilizing the system, and when I-T predation
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Figure 4: Bifurcation diagrams in which all four predation parameters are varied propor-

tionally to study the overall effect or predation strength. Different proportions between the

parameters can produce either supercritical (top) or subcritical (bottom) Hopf bifurcations.
Light gray depicts unstable limit cycles, while dark gray depicts stable limit cycles.
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is too weak relative to F-I predation, the insect population is kept low and cannot
transfer enough biomass, so the stable fixed point disappears through a saddle-node
bifurcation. Conversely, when the I-T predation is relatively strong, the fixed point
will lose stability to stable oscillations. In such oscillations, insects eat tadpoles quickly
and deplete the tadpole population, after which frogs eat the plentiful insects, depleting
that population, and then frogs give birth to many tadpoles, losing biomass themselves
until the insects rebound. When these oscillations become too dramatic, extinction is
the likely result.

4 Model with carrying capacities

With carrying capacities on frogs and insects, the dimensional governing equations
become

. IT
T = AT+ BF —
W BE =R T
. FI
F=aT —CF(1+LF
« ¢ (—|—N )+77F)\1+VI
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- A .
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4.1 Nontrivial equilibria

Without predation, a nontrivial equilibrium exists only if a—? > 1, which is also the
condition under which the origin is unstable. We wish to study a parameter regime in
which the system has nontrivial behavior before predation is added, so we shall assume
this inequality always holds. With predation, a nontrivial fixed point must satisfy

T=LF[C(1+ %F) —nrds +y1}

I
F:lT( )
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These algebraic equations cannot be solved explicitly for the equilibrium populations,
so we must resort to perturbation expansions and numerical solutions.

4.1.1 Perturbation of the nontrivial equilibrium by weak predation
Let the predation strength be small:
K= €K1 X= €M,

where € < 1. We can expand the equilibrium populations in € (e.g. T ~ To+€T1+O0(€?)),
going to first order to obtain the leading order impact of predation. At zeroth order,
i.e. without predation,

Ty=2(2% -1)N (13)
Fy = (% - 1)N (14)
Iy = M. (15)
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Figure 5: Bifurcation diagrams in which the relative strengths of the two types of predation
are varied. To study the variation of insect-tadpole predation strength (top), d and e are
varied proportionally (e = 2d), while frog-insect predation is kept constant (f = 2, g = 2.5).
To study the variation of frog-insect predation (bottom), f and g are varied proportionally
(f= %g), while insect-tadpole predation is kept constant (d = 2, e = 4). Light gray depicts
unstable limit cycles, while dark gray depicts stable limit cycles.
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The first order coeflicients in the expansions are
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Unlike the system without carrying capacities, this system has stable fixed points
without predation, so we may compare populations with and without predation. There
are parameter regimes in which only amphibians, or only insects, benefit from the
predation. There is also a regime in which predation hurts both species, for instance
when both species are bad at metabolizing each other. This situation is essentially
a prisoner’s dilemma; both species would benefit from a truce, but once a system of
reciprocal predation has evolved, it is hard to see how it could stop. Finally, there is a
parameter regime where the predation benefits both species by improving the efficiency
with which the entire tadpole-frog-insect system uses environmental resources. We will
call this a regime of population increase by mutual predation, or PIMP, and we now
look at this regime in further detail.

4.1.2 Population increase by mutual predation

Suppose the two types of predation occur with relative strengths given by K = % We
consider turning on predation with fixed K, so the signs of the total derivatives of T',
F, and I with respect to k (or \) dictate whether predation increases or decreases the
population biomasses at equilibrium. When € is small,

dr 0T oT:

I = o G T 0E),

dk 8&1 8>\1
and likewise for the other populations. Evaluated at k = 0, just as predation is turned
on,
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The signs of the above derivatives determine whether predation hurts or helps a species,
insofar as its equilibrium biomass decreases or increases. The regime of PIMP could be
defined by the condition that both species’ biomasses increase with predation, or by the
stronger condition that all three populations’ biomasses increase, and it is not obvious
which definition is more useful. Biologically, the advantage of a larger population is
that it is more fit because it is more genetically diverse and robust to catastrophe. In
that sense, it does not matter what life stage the amphibians are in because one life
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stage begets another, and our two-stage model is a simplification anyway. On the other
hand, it could still be catastrophic for an entire generation of tadpoles to be wiped out.
We will thus derive the conditions for PIMP using both the strong and weak definitions.

