
Concepts from linear theory
Extra Lecture

Ship waves from WW II battleships and a toy boat.

Kelvin’s (1887) method of stationary phase predicts both.



Concepts from linear theory

A. Linearize the nonlinear equations

B. Solve the linearized equations

C. Linearized dispersion relation
 – phase velocity

 – group velocity

D. Other predictions from linear theory
 – gravity waves and capillary waves

 – shallow water vs. deep water

 – paths of fluid particles



Nonlinear equations of motion

for an irrotational flow, with no forcing from

wind:

 on z = !(x,y,t),

 on z = !(x,y,t),

         -h(x,y) < z < !(x,y,t),

on z = -h(x,y).
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Linearize these equations

  about a trivial solution {" = 0, ! = 0}

 on z = !(x,y,t),

 on z = !(x,y,t),

         -h(x,y) < z < !(x,y,t),

on z = -h(x,y).
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Linearize these equations

  about a trivial solution {" = 0, ! = 0}

 on z = !(x,y,t),

 on z = !(x,y,t),
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Linearize these equations

  about a trivial solution {" = 0, ! = 0}

 on z = !(x,y,t),

   0

 on z = !(x,y,t),

  0

         -h(x,y) < z < !(x,y,t),

 0

on z = -h(x,y).
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Linearized equations

For small amplitude waves on a flat bottom:

      on z = 0,

       gravity,           surface tension

                  -h < z < 0,

       on z = -h.

Also need boundary conditions in (x,y), plus initial conditions.
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Solve the linearized equations

1. Preliminary problems

a) Find bounded "(x,y,z,t) such that:

" = a sin (kx)   on z = 0,

-h < z < 0,

on z = -h.
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"
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Solve the linearized equations

1. Preliminary problems

a) Find bounded "(x,y,z,t) such that:

" = a sin (kx)   on z = 0,

-h < z < 0,

on z = -h.

    Solution:! 

"2# = 0

! 

"
z
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" = a
cosh(k(z + h))

cosh(kh)
sin(kx)



Solve the linearized equations

1. Preliminary problems

a) Find "(x,y,z,t) such that:

" = a sin (kx)   on z = 0,

-h < z < 0,

on z = -h.

    Solution:

b)  Change bottom boundary condition to

as

! 

"2# = 0

! 

"
z
# = 0,

! 

" # 0

! 

z"#$
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" = a
cosh(k(z + h))

cosh(kh)
sin(kx)



Solve the linearized equations

1. Preliminary problems

a) Find "(x,y,z,t) such that:

" = a sin (kx)   on z = 0,

-h < z < 0,

on z = -h.

    Solution:

b)  Change bottom boundary condition to

as

  Solution:

! 
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" = a # e|k|z sin(kx)
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" = a
cosh(k(z + h))

cosh(kh)
sin(kx)



Solve the linearized equations

1. Preliminary problems

a) Find bounded "(x,y,z,t) such that:

" = a sin (kx)   on z = 0,

-h < z < 0,

on z = -h.

    Solution:

c)  Change top boundary condition to

  " = a sin(kx) cos(ly)  on z = 0.

  Solution:

! 

"2# = 0

! 

"
z
# = 0,

! 

" = a
cosh(k(z + h))

cosh(kh)
sin(kx)



Solve the linearized equations

1. Preliminary problems

a) Find bounded "(x,y,z,t) such that:

" = a sin (kx)   on z = 0,

-h < z < 0,

on z = -h.

    Solution:

c)  Change top boundary condition to

  " = a sin(kx) cos(ly)  on z = 0.

  Solution: ,    #2 = k2 + l2

! 

"2# = 0

! 

"
z
# = 0,

! 

" = a
cosh(k(z + h))

cosh(kh)
sin(kx)

! 

" = a
cosh(#(z + h))

cosh(#h)
sin(kx)cos(ly)



Solve the linearized equations

2. Rewrite in complex notation

" = Re {a eikx +ily } on z = 0,

-h < z < 0,

on z = -h.

