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1 Introduction

The upper ocean can support energetic flows at scales smaller than the order 100 km
mesoscale eddies. Sharp surface fronts associated with strong along-front currents emerge
in high-resolution numerical simulations [8, 16] and are observed in the wintertime mid-
latitude ocean [7]. These submesoscale flows are associated with large vertical fluxes of
both physical and biogeochemical tracers and may thereby regulate the uptake of heat and
carbon from the atmosphere [8, 17, 11]. What drives these submesoscale flows?

Two mechanisms have been proposed: surface frontogenesis [19, 28] and mixed layer
instabilities [3]. The process underlying surface frontogenesis can be understood with quasi-
geostrophic (QG) dynamics [32]. In the interior of the ocean, when a strain field increases a
horizontal buoyancy gradient, an ageostrophic circulation develops according to the omega
equation [13] and acts to oppose the increase of the buoyancy gradient. Light water down-
wells on the dense side and dense water upwells on the light side of the buoyancy gradient.
At the surface, however, the vertical velocity must vanish and the ageostrophic circulation
cannot act to oppose the increase of the buoyancy gradient in the same way—the mesoscale
strain field is left to create strong surface fronts.

The simplest model of these dynamics is the surface QG model [10, 32, 1, 12]. It assumes
an infinitely deep ocean with constant interior potential vorticity (PV),

∇2ψ +
∂

∂z

(
f2

N2

∂ψ

∂z

)
= 0, (1)

where ψ is the geostrophic streamfunction, f is the Coriolis frequency, and N the buoyancy
frequency, such that the dynamics are completely determined by the advection of buoyancy
at the surface,

∂b

∂t
+ J(ψ, b) = 0, (2)

where b = f∂ψ/∂z is buoyancy and

J(a, b) =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
(3)

is the Jacobian operator. This supplies the boundary condition for the elliptic problem (1).
Straining by mesoscale eddies creates sharp buoyancy gradients and strong associated flows
at the surface. Secondary instabilities lead to eventually fully turbulent dynamics [12],
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for which Kolmogorov-like dimensional arguments predict the energy spectrum in the sub-
mesoscale range to scale like Ekh ∼ kh

−5/3 in an inertial range in which surface buoy-
ancy variance is cascaded to small scales [1]. If non-QG dynamics are taken into account,
ageostrophic advection of buoyancy further accelerates frontogenesis and leads to frontal
collapse, the formation of true discontinuities [14]. In this case, the submesoscale energy
spectrum is modified to Ekh ∼ kh−2 [4].

As opposed to what is assumed in surface QG dynamics, however, the upper ocean
does not have a nearly constant PV. Instead, there is typically a weakly stratified mixed
layer with low PV overlying a strongly stratified thermocline with high PV. There is a
sharp step-like increase in PV at the base of the mixed layer. This PV step is dynamically
important, because it supports edge waves that have the potential to interact with surface
edge waves and thus produce a baroclinic instability in the mixed layer [3]. In winter, when
mixed layers are deep, this mixed layer instability occurs at scales of 1–10 km, so it has the
potential to energize submesoscale turbulence.

The importance of mixed layer instabilities is hinted at by the observation that sub-
mesoscale turbulence undergoes a seasonal cycle. Both modeling [22] and observations [7]
suggest that submesoscale turbulence is energized in winter and suppressed in summer.
Mixed layer instabilities are expected to undergo a strong seasonal cycle, following the sea-
sonal cycle of mixed layer depth itself. In the frontogenetic picture, on the other hand,
submesoscale turbulence is driven by mesoscale eddies that do not exhibit a strong seasonal
cycle.

The goal of this report is to understand the dynamics of mixed layer instabilities and
of the turbulent dynamics that emerge when these instabilities grow to finite amplitude.
We formulate a simple QG model consisting of two constant-PV layers representing the
mixed layer and the thermocline, coupled at a deformable interface. Despite its simplicity,
this model captures both mesoscale and mixed layer instabilities and thereby a number
of fundamental aspects of submesoscale dynamics. The model also allows straightforward
comparison to surface QG dynamics, in which no mixed layer is present.

We use QG scaling to formulate the dynamics of our model, which requires small Rossby
and Froude numbers [24]. Typical mesoscale Rossby and Froude numbers are on the order
0.1 and increase slowly with wavenumber if the submesoscale is energetic [7]. To leading
order, submesoscale flows are thus expected to follow QG dynamics. Higher-order effects
can become important at submesoscales, however, and we take up the discussion of non-QG
effects in the conclusions.

2 Model formulation

Consider two layers of constant PV on an f -plane, with constant stratification and constant
mean shear (Fig. 1). The upper layer represents the mixed layer, which has a mean depth h,
stratification Nm, and mean shear Λm. The lower layer represents the thermocline and has
stratification Nt and mean shear Λt. The total depth is H. The layers are coupled by a
deformable interface; a rigid lid condition is applied at the surface; a flat bottom condition
is applied at the bottom. The presence of a bottom at the base of the thermocline is not
realistic, but we will see that the bottom layer will still represent important properties of
the thermocline. The approximation that the stratification is discontinuous at the base of
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Figure 1: Schematic of the model setup in a vertical–horizontal plane. There are rigid sur-
faces at z = 0 and z = −H and a deformable interface at the mean depth z = −h, separating
layers of constant stratifications, Nm in the mixed layer and Nt in the thermocline.

the mixed layer is appropriate at horizontal scales larger than the deformation radius Nd/f
associated with the transition depth d [30]. The transition at the base of the mixed layer
is typically quite sharp, so this deformation radius is much smaller than the submesoscales
we are interested in here.

The uniform PV within the two layers simplifies the dynamics dramatically. PV con-
servation within the layers is trivial, like in the classic Eady problem [10]. The flow in the
interior of the layers is obtained by solving (1), with the boundary conditions supplied by
the distribution of buoyancy at the surface and bottom and by matching conditions at the
interface between the mixed layer and the thermocline.

At the rigid boundaries at the surface and bottom, where the vertical velocity w vanishes,
the advection of buoyancy anomalies b is given by

∂b

∂t
+ J(ψ, b) = 0. (4)

To ensure that pressure is continuous at the interface, we require that the streamfunction ψ
is continuous. For mass conservation, we require that the vertical velocity w is also continu-
ous. These conditions are applied at z = −h, consistent with QG scaling. The conservation
equations for buoyancy just above and below the interface at z = −h,

∂b+

∂t
+ J(ψ, b+) + wN2

m = 0,
∂b−

∂t
+ J(ψ, b−) + wN2

t = 0, (5)

can then be combined to eliminate w. This gives

∂θ1
∂t

+ J(ψ1, θ1) = 0, (6)

where ψ1 denotes the streamfunction at z = −h. This is a conservation equation for

θ1 = f

(
b+

N2
m

− b−

N2
t

)
. (7)
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The quantity θ1 is nothing but the PV

q = ∇2ψ + f
∂

∂z

(
b

N2

)
(8)

integrated across the interface. While there are no PV anomalies within the two layers, the
displacement of the interface between the two layers of constant PV induces a PV anomaly
that, according to (6) and consistent with QG dynamics, is advected by the geostrophic
flow at z = −h. The conservation equation (6) has been used to study the dynamics of the
tropopause, which is similarly an interface between weakly stratified fluid in the troposphere
and strongly stratified fluid in the stratosphere [10, 27, 15, 12].