4.1.3 Conditions for strong population increase by mutual predation

All three derivatives with respect to k are positive, meaning the equilibrium biomasses
of insects and both amphibian life stages increase, if and only if

af
C(aﬂ o F+u(5e - )N
72—71)and7<K < .
3\"5¢ ~ nr T+ oM nnr
By the assumption that %? >1,2< %(2% — 1), so strong PIMP occurs if and only if
af
C(aﬁ 5+u(5e —1)N
5 (22 1) <K < nime. 16
525¢ nr T, e (16)

The ratio of predation rates, K, and the rate of reproduction, 3, can be changed by be-
havior, so they can vary on much shorter time scales than the other parameters, which
are controlled by physiology. Thus, we may regard K and (3 as control parameters. Re-
calling that ( = S —er, it is clear from Equations (13) and (14) that without predation,
changing the birth rate cannot increase frog and tadpole populations simultaneously;
only predation can do that. There exists an interval of K in which strong PIMP occurs

precisely when
C (0B
52

%C - 1) < . (17)
For this inequality to hold, it is necessary that metabolic losses not be too large, and
also that @ < v and 8 > (. That is, predation can only increase all three equilibrium
biomasses when frogs gain biomass through their interaction with the external environ-
ment, while tadpoles lose it. The biological interpretation of this parameter regime is
that frogs are more fit for their environment than tadpoles. Indeed, one could expect
this to be true; there are morphogenetic tradeoffs between juvenile and adult fitness,
and since frogs spend the majority of their lives in the adult stage, it is likely that they
would evolve to be maximally fit as adults. It is less clear that tadpoles would be so
unfit as to lose biomass without a constant input from reproduction, but this is certainly
feasible in harsh environments that create high juvenile mortality. So, in such a regime,
predation can increase all three biomasses by increasing the ratio of frog biomass to
tadpole biomass, with insects profiting as middlemen.

4.1.4 Conditions for weak population increase by mutual predation

Let A = T + F, the total amphibian biomass. Without predation, the equilibrium

amphibian biomass is
B+ 7) ( af )
Ag = —1)N.
’ ( gl (B — €r)

There is an optimal birth rate, §, that maximizes Ag. In the strong definition of PIMP
there is no such way to define an optimal 3 since there is always a tradeoff between T'
and F. When f is above its optimal value, too much of the frogs’ biomass is going into
tadpoles, who are less fit than the frogs. When [ is below its optimal value, the frog
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population becomes so large than environmental pressures make frogs less successful
than tadpoles.
The dependence of equilibrium amphibian biomass on weak predation is

af «
g Bty 1 25¢ —1+¢
¢ 1+vM %+u(%§— )N

dA

— MN
dr

o 7

Weak predation increases the equilibrium values of both A and I, thus satisfying the
definition of weak PIMP, if and only if

ap
o a B+ |3 tr(Ge DN B+~
2——-14+—=-< K
it Es ”F( ¢ ) 1+ vM <77”’F( C )
and clearly such a K exists if and only if
o o B+~
25 1+<<77an( ; ) (18)

This condition is harder to interpret biologically than the stronger condition of Equa-
tion (eq: strong PIMP necessary), but it has roughly the same necessary conditions; in
the parameter regime for which predation improves efficiency, the metabolisms cannot
be too inefficient, frogs cannot be too unfit, and tadpoles cannot be too fit.

Adding predation is like decreasing the rate of reproduction in that it transfers
biomass from tadpoles to frogs, though it is certainly not identical. We have not fully
explored the relationship between optimal § and optimal K, but this would be a good
topic for future work. For instance, we would like to know whether Equation (18)
can hold when the reproduction rate is at its no-predation optimal value, and how the
optimal reproduction rate changes in the presence of predation.

4.1.5 Beyond weak predation

We have seen analytically that there is a parameter regime in which PIMP occurs when
predation is weak, but we would like to know whether increasing the strength of the
predation will increase the equilibrium populations indefinitely. We have not tackled this
question analytically, but in all numerical experiments the populations reach a maximum
value before decreasing as predation is strengthened further. To use MATCONT, we
prefer to work with dimensionless parameters, so we apply the nondimensionalization
of Equation (4), the same one used for the system without carrying capacities.