3. Use these functions to satisfy boundary

conditions at z = 0

(the linearized approximation for the free surface).
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Solve the linearized equations

3. Linearized problem

on z = 0,

-h < z < 0,

on z = -h.
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Solve the linearized equations

4. Linearized problem

on z = 0,

-h < z < 0,

on z = -h.

Substitute in one Fourier mode:! 
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Solve the linearized equations

4. Linearized equations at free surface:

on z = 0,

Find linearized dispersion relation:

Frequency   gravity   surface tension    water depth       wavenumbers
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Solve the linearized equations

5. Linearized dispersion relation

General fact:  If a system of linear evolution
equations has a dispersion relation, it
encodes all the important information
about wave propagation in those
equations.
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Solve linearized equations in 2-D

5. Linearized dispersion relation in 2-D  (       )

Define

so

Then construct general solution of linearized
problem in 2-D:
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    Linearized solution in 2-D,

    right-going waves

x

Re{ei(kx-$t)}
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B. Linearized dispersion relation, 2-D

1. The dispersion relation

For a right-going wave,

Define the phase velocity,

For each k, its wave crests move with speed cp(k).
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 Linearized dispersion relation, 2-D

2. For any dispersion relation of one variable, $(k),

define phase velocity     group velocity.

! 

cp (k) =
"(k)

k
,

! 

cg (k) =
d"

dk



Linearized dispersion relation, 2-D

2. For any dispersion relation of one variable, $(k),

define phase velocity     group velocity.

a) For wave equation in 1-D, $ = ck  !

All waves travel with same speed

! nondispersive.

! 

cp (k) =
"(k)

k
,

! 

cg (k) =
d"

dk

! 

cp = cg = c



Linearized dispersion relation, 2-D

2. For any dispersion relation of one variable, $(k),

define phase velocity     group velocity.

a) For wave equation in 1-D, $ = ck  !

All waves travel with same speed

! nondispersive.

b) If    then waves with different k move with
different speeds ! dispersive.

c) Water waves are dispersive.
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Significance of group velocity

Add two wave modes, with slightly different

wave numbers: {k, k + %k}  (%k << k)

and frequencies:  {        }

! 
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dk
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"(x, t) = sin{kx #$t}+ sin{(k + %k)x # ($ + cg%k)t}



Significance of group velocity

Add two wave modes, with slightly different

wave numbers: {k, k + %k}  (%k << k)

and frequencies:  {        }

! 
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Significance of group velocity

Add two wave modes, with slightly different

wave numbers: {k, k + %k}  (%k << k)

and frequencies:  {        }

!

fast oscillation slow modulation
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Significance of group velocity

fast oscillation slow modulation

Wave crests (fast oscillations) travel with

the phase velocity

The wave packet (slow modulation) travels with

the group velocity

(see wikipedia movie: “group velocity”)
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"(x, t) # 2sin{k(x $ cpt)} % cos{
&k

2
(x $ cgt)}



Significance of group velocity

fast oscillation slow modulation

If           , the largest wave in a wave group only

dominates for a limited time

! surfing is impossible for very dispersive waves.

Surfing only works where

! 

"(x, t) # 2sin{k(x $ cpt)} % cos{
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2
(x $ cgt)}

! 

cp " cg

! 

cp " cg



Significance of group velocity

Another argument that also shows that
wave packets travel with the group
velocity is based on Kelvin’s (1887)
method of stationary phase.  That line
of reasoning leads to concrete formulae
for the long-time behaviour of a
dispersive wave system.

[See homework set 2.5.]



Linearized dispersion relation, 2-D

3. With no surface tension (“gravity waves”)
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C. Predictions from linear theory, 2-D

1. If no surface tension (“gravity waves”)

For gravity waves, long waves travel faster than
short waves (recall Stoker’s “video”)
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How fast can ocean waves travel?

2. Max phase speed of gravity waves =

• Height of Mt. Everest – 8848 m

• Deepest point in ocean (near Guam) – 11,000 m

• Fastest gravity wave in ocean – 328 m/sec

= 1182 km/hr = 734 mi/hr

• Speed of sound in air (at 10°C) = 340 m/sec

• Speed of sound in water (at 10°C) = 1450 m/sec

! 

gh



How fast can ocean waves  travel?