The model can be considered as consisting of three PV sheets:

q = θ0δ(z) + θ1δ(z + h) + θ2δ(z +H), (9)

where δ is Dirac’s delta function and θ0 = −fb/N2
m at z = 0 and θ2 = fb/N2

t at z = −H.
PV is advected by the geostrophic flow, so

∂θi
∂t

+ J(ψi, θi) = 0, (10)

where i = 0, 1, 2 and ψi is the streamfunction at the level corresponding to θi. This for-
mulation is simply an extension of Bretherton’s representation of boundary conditions [5]
to include an interior PV sheet due to deflection of an interface between layers of different
stratification.

Note that the statement that θ1 is only advected by the geostrophic flow does not imply
that the vertical velocity vanishes at the interface, just like the fact that PV anomalies in
the QG system are advected only by the geostrophic flow does not imply that the vertical
velocity vanishes. The vertical velocity is implicit in the dynamics and can be solved for
using the omega equation.

To complete the dynamics, we require an inversion relation that allows us to obtain the
streamfunctions ψi from the conserved quantities θi. This relation can be written as a linear
equation for the Fourier coefficients, denoted by subscripts k, l:

θk,l = Lψk,l, θ = (θ0, θ1, θ2)
T, ψ = (ψ0, ψ1, ψ2)

T. (11)

The matrix L is determined by solving

−k2hψk,l +
∂

∂z

(
f2

N2

∂ψk,l
∂z

)
= 0 (12)

in each layer. For example, the first column of L is determined by setting ψ = (1, 0, 0)T,
solving (12) for ψ(z), and subsequently calculating

θ0 = − f2

N2
m

∂ψ

∂z
(0), θ1 =

f2

N2
m

∂ψ

∂z
(−h+)− f2

N2
t

∂ψ

∂z
(−h−), θ2 =

f2

N2
t

∂ψ

∂z
(−H). (13)

This procedure gives

L = fkh



− cothµm

Nm

cschµm
Nm

0
cschµm
Nm

− cothµm
Nm

− cothµt
Nt

cschµt
Nt

0 cschµt
Nt

− cothµt
Nt


 , (14)
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Figure 2: Vertical structure of streamfunction amplitude associated with anomalies of
θ0 (surface), θ1 (interface), and θ2 (bottom). Shown are the vertical profiles for θi anomalies
with different horizontal wavenumbers kh = 2π/λ. The wavelength λ is given in the panel
titles.
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where µm = Nmkhh/f and µt = Ntkh(H − h)/f are nondimensional wavenumbers. This
3× 3 matrix can easily be inverted.

This model can be generalized to an arbitrary number of layers of constant stratification
and shear, which may be a useful way to approximate more realistic stratification and shear
profiles. This is discussed in Appendix A. The model can also be extended to include a
density jump at the interface, as is sometimes present at the base of the mixed layer. The
formulation is given in Appendix B, but we here restrict ourselves to the case of a continuous
density profile.

To build intuition for the dynamics of the model, we illustrate the vertical structure
of flow associated with anomalies of the conserved quantities at the surface, the interface,
and the bottom (Fig. 2). We apply parameters that will be used throughout the report,
typical of the wintertime midlatitude ocean (Tab. 1). At the largest scales, for anomalies
with wavelength λ = 1000 km or kh � f/NtH, the flow is nearly barotropic, irrespective
of which level the anomaly is at. At smaller scales, λ = 100 km or kh ∼ f/NtH � f/Nmh,
there is significant decay in the thermocline while the flow is nearly barotropic in the mixed
layer. Anomalies at the surface and interface still induce significant flow at the bottom and
vice versa. At λ = 10 km or kh ∼ f/Nmh, on the other hand, anomalies at the surface
or interface induce very little flow at the bottom and vice versa. The flow is also not
barotropic in the mixed layer anymore, but surface anomalies still induce significant flow
at the interface and vice versa. At λ = 1 km or kh � f/Nmh, all levels are decoupled:
anomalies on any of the levels induce very little flow at the other levels.

The dependence of the vertical flow structure on the horizontal scale of the anomalies
illuminates the qualitative dynamics of the model. At the smallest scales, all three levels
are independent and follow surface QG dynamics. At scales kh ∼ f/Nmh, around the
mixed layer deformation radius, surface and interface anomalies can interact, allowing for
phase locking and instability in the mixed layer. Bottom anomalies, on the other hand
are independent, so there is no deep instability at these scales. At scales kh ∼ f/NtH,
around the deep deformation radius, surface or interface anomalies can interact with bottom
anomalies, so there is potential for a deep instability at these scales. At the largest scales,
the flow is essentially barotropic and follows two-dimensional dynamics.

3 Linear stability analysis

We now analyse the linear stability of the model formulated above. While this linear analysis
is not directly applicable to the strongly nonlinear turbulent regime, it reveals some key
characteristics of the dynamics that will help us understand the nonlinear regime.

Blumen analyzed short-wave instabilities in the atmosphere also using a model consisting
of two coupled constant-PV layers [2]. He performed a linear stability analysis equivalent
to what will be presented in the following. For completeness, we review the linear stability
in the context of the upper ocean dynamics, at the cost of being somewhat redundant with
Blumen’s study.

We consider the linear stability of normal-mode perturbations to a zonal flow with
constant vertical shear Λm in the mixed layer and Λt in the thermocline (Fig. 3). The
system is Galilean invariant, so we can arbitrarily set the mean zonal flow to zero at the
surface. The linearized conservation equations for the perturbations from this mean state
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Figure 3: Mean buoyancy structure in the meridional–vertical plane for (a) the full model
and (b) the thermocline only case. The contours show isopycnals; light shading indicates
more buoyant fluid.

are
∂θk,l
∂t

+ ikUθk,l + ikΓψk,l = 0, (15)

where the mean zonal flows and mean meridional PV gradients at the respective levels are
denoted by the diagonal elements of the matrices U and Γ:

U = diag
(
0,−Λmh,−Λmh− Λt(H − h)

)
, (16)

Γ = diag
(
f2Λm/N

2
m,−f2Λm/N

2
m + f2Λt/N

2
t ,−f2Λt/N

2
t

)
. (17)

Using the inversion relation (11), we can replace the θk,l, such that

L
∂ψk,l
∂t

+ ikULψk,l + ikΓψk,l = 0. (18)

Assuming that modes vary harmonically in time with (complex) frequency ω turns this into
the generalized eigenvalue problem

(UL+ Γ)ψk,l = cLψk,l, (19)

where the eigenvalue is c = ω/k. The real part of c is the zonal phase speed; the imaginary
part gives the growth rate σ = k Im c.