. IT
T=-T+F—d—r: 1
* 1+T (19)
15“:aT—bF(1+iF)+g£ (20)
N 141
. IT FI
= _ L —
I=cl(1= D)+ e —fi7 (21)

where M and N have been nondimensionalized in the same way as I and F', respectively.
In terms of dimensionless quantities, the regime of strong PIMP given by Equa-
tion (16) becomes

d 1+(%-1)N
2 —b)= <« — b 77

(2 )g 1+ M
An example case that falls in this regime has (a,b,¢) = (2,1,1), (M, N) = (1,1), and the
predation parameters in fixed proportion such that e = 2d, f = d, and g = 4d. Figure 6

< £
f.
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displays the variation of equilibrium populations with predation strength. Starting
with no predation and increasing the predation parameters in fixed proportion, we
initially see increases in all three equilibrium populations, as predicted by the asymptotic
analysis, followed by decreases in all three populations. Insect population appears to
go to zero as predation goes to infinity, while frog and tadpole populations appear to
decrease asymptotically to the same finite value. Although it might be possible for the
amphibians to predate the insects to extinction, it is not in their interest to do so; this
strategy does not maximize their equilibrium population.

3

250 e g LA

Equilibrium population

0.5 - ]

T

Figure 6: Equilibrium populations as predation strength is varied in the strong PIMP

regime. Fixed parameters parameters are (a,b,c) = (2,1,1) and (M, N) = (

1,1). Predation

parameters are varied in constant proportion with e = 2d, f = d, and g = 4d.

4.2 Numerical exploration of parameter space

We have searched for bifurcations in parameter space using MATCONT, but we have not
found any in regimes where PIMP occurs; we simply observe the equilibrium changing
its coordinates while remaining stable. In other parameter regimes we find supercritical
Hopf bifurcations but no saddle-node bifurcations. The Hopf bifurcations observed in
this system were of a different character than those in the system without carrying
capacities. In that system, continuing in parameter space past a Hopf bifurcation typi-
cally led to growing oscillations and, ultimately, extinction. In the system with carrying
capacities, a limit cycle may appear and grow as we move through a Hopf bifurcation,
but as we continue through parameter space, it ultimately shrinks and disappears back
into a stable equilibrium. So, it seems limit cycles occur only in isolated regions of
parameter space where certain resonances are strong. This significant qualitative dif-
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ference from the system without carrying capacities is due to the damping effect of the
carrying capacities.

5 Conclusions

In the model without carrying capacities, we examined the regime in which the insect
and frog-tadpole systems decay without predation. Predation can create stable fixed
points and limit cycles, though the limit cycles are not robust and rather unrealistic
biologically, so in this model the two species are completely codependent. For this
stabilization to occur, predation must be above a certain minimum strength, and the
relative strengths of insect-tadpole and frog-insect predation must be within a certain
interval. There are biological parameters for which a fixed point and a limit cycle are
simultaneously stable, but we have not found parameters for which nontrivial stable
fixed points coexist.

In the model with carrying capacities, both species exist stably without predation.
Depending on the biological parameters, predation may increase or decrease the equi-
librium populations in any combination. Fixing all biological parameters other than
predation rates, we have seen that mutual predation can increase all of the equilibrium
populations simultaneously. However, there always exists an optimal rate of reproduc-
tion that maximizes the equilibrium biomass of amphibians, and we have not determined
whether predation can only increase all populations simultaneously by effectively de-
creasing the rate of reproduction toward its optimal value. If this is the case, we must
ask whether it is biologically realistic for the amphibians to habitually reproduce at a
non-optimal rate, and if not, we would conclude that population increase by mutual
predation is not biologically relevant in the long term. This is both a mathematical and
biological question for future study.
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7 Appendix: The Holling type II functional form

The simplest system in which the Holling type II functional form could appear is a 2D
predator-prey model. However, the justification for using this specific form in such a
model is not clear a priori. A quadratic predation term that is proportional to both
predator and prey populations would not require much justification since it represents
leading order behavior at the very least, but such a term produces unrealistic exponential
growth in the system. However, building on the work of Whitehead and Doering [4], we
can create a dichotomy between hungry predators sated predators and use only linear
and quadratic terms in the resulting 3D system, and then find that in the appropriate
limit it reduces to a 2D predator-prey system with Holling type II predation laws. The
functional forms of the 3D model do not require justification since they are the simplest
laws that could capture the necessary behavior. To evaluate the accuracy of the reduced
system with Holling type II laws, we shall compare its features to those of the full 3D
system.
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7.1 The 3D system
The 3D system consists of hungry predator (H), sated predators (S), and prey (P):