2. Max phase speed of gravity waves =

• Height of Mt. Everest – 8848 m

• Deepest point in ocean (near Guam) – 11,000 m

• Fastest gravity wave in ocean – 328 m/sec

= 1182 km/hr = 734 mi/hr

• Speed of sound in air (at 10°C) = 340 m/sec

• Speed of sound in water (at 10°C) = 1450 m/sec

• Depth of Bay of Bengal (tsunami) – 3500 m

• Speed of tsunami – 185 m/sec = 670 km/hr = 415 mph

! 

gh



Predictions from linear theory, 2-D

3. With surface tension, in deep water

      gravity waves          capillary waves

minimum phase speed at    L = 1.73 cm
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Predictions from linear theory, 2-D

3. With surface tension, in deep water

       gravity waves     capillary waves

• For gravity waves, long waves travel faster than
short waves. (recall Stoker’s “video”)

• For capillary waves, the opposite happens.

• Including surface tension guarantees a
minimum phase speed, and a minimum group
speed
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Predictions from linear theory, 2-D
3. With surface tension, in deep water

• For gravity waves, long waves travel faster than short waves.

• For capillary waves, the opposite happens.

• Including surface tension guarantees a minimum phase speed, and
a minimum group speed



Predictions from linear theory, 2-D

3. With surface tension, in deep water

      gravity waves     capillary waves

• For every (long) gravity wave, there is a (short)

capillary wave with the same phase speed

[Remote sensing of ocean waves depends on this.]
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A 2-dimensional surface pattern of nearly permanent form,
propagating in shallow water. Small capillary waves can be
seen on the front faces of the steepest gravity waves.

 (Hammack et al, 1995)



Predictions from linear theory, 2-D

4. Back to gravity waves (no surface tension)

“shallow water”   “long waves”:

“deep water”        “short waves:

What does “deep” mean?

! 

cp =
"

k
= gh

tanh(kh)

kh kh

cp
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kh <<1, cp " gh
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kh >>1, cp "
g
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Predictions from linear theory, 2-D

5. Gravity waves in “deep water”

Suppose   & = h !  kh = 2!h/" = 2! 

!   tanh(kh) = 0.999993
! 

cp =
"

k
= gh

tanh(kh)

kh

"

h



Predictions from linear theory, 2-D

5. Gravity waves in “deep water”

& = h !  kh = 2! 

Horizontal velocity:

! Only long waves create motion at bottom

(relevant for fishing, and garbage disposal)

"

h

! 

u(x,z,t) = asin(kx "#(k)t)
cosh(k(z + h))

cosh(kh)

! 

u(z = "h)

u(z = 0)
= 0.0037



Particle paths, from linear theory

6. For a right-going wave, wave crests move
to right with fixed speed, cp(k).

Where do fluid particles go?

Nonlinear ODEs (hard to solve)

Approximate:  Assume x(t) and z(t) do not change
much.

! 

Dx

Dt
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,
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.



Particle paths, from linear theory

!
! 

Dx

Dt
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cosh(k(z0 + h))

cosh(kh)
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.
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.



Particle paths, from linear theory

!

!

!  elliptical orbit  (to first approximation)

! 

Dx

Dt
= u(x,z,t) ~ acos(kx0 "#(k)t)

cosh(k(z0 + h))

cosh(kh)
,

Dz
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cosh(kh)
.

! 
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#
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,
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sinh(k(z0 + h))

cosh(kh)
.
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2
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2
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Particle paths, from linear theory

Motion of marked fluid particles over one wave period. Orbits
are nearly circular near the top of this flow, and
approximately elliptical at every level. From Wallet &
Ruellen, 1950.

Stokes showed that at second order, there is a slow drift near
the free surface (“Stokes drift” ). The drift is visible in this
photo.



End of summary of linear theory

Lecture 3 explores the Hamiltonian nature

of the (nonlinear) water wave equations.