Being a third-order system, (19) can be solved analytically, but the solutions are rather
complicated and give little useful insight. We instead explore the characteristics of the
solutions numerically for the set of parameters given above. We then explain the stability
properties and parameter dependencies by considering simplifications of the model.
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Figure 4: Growth rates from the linear stability analysis for (a) the full model incorporating
a mixed layer, (b) an Eady model representing the thermocline only, (c) an Eady model
representing the mixed layer only, and (d) a model like the full model but without a bottom.
Growth rates are shown in blue, the growth rates of the full model are overlaid for reference
in gray.
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Parameter Symbol Value

Mixed layer depth h 100 m
Total depth H 500 m
Mixed layer stratification Nm 2× 10−3 s−1

Thermocline stratification Nt 8× 10−3 s−1

Mixed layer shear Λm 10−4 s−1

Thermocline shear Λt 10−4 s−1

Coriolis frequency f 10−4 s−1

Domain size a 500 km

Table 1: Parameters used throughout this report unless otherwise noted. These are typical
of the wintertime midlatitude ocean.

3.1 Full model

The linear stability analysis reveals that there are two lobes of instability: one at the
mesoscale and one at the submesoscale (Fig. 4a). The maximum growth rates occur at
l = 0 and zonal wavelengths of about 160 km and 10 km. The submesoscale instability has
a peak growth rate much larger than the mesoscale instability in this case with equal shear
in the two layers. The growing modes are conjugate to decaying modes. The growth rates
are similar to what Boccaletti et al. found in a linear QG stability analysis of a realistic
mean state of the wintertime eastern subtropical North Pacific [3]. The magnitudes are
slightly smaller here, because the shear is slightly weaker.

The phase speeds of the linear modes give clues to the dynamics in different ranges
of scales (Fig. 5a). For each wavenumber, there are three modes. Growing and decaying
modes, being conjugate to each other, have the same phase speeds. This is the familiar phase
locking of counter-propagating waves in baroclinic instability (branches ‘b’ and ‘e’). Where
these growing and decaying modes exist, there is an additional neutral mode (branches ‘a’
and ‘d’). Where there are no growing modes, all three neutral modes have distinct phase
speeds—no phase locking occurs. We will discuss the dynamics of the various branches by
considering approximations to the full model.

But first consider the spatial structure of the modes corresponding to the peak growth
rates. The perturbation streamfunctions show that the mesoscale mode is deep and spans
the entire water column (Fig. 6a), whereas the submesoscale mode is almost completely
confined to the mixed layer, with only weak leaking into the thermocline below 100 m
depth (Fig. 6b). Both modes show the familiar pattern of unstable modes tilted into the
shear, which is necessary to extract potential energy from the mean.

3.2 Thermocline only

We start explaining the instability properties of the full model by comparing it to the classic
Eady model representing the thermocline only (Fig. 3b). This amounts to setting h = 0 or
Nm = Nt in the full model. In this case, the system reduces to two variables, the inversion
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Figure 5: Phase speeds from the linear stability analysis for (a) the full model incorporating
a mixed layer, (b) an Eady model representing the thermocline only, (c) an Eady model
representing the mixed layer only, and (d) a model like the full model but without a bottom.
Phase speeds are shown in blue, the growth rates of the full model are overlaid for reference
in gray. The faint red line shows the phase speed of a surface edge wave.
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Figure 6: Perturbation streamfunction as obtained from the linear stability analysis of
(a) the most unstable mesoscale mode of the full model, (b) the most unstable submesoscale
mode of the full model, (c) the most unstable mode of an Eady model representing the
thermocline only, and (d) the most unstable mode of an Eady model representing the
mixed layer only. Red and blue shading represents positive and negative values.
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matrix is

L = fkh

(
− cothµt

Nt

cschµt
Nt

cschµt
Nt

− cothµt
Nt

)
, (20)

and

U = diag
(
0,−Λth

)
, (21)

Γ = diag
(
f2Λt/N

2
t ,−f2Λt/N

2
t

)
. (22)

The solution is [10, 33]

c = −Λth

2
± iΛth

µm

(
µt cothµt − 1− µ2t

4

) 1
2

, (23)

where µt = NtkhH/f is the nondimensional wavenumber.
The Eady model has a baroclinic instability near the deformation radius NtH/f . The

maximum growth rate σ = 0.31fΛt/Nt occurs at l = 0 and µt = 1.6, which corresponds
to a zonal wavelength λ = 3.9NtH/f . The growth curve for this thermocline only model
traces out the mesoscale lobe of the full model almost perfectly (Fig. 4b). The short-wave
cutoff in the Eady model at λ = 2.6NtH/f nearly coincides with the short-wave cutoff
of the mesoscale instability in the full model. The phase speed of the phase-locked waves
−ΛtH/2 very nearly matches the phase speed of the unstable mesoscale mode of the full
model (Fig. 5b). The critical level, where the phase speed matches the mean flow, is at
mid-depth. The split at the short-wave cutoff into surface and bottom modes also features
in the full model. In the thermocline only model, the surface and bottom modes are very
nearly Eady edge waves that do not sense the other boundary. The bottom mode of the
thermocline only model almost perfectly matches that of the full model (branch ‘d’). The
surface mode of the thermocline only model traces out branch ‘c’ of the full model, but then
the full model transitions to dynamics associated with the mixed layer that are not present
in the thermocline only model. The mesoscale instability of the full model therefore follows
Eady dynamics. The presence of the mixed layer only modifies the characteristics of the
instability slightly. The spatial structure of the most unstable mesoscale mode is also well
captured by the thermocline only model (Fig. 6c).

3.3 Mixed layer only

Shifting our attention to the submesoscale instability, we now consider an Eady model
representing the mixed layer with a rigid bottom at its base. A priori, we can see from (7)
that the full model converges to these dynamics as the thermocline stratification goes to
infinity. The thermocline then acts like a rigid bottom at the base of the mixed layer and
the conservation of θ1 turns into a conservation of the buoyancy at the base of the mixed
layer b(−h+).

The Eady model for the mixed layer captures some key properties of the submesoscale
instability, but misses others. The solution is the same as (23), with Λt replaced by Λm

and µt replaced by µm = Nmkhh/f . The peak growth rate σ = 0.31fΛm/Nm occurs at
µm = 1.6, which corresponds to a zonal wavelength λ = 3.9Nmh/f . This is a reasonable
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approximation of the maximum submesoscale growth rate of the full model (Fig. 4c). The
mixed layer only model captures the bulk shape of the submesoscale lobe of the full model;
its short-wave cutoff at λ = 2.6NmH/f is close to the short-wave cutoff of the full model.
But the mixed layer only model does not have a long-wave cutoff, unlike the submesoscale
instability of the full model. The phase speed structure of the mixed layer only model, with
its two phase-locked modes in the unstable range and the split into a surface mode and one
propagating on the base of the mixed layer, corresponds to a similar mode structure of the
full model (Fig. 5c). The spatial structure of the most unstable Eady mode resembles that
of the most unstable submesoscale mode of the full model (Fig. 6d). It tilts into the shear
in the mixed layer, but does not leak into the thermocline.

3.4 No bottom

The submesoscale instability is better approximated if modes are allowed to penetrate into
the thermocline. To isolate the submesoscale instability, we consider again the layered
model but let the thermocline be infinitely deep. That eliminates bottom edge waves, so
no mesoscale instability occurs.