H = —¢PH + uS — 6H + 3S
S = ¢PH — S — 68
P=-¢PH+~P(1- L)

Hungry predators eat prey at rate ¢ and become sated predators, while sated predators
metabolize and become hungry at rate p. Both hungry and sated predators die at rate
4, and sated predators give birth to hungry ones at rate 8 > §. The prey is being
born according to a logistic law. In a more accurate model, the ¢ and § constants in
the different equations could take different values, but this would only add parameters
without changing any qualitative results.

To reduce the order of the system, we will consider the limit of large metabolism
rate, i.e. p > f3,9,7. To see how each variable should scale with p, we consider the
three-species equilibrium,

At equilibrium, there is O(u) more prey than predators. This motivates us to scale the
prey variable in u, so we nondimensionalize the system by

HH%h S»—>%s PH%X tH%T.

The nondimensional 3D system is

where

@ o
I
Tl &R >

€

We shall consider the singular limit where a predator eats many times in its life, i.e.
€ < 1. The parameter b is the ratio of predator birthrate to death rate, g is the ratio
of prey birthrate to predator death rate, and N is the dimensionless carrying capacity
of the environment for prey. Note that predator and prey populations are in different
units, so their numerical values can not be meaningfully compared.

7.2 Reduced systems

The 3D system’s behavior can only be well approximated by a two dimensional system
if its behavior is roughly two dimensional, for instance this implies that it must not be
chaotic. There must be a two-dimensional slow manifold in phase space on which all
solutions approximately lie, possibly after some transient behavior as the component
of the solution on the fast manifold rapidly decays. Reduction of order is achieved by
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projecting the full system onto the slow manifold. To find the slow manifold, we observe
that the system is linear in h and s if X is regarded as a known function of time:

()= i) ()

The eigenvalues of this system are

1X+1 1X+1 4bX
A =—- 12T
S e 2 tex T
To first order in ¢,
bX
A =—-14+4——+0
+ +X+1+ (€)
1 bX
A =—-X+1)—-14—— .
6( +1) +X+1+O(e)

The A} eigenvalue is O(1), while the A_ eigenvalue is negative and O(%), so solutions
decay quickly along the direction of the A_ eigenvector and move more slowly in the
A4 direction. Thus at a given X, the A_ vector is tangent to the fast manifold, and the
A4 vector is tangent to the slow manifold.

7.2.1 Full 2D system

The A\, eigenvector yields a proportionality between s and h on the slow manifold as a
function of X,

1
T o1+ eb)

This relation may be used to reduce the dynamical system by eliminating either A or
s, but since we are ultimately concerned with the total number of predators, we define
Y = h+s and work in this variable. Applying the above s(h) relation to the 3D system,
we obtain our 2D reduction,

(X S+ /(X F1)2 +4ebX>h.

21+ eb) XY
X+ 1+ /(X +1)2 + 4ebX + 2¢b
(X =14 /(X +1)2 + 4ebX ) bY
X+ 1+ /(X +1)2 + 4ebX 4 2¢b’

X=gX(1-%)-

Vo _

7.2.2 O(e) 2D system
If we approximate the s(h) relation to O(e), we obtain a simpler relation that still
captures some affects of finite e,
2
s=(X- e%)h + O(€%).
The O(e) truncated reduced system is
XYy bX 3y
1+ X (x+1p

. bXY  B2X2Y
V=Y - .
T x X

X:gX(lf%)
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7.2.3 Holling type II 2D system

If we truncate further and retain only the O(1) term in e,
s =hX +O(e).

Using this simple proportionality we recover the Holling type II functional form.

: Xy
X=gX(1-2)- ——
XU =¥ - 1%
: XY
Y=-Y+ ——.
TTrx

The form % goes by various other names in other fields, such as the Jacob-Monod

form in microbiology or the Michaelis-Menten form in enzyme kinetics.

7.3 Comparison of system behaviors

To understand what has been lost by projecting onto the slow manifold, as well as
by truncating in €, one must compare the behavior of the full 3D system with the
behaviors of the reduced 2D systems. There is no unique measure of the quality of the
approximation; different properties are approximated better than others, so the value
of the approximation depends ultimately on what properties are of interest.

For the 3D system, we ignore the separate dynamics of the h and s variables and
consider only their sum, Y, because this is the quantity of interest and the one that
compares directly to the 2D models. As we demonstrate below, all four models have
the same qualitative behavior, some representative phase portraits of which are given in
Figure 7. There is a trivial equilibrium at the origin representing mass extinction, but
it is always unstable. There is a prey-only equilibrium, stable only when b and N are
small. That is, when predators are not born too fast, and saturation population of prey
is not too large, both factors that would inhibit predator success. When b and N are a
bit larger so conditions are a bit better for predators, the prey-only equilibrium becomes
unstable as a stable two-species equilibirum becomes physical and splits off from it in
a transcritical bifurcation. The two-species equilibrium is a plain sink initially and
becomes a spiral sink at larger b and N. When b and N are increased further still,
the two-species equilibrium undergoes a Hopf bifurcation, losing its stability to a limit
cycle. All orbits are bounded for all parameter values. Since all four systems share
this qualitative picture, the effects of approximation appear only in the quantitative
differences between, say, equilibria and limit cycle locations, or bifurcation values.

7.3.1 Equilibria

At all parameter values, all four systems have equilibria at the origin and at (X,Y) =
(N,0). Solving for the nontrivial two-species equilibria, we obtain Yy = bb_—gl( — %) for
all four systems, though the X, value may vary between systems. Clearly the nontrivial
equilibrium is only physical (Yy > 0) when Xj is less than N, the prey-only saturation
population. That is, such equilibria never represent mutualistic solutions. The Xj
values for the two-species equilibria in each system are tabulated in Table 2. The X
value for the O(e) system is more cleanly expressed implicitly by the cubic equation
of which it is the only positive real root. The full 2D system has exactly the same
equilibrium as the 3D system, while the truncated systems have different two-species
equilibria, which converge to the 3D value as ¢ — 0.
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Figure 7: Sample phase portraits representing all four possible qualitative behaviors, con-
sidering IV as the control parameter: stable prey-only equilibrium (upper left), stable two-
species equilibrium with plain sink (upper right), stable two-species equilibrium with spiral
sink (lower left), and a limit cycle around the two-species equilibrium (lower right). These
portraits were generated by integrating the 3D system with b =2, g =1, and € = 0.5.
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Table 2: Locations of the two-species equilibria in the four models.

Model Xo Yo
3D % bl)Tgl(l — N%Ij_fl)
Full 2D Lt w4 (1- 5o
O(e) 2D b-DX3+(20—e? —3)XZ+(-3)Xo-1=0] 241X
Holling type II 2D . 74 (1 - 5o

7.3.2 Linear stability

To analyze the linear stability of the three equilibria in all four systems, we linearize
each system about an arbitrary point, (hg, s, Xo), or (Xo, Yp)-

3D system
g [ A (£ Xo+1)  L14b —Lhg Ah
pr As | = %XO —(% +1) %ho As
AX -X, 0 —ho+g(1 —E0)) \AX

Full 2D system

i AX _ mxx mxy AX h
at \AY ) = \myx myy ) Ay ) WHE

2X0 XO 2(]. + Eb)YO
mxx =g(1-—)—(1-
N V(X0 +1)2+4ebXo/ 1+ Xo + /(Xo + 1)2 + 4ebXg + 2¢b
2(1 + Gb)XO
mxy =
1 + X() + \/(X() —+ 1)2 —+ 4€bX(] + 2¢eb
( b ) 2(1 + b)Yy
myx =
V(X0 +1)2 +4ebXo /) 1+ Xo + /(X0 + 1)2 + 4ebX + 2¢b

1
Mmyy = -1 - Z<X0 + 1+ \/(XO + 1)2 +4€bX0>

O(e) 2D system

2X Y, 3bX3Ye X bX3
i AX — g(l N TO) - (1+)%0)2 N 6(1+)%0)04 - 1+§(0 - 6(1JrX00),3 AX
dt \AY ] — bYy b* (X3 —2X0)Yo bX x|\ AY

(1+X0)? Te (14+X0)4 1+Xo 1

Holling type II 2D system

LAY - O it T (3
dt \AY (e i 1) \AY

About the origin, every linearized system has an eigenvalue of g, which is positive,
so the extinction equilibrium is always unstable. Linearizing about the prey-only equi-
librium, one finds that each system goes unstable according to the same parameter
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inequalities that determine when the two-species equilibrium exists. This is as expected
from a transcritical bifurcation; the stability of the prey-only equilibrium changes pre-
cisely when it collides with the two-species equilibrium, which is also the moment when
that equilibrium becomes physical. As for the two-species equilibrium, we can study its
stability analytically in the Holling type II system, but the other linearized systems are
messy, so we solve their stability eigenproblems numerically.