Eady considered the atmospheric analogue to this system to relax the assumption that
a rigid lid is placed at the tropopause [10]. The system with no bottom again reduces to
two variables; the inversion matrix is

L = fkh

(
− cothµm

Nm

cschµm
Nm

cschµm
Nm

− cothµm
Nm

− 1
Nt

)
(24)

and

U = diag
(
0,−Λmh

)
, (25)

Γ = diag
(
f2Λm/N

2
m,−f2Λm/N

2
m + f2Λt/N

2
t

)
. (26)

In the case Λ = Λm = Λt, the solution is [10, 2]

c = −Λh

2

(
1 +

α

µm

)
± iΛh

µm

[
(1− α2)(µm − tanhµm)

tanhµm + α
− 1

4
(µm − α)2

] 1
2

, (27)

where µm = Nmkhh/f and α = Nm/Nt. This solution converges to the mixed layer only
solution if α � 1 and α � µm, which is equivalent to Nt � Nm and kh � f/Nth. This
shows that large thermocline stratification can act like a rigid bottom, but only for scales
that are not too large. Modes of large horizontal scale still manage to penetrate into the
thermocline, by which the large-scale dynamics are altered.

The growth rates and phase speeds of this reduced model almost perfectly match the
growth rates and phase speeds of the full model at scales smaller than about 100 km (Fig. 4d
and 5d). This model now captures the long-wave cutoff of the submesoscale instability. At
large scales, where µm � α and µm � 1 or equivalently kh � f/Nth and kh � f/Nmh,
the dynamics split into modes that are barotropic and baroclinic in the mixed layer. The
barotropic mode behaves like a surface edge wave, with phase speed −fΛ/Ntkh, which does
not sense the mixed layer (Fig. 5d). The baroclinic mode is baroclinic in the mixed layer
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and remains shallow for large scales—its critical level is the base of the mixed layer, its
phase speed is −Λh. The vastly different phase speeds of these two modes prevent phase-
locking, so no instability occurs at large scales. This stabilization is analogous to that by
the β-effect [25, 21, 33]. For the unstable modes, this reduced model with no bottom also
captures the deepening of the critical level as the scale gets larger, −Λh(1 + f/Ntkhh)/2,
which is due to the increasing penetration of the unstable mode into the thermocline.

The longwave cutoff in this constant-shear case depends on the ratio Nm/Nt. In the
more general case Λm 6= Λt, it also depends on the ratio Λm/Λt. No longwave cutoff occurs
if Λt = 0, as found by Rivest et al., who considered the atmospheric case with no shear
in the stratosphere [27]. There is also no longwave cutoff as Nm/Nt → 0, which is the
Eady limit. The instability itself requires a reversal of the PV gradient, so the condition
for instability is Λm/N

2
m > Λt/N

2
t . This condition is typically satisfied in the ocean.

3.5 Summary

We are now in a position to understand all branches in the phase speed diagram of the
full model. Branch ‘a’ is a mode that is baroclinic in the mixed layer and does not pene-
trate much into the thermocline. It does not sense the bottom. Branch ‘b’ is the unstable
branch corresponding to the deep, Eady-like instability. Branch ‘c’ is a mode that is nearly
barotropic in the mixed layer and behaves like a surface edge wave in the thermocline. It
does not interact much with the bottom. Branch ‘d’ is a bottom edge wave that is indepen-
dent of the surface and interface. Branch ‘e’ is the unstable branch corresponding to the
mixed layer instability. The instability is significantly modified by the modes’ penetration
into the thermocline, but the scale and growth rate of the most unstable mode still scale
with the mixed layer deformation radius and the Eady growth rate. Branches ‘f’ and ‘g’
are edge waves propagating on the surface and the interface that do not interact with any
of the other edge waves.

4 Nonlinear dynamics

We now turn to the nonlinear dynamics that arise when the perturbations grow to finite
amplitude. Before considering the combined effect of the deep mesoscale and mixed layer
instabilities, we first consider them separately. We start with the thermocline only case, in
which only the deep instability is present. We subsequently contrast that case with the case
with no bottom, in which only the submesoscale instability is present. We finally consider
the full model, in which both instabilities occur.

We solve the full nonlinear perturbation equations

∂θ′

∂t
+ U

∂θ′

∂x
+ Γ

∂ψ′

∂x
+ J(ψ′,θ′) = −r∇−2θ′ − ν∇2nθ′, (28)

where the Jacobian operator is understood to act element-wise. We introduce hypoviscosity
with coefficient r, which provides a large-scale drag, and hyperviscosity with coefficient ν
and order n, which helps ensure numerical stability and absorbs enstrophy that is cascaded
to small scales.
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We solve these equations in a 500 km × 500 km domain that is doubly periodic in the
perturbation quantities. A fully dealiased pseudo-spectral code with a resolution 512× 512
is used. The time derivatives are discretized using a forth-order Runge-Kutta scheme. The
hypoviscosity coefficient is r = 10−16 m−2 s−1; the hyperviscosity is of order n = 10 and
the coefficient is ν = 2.5× 1046 m20 s−1. All calculations are started with a white noise of
small amplitude in θ′.

4.1 Thermocline only

We start with the familiar Eady model representing the thermocline. Since the dissipative
terms are weak in the linear equations, the instability grows until it reaches finite amplitude,
when the nonlinear terms become important. Secondary instabilities set in and the flow
quickly evolves into a fully turbulent regime. The perturbations grow in scale until they
reach a scale where hypoviscosity is strong enough to damp the flow significantly. Thereby,
the flow comes into statistical equilibrium, which is the time period considered in what
follows.

A snapshot from the equilibrated state exhibits a patchy surface buoyancy field (Fig. 7a).
There are strong buoyancy gradients. The strongest vortices visible are those at a scale of
about 200 km. Smaller-scale vortices are present, but successively weaker. They result
from a roll-up instability that features prominently in the evolution of the flow [12]. The
submesoscale dynamics of this setup are decoupled surface QG dynamics at the surface and
bottom that are stirred by the meosscale thermocline instability [28].

As typical for turbulent flows, a continuum of scales is energized. This is quantified by
the kinetic and potential energy spectra,

Kk,l =
1

2

(
|uk,l|2 + |vk,l|2

)
, Pk,l =

1

2

|bk,l|2
N2

, (29)

which we average azimuthally in wavenumber space, because the statistics are very nearly
isotropic. We also average in time to characterize the statistics of the equilibrated state.
The surface and bottom spectra of both kinetic and potential energy peak at a wavelength of
about 200 km and fall off roughly like k

−5/3
h (Fig. 8), as predicted by surface QG turbulence

theory [1]. Since smaller-scale modes decay more rapidly in the vertical than larger-scale
modes, the spectra are steeper in the interior. At 100 m depth, the mesoscale energy levels
are similar to those at the surface, but submesoscales energy levels are much lower.

A useful diagnostic of turbulent dynamics is the spectral energy budget. While the
dynamics are completely determined by the advection of conserved quantities at the surface
and bottom, we first consider the energy budget over the entire depth range. We will present
a lower-order energy diagnostic for the no bottom case below.

The equations for the spectral perturbation potential and kinetic energies are

∂Pk,l
∂t

= Re

[
fΛ

N2
v∗k,lbk,l − w∗k,lbk,l −

1

N2
b∗k,l Jk,l(ψ

′, b′)
]
−
(
rk−2h + νk2nh

)
Pk,l (30)

∂Kk,l

∂t
= Re

[
−f ∂

∂z

(
w∗k,lψk,l

)
+ w∗k,lbk,l + ψ∗k,l Jk,l(ψ

′,∇2ψ′)
]
−
(
rk−2h + νk2nh

)
Kk,l (31)

where P is potential energy, K is kinetic energy, the asterisks denote complex conjugates,
and Re denotes the real part. The first term on the right-hand side of the potential energy
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Figure 7: Snapshots of surface buoyancy (mean plus anomalies) from the equilibrated states
of the (a) thermocline only simulations, (b) the no bottom simulation, (c) the full model
simulation with equal mixed layer and thermocline shears, and (d) the full model with
reduced mixed layer shear. The color scale extends from white (more buoyant) through
blue to black (less buoyant) and extends between ±fΛmL.

186



10−3 10−2 10−1 100

inverse wavelength [km−1]

10−3

10−2

10−1

100

101

102

103

104

sp
ec

tr
a
l

d
en

si
ty

[m
3

s−
2
]

kinetic energy(a)

surface

100 m depth

10−3 10−2 10−1 100

inverse wavelength [km−1]

0

100

200

300

400

500

d
ep

th
[m

]

kinetic energy(b)

10−3 10−2 10−1 100

inverse wavelength [km−1]

10−3

10−2

10−1

100

101

102

103

104

sp
ec

tr
a
l

d
en

si
ty

[m
3

s−
2
]

potential energy(c)

surface

100 m depth

10−3 10−2 10−1 100

inverse wavelength [km−1]

0

100

200

300

400

500

d
ep

th
[m

]
potential energy(d)

10−3 10−2 10−1 100 101 102 103 104

spectral density [m3 s−2]

Figure 8: Wavenumber spectra of kinetic and potential energy from the thermocline only
simulation. (a) Kinetic energy spectra at the surface and 100 m depth, (b) spectral density
of kinetic energy in the wavenumber–depth plane, (c) potential energy spectra at the surface
and 100 m depth, (d) spectral density of potential energy in the wavenumber–depth plane.
In panels (b) and (d), no values below 10−3 m3 s−2 are shown.
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equation represents the extraction of potential energy from the mean flow. The second term
represents the conversion from potential to kinetic energy. This term appears as a source
term in the kinetic energy budget. The third term in the potential energy budget repre-
sents spectral transfer by triadic interactions. The sum of this term over all wavenumbers
vanishes. An equivalent spectral transfer term appears in the kinetic energy budget (third
term). Kinetic energy can also be distributed vertically by pressure fluxes, represented by
the first term in the kinetic energy budget. The vertical integral of this term vanishes.
The viscosity terms act as sinks for both potential and kinetic energy—hypoviscosity acting
at large scales, hyperviscosity at small scales. We present these budgets again averaged
azimuthally in wavenumber space and over time.

The extraction of potential energy from the mean is dominated by the largest, most
energetic eddies (Fig. 9a). The extraction is independent of depth, because q′ = 0 and
therefore

0 = Re v∗k,lqk,l = Re
∂

∂z

(
f

N2
v∗k,lbk,l

)
. (32)

Potential energy is transferred downscale by triadic interactions and deposited near the
deformation radius and in wedges near the surface and the bottom that reach to much
smaller scales (Fig. 9b). Where potential energy is deposited by scale interactions, it is
converted into kinetic energy (Fig. 9c). Near the deformation radius, this conversion is
due to the mesoscale instability that produces vertical buoyancy fluxes. In the wedges
near the surface and bottom, the conversion is due to secondary instabilities present in
the surface QG cascades, which occur independently at the surface and the bottom [28].
The kinetic energy thus created is transferred back to large scales (Fig. 9d). The bulk of
the energy is dissipated through hypoviscosity at the scales of the largest, most energetic
eddies (Fig. 9e). The energy dissipation through hyperviscosity is small, which reflects the
fundamental property of geostrophic turbulence that energy is trapped at large scales and
viscous energy dissipation vanishes as the viscosity goes to zero [18, 9].

4.2 No bottom

Now consider the case with no bottom, which has a mixed layer instability only. This
instability, too, grows to finite amplitude and the flow becomes turbulent. There is a
turbulent spin-up phase, in which the eddies that are initially of the size of the instability
grow larger until they reach a statistical equilibrium with hypoviscosity.

A snapshot of surface buoyancy reveals that the flow’s structure is quite different from
the thermocline only case (Fig. 7b). There are many more coherent vortices. They are
prominent at a scale of about 100 km, but many smaller-scale coherent vortices exist. These
do not appear to be present in observations of sea surface temperature or realistic regional
ocean models, a point we will come back to in the discussion. If we focus on the filamentary
sea, however, there are again strong fronts, superimposed by submesoscale structure, which
is realistic.

The energy spectra reflect this nearly frontal structure at the surface (Fig. 10). The
kinetic energy spectra fall off slightly more steeply than k−5/3 at the scales of the linear
instability and like k−5/3 at scales smaller than the linear short-wave cutoff, both at the
surface and at the base of the mixed layer at 100 m depth (Fig. 10a). The mixed layer
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Figure 9: Spectral energy budget for the thermocline only simulation. The terms are
(a) potential energy extraction from the mean, (b) spectral potential energy flux divergence,
(c) potential to kinetic energy conversion, (d) kinetic energy flux divergence, including
spectral flux and pressure flux, (e) hypoviscosity on both kinetic and potential energy, and
(f ) hyperviscosity on both kinetic and potential energy. All terms are multiplied by the
wavenumber to compensate for logarithmic shrinking.
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Figure 10: Wavenumber spectra of kinetic and potential energy from the no bottom simu-
lation. (a) Kinetic energy spectra at the surface and 100 m depth, (b) spectral density of
kinetic energy in the wavenumber–depth plane, (c) potential energy spectra at the surface
and 100 m depth, (d) spectral density of potential energy in the wavenumber–depth plane.
In panels (b) and (d), no values below 10−3 m3 s−2 are shown.
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instabilities energize the entire depth of the mixed layer. This is in sharp contrast to the
thermocline only simulation, in which the surface QG dynamics energize a thin wedge close
to the surface only.

It should be noted that the equilibrated flow in the no bottom case is much more
energetic than in the thermocline only case and more energetic than is realistic. While the
equilibration by hypoviscosity is unrealistic, we will see that the enhanced energy levels are
due to more efficient extraction of mean potential energy in the weakly stratified mixed
layer, which is a dynamical property of the system that does not depend on how the flow
is equilibrated. We will discuss reasons for this excess in energy in the conclusions.

Below the base of the mixed layer, The potential energy spectra are the same as the
kinetic energy spectra (Fig. 10c). In the mixed layer, the potential energy spectra are
significantly flatter than the kinetic energy spectra. This is in contrast to observations that
show rough equipartition between kinetic and potential energy [6, 7].

The vertical structure of the energy shows that the mixed layer instabilities also energize
the thermocline below (Fig. 10b,d). At the instability scale, the flow does not reach much
into the thermocline. But as the horizontal scale of the flow increases, so does the vertical
scale. The flow exhibits the familiar property of geostrophic turbulence that it barotropizes
as it increases its horizontal scale [31].