7.3.3 Stability of the two-species equilibrium in the Holling type II
2D system

The Holling type II system linearized about its two-species equilibrium is

« b+1 1
8- &)
1

dt gb—1-%) 0
The stability of the two-species equilibria is not hard to compute analytically for the
Holling type II system. The characteristic equation of the linearized system is

2_ 9 b+1 9 1y _
pL 5(1 - N(H))wr 2o-1-4)=o.

For the two-species equilibrium to exist, the O(1) coefficient of the characterisitc equa-
tion must be positive. Thus, solving the quadratic equation for A, the discriminant will
either be imaginary or of smaller magnitude than the O(X) coefficient. Either way, both
eigenvalues will be negative (the equilibrium will be stable) if and only if the O(\) co-
efficient is positive, i.e. when N < %. When N exceeds this value, all three equilibria
are unstable. We later prove that all orbits are bounded, so the Poincaré-Bendixon
theorem will guarantee that the system converges to a limit cycle.

7.3.4 Bifurcations

The transcritical bifurcation occurs when Yy exceeds zero, which occurs when the X
expressions reported in Table 2 are less than V. For each system, this is possible only
when b > 1. The exact relation between b and N at the bifurcations are given in Table
3. Note that from a point in parameter space where the prey-only equilibrium is stable,
the bifurcation may be produced by increasing either b or V. The point in parameter
space where the Hopf bifurcation occurs has a simple analytic expression for the Holling
type II model, so this is also given in Table 3. For the other models, the IV at which the
Hopf bifurcation occurs was computed numerically for given values of b, g and ¢, and
some representative results are plotted in Figure 8. The 3D transcritical bifurcation
depends only on b, N and ¢, while the Hopf bifurcation depends also on g, but quite
weakly so. It is clear from Figure 8 that the full 2D model captures the transcritical
bifurcation perfectly, while the truncated models are inaccurate when € becomes large.
At the Hopf bifurcation, the full 2D model captures the 3D behavior imperfectly, but
again much better than the truncated models.

7.3.5 Lyapunov stability

Each system undergoes only the two bifurcations we have studied and has no other
fixed points. All that remains is to verify that in each system the orbits are bounded
for all parameter values. We shall do this by the Lyapunov method for the 3D system
and the Holling type II 2D system. We shall not prove boundedness for the other two
systems, whose algebraic nonlinearities would make it a cumbersome task, but we can
feel confident in its veracity.
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Table 3: Bifurcation points of the four models. For the O(¢) model, X is defined implicitly
by the formula given in Table 2.

Model Transcritical bifurcation | Hopf bifurcation
3D 0< s <N
Full 2D 0< ﬁ <N Found numerically
O(e) 2D 0<Xp<N
Holling type II 2D 0<;5 <N MISN

Holling type II 2D system Examining the X equation, we see that X < 0
whenever X > N. Thus, if X < N at the initial condition, it remains true for all time.
To put an upper bound on Y that is valid for all parameters, we must consider X and
Y together in a Lyapunov functional.

Let L = X + %Y. The proportionality between X and Y is chosen such that the

nonlinear Holling type II terms in L cancel:
L=gX(1-%)-3Y.

Our goal is to bound L by an affine function of L, i.e. L < a — L, where 3 > 0. This
will imply that L < % for all time if it is true initially. To bound L by such a term we
must bound the quadratic X term by an affine function of X with a negative coefficient
on X. Any line tangent to the parabola at X, > % will suffice, but we seek the line
that minimizes %, thereby providing the optimal bound on L. An arbitrary tangent
line gives the bound

which induces a bound on L,

L < )1(\; —min{QJ)\(f* -1, %}L.
Thus,
X2
L < inf — % I
X.>N/2 len{ ~ — Lt

Assuming the above infimum occurs at an X, such that % -1< %, the optimal choice
of X, in fact contradicts the assumption when b > 1. So, the minimum must be %,
meaning that X, > % (1 + %) > N. The bound on L then becomes

2
L< inf 2= =X@py1)2
x>¥a+d) N al )

Putting this in terms of X and Y, and adding the known bound on X alone,
X <min{ (1452 - LY, N}.