The energy transfer into the thermocline can further be examined in the spectral energy
budget (Fig. 11). Potential energy is again extracted at the scale of the largest, most
energetic eddies, but the extraction is now confined to the mixed layer (Fig. 11a). Potential
energy is transferred from the extraction scale to the scale of the mixed layer instability
(Fig. 11b). The mixed layer instability converts potential energy into kinetic energy in the
mixed layer, at the instability scale (Fig. 11c). The kinetic energy created by the instability
again enters an inverse cascade, but now it is not only transferred to large horizontal scales,
but also vertically into the thermocline (Fig. 11d). The deposition of kinetic energy at the
scale of the largest eddies is well distributed across the mixed layer and upper thermocline.
The vertical distribution of damping by hypoviscsosity also reflects the fact that the flow is
not confined to the mixed layer at the scale of the largest eddies, where hypoviscosity acts
(Fig. 11e). Hyperviscosity acts only at the smallest resolved scales (Fig. 11f ). While small,
it does affect the other terms in the budget. We neglect this effect, because it would tend
to zero if the resolution was increased and the hyperviscosity coefficient decreased.

These energy pathways are reminiscent of the phenomenology of two-layer baroclinic
turbulence. The turbulent dynamics of a two-layer system can be understood in terms of
a dual cascade [26, 29]. Baroclinic energy is extracted from the mean at the scale of the
largest, most energetic eddies. The barotropic flow dominates at these scales and transfers
the baroclinic energy downscale. The baroclinic mode behaves like a passive tracer at
these scales. Around the deformation radius, the instability converts baroclinic energy into
barotropic energy. The barotropic energy then enters an inverse cascade, which gets halted
at some scale by drag.

Can the turbulent dynamics induced by mixed layer instabilities be understood in similar
terms? To phrase the analysis in these terms, we need a concept of modes, which the energy
can be partitioned into. In our system, the vertically integrated energy can be written
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Figure 11: Spectral energy budget for the no bottom simulation. The terms are (a) potential
energy extraction from the mean, (b) spectral potential energy flux divergence, (c) potential
to kinetic energy conversion, (d) kinetic energy flux divergence, including spectral flux and
pressure flux, (e) hypoviscosity on both kinetic and potential energy, and (f ) hyperviscosity
on both kinetic and potential energy. All terms are multiplied by the wavenumber to
compensate for logarithmic shrinking.
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entirely in terms of the quantities at the interfaces:

E = −1

2
ψ†θ = −1

2
ψ†Lψ, (33)

where we dropped the k, l subscripts to denote Fourier transforms. Since L is real and
symmetric, it is diagonalizable by a unitary matrix,

L = S†DS, (34)

where D is diagonal and consists of the real eigenvalues of L, Dii = λi. The energy can
now be written as

E = −1

2
(Sψ)†D(Sψ) = −1

2

∑

i

λi |(Sψ)i|2 . (35)

This defines the modes (Sψ)i that are orthogonal with respect to the energy norm, i.e. the
energy can be partitioned into contributions by these modes. The structure of the modes
depends on wavenumber, because L and therefore S does.

For the no bottom case, with L given by (24), the eigenvalues of L are

λ0,1 = fkh


cothµm

Nm
+

1

2Nt
±
√

csch2 µm
N2

m

+
1

4N2
t


 (36)

and S, of which the columns constitute the eigenvectors, is

S =




1√
1+
(
coshµm+

Nmλ0
fkh

sinhµm
)2

1√
1+
(
coshµm+

Nmλ1
fkh

sinhµm
)2

coshµm+
Nmλ0
fkh√

1+
(
coshµm+

Nmλ0
fkh

sinhµm
)2

coshµm+
Nmλ1
fkh√

1+
(
coshµm+

Nmλ1
fkh

sinhµm
)2


 . (37)

For large scales, kh � f/Nth or µm � Nm/Nt, this reduces to

λ0 = −fkh
2Nt

, λ1 = − 2f2

N2
mh

. (38)

and simply

S =
1√
2

(
1 1
1 −1

)
. (39)

This indicates that at large scales the first mode is barotropic in the mixed layer. It
behaves like a surface QG mode penetrating into the thermocline. The streamfunction is
proportional to kh times the conserved quantity [12],

(Sψ)0 = −fkh
2Nt

(Sθ)0. (40)

The second mode at large scales is baroclinic in the mixed layer. The relation between the
streamfunction and the conserved quantity is

(Sψ)1 = − 2f2

N2
mh

(Sθ)1, (41)
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Figure 12: Vertical structure of the streamfunction corresponding to orthogonal modes in
the no bottom case for different wavenumbers kh = 2π/λ, with the wavelength λ given
in the panel titles. For panels (a), (b), and (c), the modes are normalized to unity at the
interface at 100 m depth; for panel (d), the modes are normalized to have a maximum value
of unity. Mode 0 is shown in blue, mode 1 in green. In panels (a), (b), and (c), the two
modes coincide below the interface.
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which is independent of kh, as expected for a baroclinic mode.
This description of the modes as barotropic and baroclinic mixed layer modes only

applies to large scales. At smaller scales, the modes have more complicated vertical structure
(Fig. 12). At scales smaller than the mixed layer deformation radius, the modes morph into
decoupled modes that are localized in the vertical at the surface and the interface. But for
the cascade dynamics to be discussed, the mode structure at large scales is what is most
important.

We can now consider the energy budget of these modes. We start from the vertically
integrated spectral energy budget, written in terms of the conserved quantities and corre-
sponding streamfunctions:

∂E

∂t
= −ψ†∂θ

∂t
. (42)

Again, the subscripts k, l are dropped. Using the diagonalization, this can be written as

∂E

∂t
= −ψ†L∂ψ

∂t
= −(Sψ)†D

∂

∂t
(Sψ) = −

∑

i

λi(Sψ)∗i
∂

∂t
(Sψ)i. (43)

The budget therefore splits into

∂Ei
∂t

= −λi(Sψ)∗i
∂

∂t
(Sψ)i. (44)

The terms on the right-hand side of this budget can be obtained from

−ψ†∂θ
∂t

= −(Sψ)†S
∂θ

∂t
, (45)

into which the spectral form of the evolution equation (28) is substituted. We further
expand the nonlinear terms in (28) into

J(ψ,θ) = J(S†(Sψ), S†(Sθ)) (46)

= J(S†P0(Sψ), S†P0(Sθ)) + J(S†P0(Sψ), S†P1(Sθ))

+ J(S†P1(Sψ), S†P0(Sθ)) + J(S†P1(Sψ), S†P1(Sθ)), (47)

where P0 and P1 are the projections onto the respective modes,

P0 =

(
1 0
0 0

)
, P1 =

(
0 0
0 1

)
. (48)

This allows us to separate out the nonlinear interactions of the modes with themselves
and with each other. The first term in (47), for example, represents the advection of the
barotropic mode by the barotropic mode, to use the naming convention introduced above.
The second term represents the advection of the baroclinic mode by the barotropic mode,
and so on.

In terms of the orthogonal modes, the energy budget is very similar to that of a baro-
clinic two-layer system [20]. The extraction of potential energy from the mean flow is
concentrated at the scale of the largest, most energetic eddies and creates mostly baroclinic
energy (Fig. 13b). That input of baroclinic energy is compensated by a spectral transfer of
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Figure 13: Modal energy budget for the no bottom case. The advective terms correspond
to the contributions from the four terms in (47). The energy tendencies are multiplied by
wavenumber to compensate for logarithmic shrinking.

baroclinic energy down to the instability scale, achieved by the advection of the baroclinic
mode by the barotropic mode (Fig. 13b). The energy deposited around the instability scale
is transferred to the barotropic mode by interactions between the two modes that amount
to baroclinic instability (Fig. 13b). This energy enters the barotropic budget rather less
localized in wavenumber space (Fig. 13a). This forcing of the barotropic mode is compen-
sated by the upscale spectral transfer of the barotropic mode (Fig. 13a). The deposition of
energy by the inverse cascade at the scale of the largest, most energetic eddies is compen-
sated by hypodiffusion (Fig. 13a). Energy loss by hyperdiffusion again enters the budget,
but is neglected because it is an artifact of finite resolution.

This model thus exhibits a dual cascade just like the classic two-layer system. Baroclinic
energy is transferred downscale through advection by the barotropic mode, baroclinic insta-
bility converts baroclinic into barotropic energy, and barotropic energy is transferred back
upscale in an inverse cascade. The difference is that the barotropic mode at large scales here
behaves like a surface QG mode, instead of a truly barotropic or two-dimensional mode.
The inverse cascade is therefore expected to yield a k−1h surface energy spectrum, which
we find to emerge if the inertial range is wide enough (not shown). More importantly,
the surface-QG-like behavior implies that in the inverse cascade, energy is transferred to
successively larger vertical scales. This provides a pathway for mixed layer instabilities to
energize the thermocline below.

4.3 Full model

We now consider the full model, which supports both deep and mixed layer instabilities.
We analyze two cases, one with the same shear in mixed layer and thermocline—the setup
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discussed in the linear stability analysis section—and one with reduced shear in the mixed
layer.

In the constant shear case, the growth rate of the mixed layer instability is much larger
than that of the deep instability. The mixed layer instability therefore grows to finite ampli-
tude first and the evolution in the mixed layer is very similar to that of the no bottom case.
Again, the eddies grow in size until they come into statistical equilibrium with hypoviscosity.

The equilibrated state of this case is very similar to that of the no bottom case, except
near the bottom (Fig. 14). The energy levels and spectra at the surface and the base of
the mixed layer are very similar. Near the bottom, a wedge in wavenumber–depth space is
energized, just like in the thermocline only case. This is due to the surface QG dynamics
at the bottom.

The energy budget is also similar to the case with no bottom (Fig. 15). The main
energy pathway is again extraction of potential energy in the mixed layer, transfer to the
mixed layer instability scale, conversion to kinetic energy, transfer back to large scales and
into the thermocline, and dissipation by hypoviscosity. There is additional extraction in the
thermocline, but that is weak compared to the extraction in the mixed layer. The dominant
dynamics are therefore those described for the no bottom case. Interaction with the bottom
is possible, but of secondary importance in this parameter regime.

A different picture emerges when the mixed layer shear is reduced. We choose the mixed
layer shear such that the growth rates of the two instabilities are comparable, which from
Eady scaling is expected to occur if Λm/Nm = Λt/Nt is satisfied, so at Λm = 2.5× 10−5 s−1.
The results of the linear stability analysis for this mixed layer shear show that indeed the
growth rates are comparable (Fig. 16). The horizontal scales of the instabilities and the
overall structure of the dispersion curves have not changed. Reducing the mean shear by
this amount means that the mean available potential energy is vertically constant.

This system with reduced mixed layer shear equilibrates to realistic and much lower
energy levels than the constant shear case (Fig. 17). The energy levels are comparable to
the thermocline only case. The vertical structure of energy in this case, however, is still
different from the thermocline only case. The mixed layer instability, while not significantly
increasing the mesoscale energy levels, does energize the mixed layer at submesoscales.

This can be explained by again considering the energy budget (Fig. 18). The potential
energy extraction from the mean is now roughly constant vertically. The energy pathway
induced by the mixed layer instability, however, is still active. Potential energy is transferred
to the mixed layer deformation radius, where it is converted into kinetic energy and enters
an inverse cascade. This energy cycle is stronger than that of surface QG turbulence in the
thermocline only case (Fig. 9).

This difference between mixed layer dynamics and surface QG dynamics is also reflected
in vertical velocities that are produced by the instabilities (Fig. 19). While the available
potential energies are the same and the resulting surface energy levels comparable between
this reduced mixed layer shear case and the thermocline only case, there are dramatically
larger vertical velocities in the presence of a mixed layer. These enhanced vertical velocities
extend significantly below the base of the mixed layer. The largest vertical velocities are
located in the vicinity of fronts in the filamentary sea (Fig. 20). Coherent vortices, while
associated with the large buoyancy gradients, induce relatively weak vertical motion. The
large vertical velocities appear to be induced by the dynamic filamentary structure that
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Figure 14: Wavenumber spectra of kinetic and potential energy from the full model simu-
lation. (a) Kinetic energy spectra at the surface and 100 m depth, (b) spectral density of
kinetic energy in the wavenumber–depth plane, (c) potential energy spectra at the surface
and 100 m depth, (d) spectral density of potential energy in the wavenumber–depth plane.
In panels (b) and (d), no values below 10−3 m3 s−2 are shown.
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Figure 15: Spectral energy budget for the full model simulation. The terms are (a) potential
energy extraction from the mean, (b) spectral potential energy flux divergence, (c) potential
to kinetic energy conversion, (d) kinetic energy flux divergence, including spectral flux and
pressure flux, (e) hypoviscosity on both kinetic and potential energy, and (f ) hyperviscosity
on both kinetic and potential energy. All terms are multiplied by the wavenumber to
compensate for logarithmic shrinking.
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Figure 16: growth rates and phase speeds

undergoes mixed layer instabilities.
The root mean square vertical velocities are similar in structure to those found in prim-

itive equation models [8]. A careful comparison is necessary to establish whether the QG
dynamics described here reproduce the magnitude of the vertical velocities or whether non-
QG effects significantly enhance vertical velocities. Such a comparison, however, is beyond
the scope of the report.

5 Conclusions

Our analysis suggests that the presence of a mixed layer has a profound effect on subme-
soscale turbulence. The low stratification in the mixed layer, combined with geostrophic
shear, provides a large amount of available potential energy that can be extracted through
baroclinic instabilities in the mixed layer. The extraction is dominated by mesoscale ed-
dies, but potential energy is subsequently cascaded down to the deformation radius of the
mixed layer, where baroclinic instability converts it into kinetic energy. In the QG dynam-
ics considered here, no energy is lost to small scales. The entire energy extracted from the
mean in the mixed layer is converted to kinetic energy around the deformation radius of the
mixed layer and subsequently transferred back to larger scales in an inverse cascade that
also energizes the thermocline below. Through this process, mixed layer instabilities can
energize the mesoscale eddy field.