3D system Let L =h+ as+ $X. To make the hX terms to vanish from L, we let

b= “T’l, which clearly requires a > 1 for 3 to be positive. Thus,

Lz—[%—l—l— (%—&-b)/a]as—h—l—%(a—l)gX(l—%)
< —-m(a)L + %(a— 1)X[(g—|—m(oz)) — %],
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Figure 8: Values of N as a function of € at the transcritical and Hopf bifurcations for all
four systems with b = 2 and g = 1. For the transcritical bifurcation, the full 2D systems
coincides with the 3D system.

where m(a) =min {1,2 +1— (£ +b)/a}. We now bound the quadratic X term by its
maximum value without bothering to find the optimal bound linear in X.

L<—-m(a)L + %g(a ~1)(g9+ m(a))Q.
This yields a bound on L that can be optimized over all allowable a:

. N a—1 2
L < inf 32005 (g+m(a))”.
Assuming the infimum occurs when m(«) = 1 implies that the optimal bound is obtained
by choosing @ = 17, which contradicts m(a) = 1. Let o > 11-:2})’ giving our best result
for a bound on the Lyapunov functional:

N a—1

2
L < inf + 14— k),
a> 1145:: 4€2g 1 € — 14;517 (g )

[}

The optimal bound can be calculated given the other parameters, but the more impor-
tant conclusion is that some such finite bound always exists for L.

7.3.6 Summary of results

Our analysis strongly suggests that X and Y have the same qualitative behavior in all
four systems, though to make this result rigorous, one needs Lyapunov bounds on the
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full 2D and O(e) 2D systems, and one needs to show analytically that a Hopf bifurcation
occurs in all systems as it does in the Holling type II system. Trusting that the systems
indeed all have the same behavior, they differ only quantitatively. We have seen that
the full 2D system has the same two-species equilibrium as the 3D system, while the
truncated systems do not, and quantitative differences in bifurcation values were shown
already in Figure 8.

Phase portraits produced by the different models appear in Figure 9. Although the
2D systems began with the same initial conditions, we must compare them each to
their own corresponding 3D solution because they each correspond to slightly different
decompositions of Y| into hy and sg. However, the three 3D solutions tend to be quite
similar. The top row of Figure 9 shows solutions at small N, when the prey-only
equilibrium is stable. The prey-only equilibrium is identical in all four systems, so the
phase portraits agree well even for € = 0.5. The middle row of Figure 9 shows solutions
for larger N, when the two-species equilibrium is stable. The different systems agree
well when e is 0.05, but at 0.5 the locations of the equilibria differ significantly, so the
respective phase trajectories spiraling towards them are quantitatively quite different.
The bottom row of Figure 9 shows long-time solutions at still larger N. When € is 0.05,
the limit cycles of the full 2D and O(e) 2D systems approximate the 3D limit cycle
quite well, while the Holling type II system does a bit worse. When ¢ is 0.5, the Holling
type II system’s limit cycle is much too large, the full 2D system’s is too small but a
bit better, and the O(e) 2D system has not yet gone through the Hopf bifurcation.

The full 2D system approximates the 3D system well for € < 0.5, while the Holling
type II 2D system is quantitatively accurate only when e is an order of magnitude
smaller. We wish to extrapolate these truths to other models where the Holling type
IT or full-order-in-e functional forms might be used as predation laws without repeating
their rigorous derivation from a higher-order dynamical system. If € is very small,
or if one is only concerned with qualitative features, as is often the case in biological
modeling, the Holling type II functional form is certainly satisfactory. If € is closer
to unity, and the quantitative properties of the system matter, as is often the case in
enzyme kinetics, the full-order-in-e functional form would be a better choice. The O(e)
functional form probably offers neither enough simplicity nor accuracy to be chosen
over the other two.
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Figure 9: Phase portraits of all four systems for values of N with e = 0.05 (left) and e = 0.5
(right), and b = 2, ¢ = 1. All solutions began at (2,2), but only the late-time behavior
is shown in the bottom two plots to make the limit cycles clear. The asterisks are the
equilibria of the different systems, which always coincide for the 3D system and the full 2D
system.
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