These dynamics are significantly different from surface QG dynamics, which are often
invoked to explain energetic submesoscales. Surface QG dynamics can only energize a thin
surface layer, whereas mixed layer instabilities energize the entire mixed layer. The vertical
and spectral structure found in the presence of a mixed layer is consistent with that found in
wintertime observations in the Gulf Stream region, except for the potential energy spectra,
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Figure 17: Wavenumber spectra of kinetic and potential energy from the full model simu-
lation with reduced mixed layer shear. (a) Kinetic energy spectra at the surface and 100 m
depth, (b) spectral density of kinetic energy in the wavenumber–depth plane, (c) potential
energy spectra at the surface and 100 m depth, (d) spectral density of potential energy
in the wavenumber–depth plane. In panels (b) and (d), no values below 10−3 m3 s−2 are
shown.
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Figure 18: Spectral energy budget for the full model simulation with reduced mixed layer
shear. The terms are (a) potential energy extraction from the mean, (b) spectral potential
energy flux divergence, (c) potential to kinetic energy conversion, (d) kinetic energy flux
divergence, including spectral flux and pressure flux, (e) hypoviscosity on both kinetic and
potential energy, and (f ) hyperviscosity on both kinetic and potential energy. All terms are
multiplied by the wavenumber to compensate for logarithmic shrinking.

202



0.0 0.5 1.0 1.5 2.0

RMS vertical velocity [10−4 m s−1]

0

100

200

300

400

500

d
ep

th
[m

]

thermocline only

full model

Figure 19: Profiles of root mean square vertical velocity for the thermocline only simulation
and the full model simulation with reduced mixed layer shear.

0 100 200 300 400 500

zonal distance [km]

0

100

200

300

400

500

m
er

id
io

n
a
l

d
is

ta
n
ce

[k
m

]

surface buoyancy(a)

0 100 200 300 400 500

zonal distance [km]

0

100

200

300

400

500

m
er

id
io

n
a
l

d
is

ta
n
ce

[k
m

]

vertical velocity (47 m depth)(b)

−5 −4 −3 −2 −1 0 1 2 3 4 5

vertical velocity [10−4 m s−1]
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mixed layer shear simulation. (a) The surface buoyancy is the same as in Fig. 7d. (b) The
vertical velocity snapshot is taken at 47 m, the depth of the maximum root mean square
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which are underestimated by our model.
The energization by mixed layer instabilities implies a seasonal cycle in submesoscale

turbulence, which has been observed in both models and observations. Surface QG dynamics
do not predict a seasonal cycle in submesoscale turbulence, because the dynamics are driven
by mesoscale processes. Observational evidence for surface QG dynamics has yet to be
found, but the dynamics may be important when mixed layers are shallow and surface
buoyancy gradients strong.

An aspect of our model that is inconsistent with observations is that only the subme-
soscale appears to undergo a strong seasonal cycle, not the mesoscale, as implied by the
dynamics of our simple QG model. The energization of the mesoscale by mixed layer insta-
bilities appears to be much less effective in the real ocean. Our model is more consistent
with the real ocean if the mixed layer shear is reduced. Then, the mesoscale surface en-
ergy levels do not depend on the presence of the mixed layer and the model equilibrates to
realistic submesoscale energy levels.

This inconsistency with observations may point to shortcomings of the QG system in
predicting the equilibrated energy levels. The lack of small-scale energy dissipation makes
the mixed layer instabilities very effective in energizing the entire turbulent flow. If non-
QG effects were allowed, a fraction of the energy extracted from the mean in the mixed
layer would be dissipated at small scales. This energy leak to small scales is likely as the
Rossby and Froude numbers can be large enough at submesoscales to only marginally allow
QG scaling. Especially the host of coherent vortices forming in QG dynamics (Fig. 7)
may not form in the real ocean, because they would be unstable to non-QG instabilities.
The possibility of an energy leak to small scales has been demonstrated by Molemaker
et al., who studied an Eady instability with Ro = Fr = 0.5 using the full Boussinesq
equations [23]. While much of the energy extracted from the mean is still trapped at
large scales, as predicted by QG dynamics, some is lost to dissipation at small scales. A
small leak of energy in the instability may make a big difference in the cascade dynamics,
because that energy is not transferred back to mesoscales, where it would further enhance
the extraction of potential energy from the mean. We are currently investigating whether
primitive equation models indeed equilibrate to lower energy levels than QG models at
moderate Rossby and Froude numbers and will report the results elsewhere.

Another possible explanation for the lack of a strong seasonal cycle in the real ocean is
that our setup overestimates the amount of mean potential energy available for extraction.
QG dynamics do not allow for restratification, which would quickly increase the mixed
layer stratification and thereby reduce the available potential energy. We also hold the
mean shear fixed, which amounts to providing an infinite reservoir of available potential
energy. It does appear, however, that strong wintertime atmospheric forcing, with heat
fluxes on the order of several hundred watts per square meter, can effectively maintain both
a weak mixed layer stratification and horizontal buoyancy gradients.
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A Multi-layer model

A system of n layers of constant PV, of thickness hi and stratification Ni, consists of
n + 1 conserved quantities that are advected by the geostrophic flow at their respective
levels. Compared to the two-layer model considered in the main text, additional interface
quantities analogous to θ1 are present. The linear operator in the inversion relation (11)
has tridiagonal structure:

L = fkh




− cothµ0
N0

cschµ0
N0

cschµ0
N0

− cothµ0
N0

− cothµ1
N1

cschµ1
N1

. . .
. . .

. . .
cschµn−1

Nn−1
− cothµn−1

Nn−1
− cothµn

Nn
cschµn
Nn

cschµn
Nn

− cothµn
Nn



, (49)

where µi = Nikhhi/f . It may be more efficient to solve the inversion relation numerically
instead of calculating the inverse of this matrix, which will in general be full.

One can also include a PV gradient due to differential rotation. This can be done using
a trick described by Lindzen [21]: instead of using linear shear and constant stratification
in the layers, one can use parabolic shear or a modified stratification profile, which allows
cancellation of the contribution from the β-effect and retaining constant PV within the
layers. The PV gradient due to β is then included in the PV sheets at the interfaces.

B Density jump at layer interface

If there is a buoyancy jump g′ at the interface, the matching conditions must be modified.
To ensure a continuous pressure at the interface at z = −h+ η, we require

ψ(−h+)− ψ(−h−) = −g
′

f
η. (50)

Here, η is the perturbation of the interface between the constant-PV layers. The buoyancy
equations (5) can be combined with the kinematic condition

w =
∂η

∂t
+ J(ψ, η), (51)

applied at z = −h+ and z = −h−, to give

∂θ1
∂t

+ J(ψ1, θ1) = 0,
∂θ2
∂t

+ J(ψ2, θ2) = 0, (52)
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where

θ1 = f
b(−h+)

N2
m

+ fη, θ2 = f
b(−h−)

N2
t

+ fη, ψ1 = ψ(−h+), ψ2 = ψ(−h−). (53)

Together with the conservation of surface and bottom buoyancy,

θ0 = −f b(0)

N2
m

, θ3 = f
b(−H)

N2
t

, (54)

and the inversion relation obtained by solving (12) with the matching conditions above, the
model is complete. It now consists of four conserved quantities.
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