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Abstract

The winds over the Southern Ocean are increasing with time, and the impact that this
change in forcing will have on the structure of the Antarctic Circumpolar Current (ACC)
is not well understood. The statistical mean state of the ACC is set by a competition
of several physical processes including the direct effects of winds, as well as the effects of
eddies produced by baroclinic instability. We formulate a highly idealized two-layer quasi-
geostrophic model of the ACC using a zonally-reentrant channel geometry. We determine
the dependence of the equilibrium shear on the imposed wind stress in this model and find
that some eddy saturation occurs: the domain mean eddy diffusivity is found to increase
with increasing wind stress, mitigating the wind-driven tendency to steepen the interfacial
slope. We then formulate the mean-field dynamics of our idealized model in which eddy-
eddy interactions are discarded but eddy-mean flow interactions are retained. We find that
the mean-field model robustly reproduces the qualitative dependence of the shear on wind
stress seen in the full model. The mean-field model also captures the sense of the depen-
dence of the full dynamics on other model control parameters such as the bottom friction.
Our results suggest that mean-field dynamics constitutes a simplified and useful theoretical
framework within which progress toward a physical understanding of eddy diffusion in the
ACC might be made.

1 Introduction

The Antarctic Circumpolar Current (ACC) is a strong eastward current circulating around
the Antarctic continent with surface speeds on the order of 30 cm/s and strong eastward
flow extending to depth. The ACC is driven by persistent westerly winds blowing over
the surface of the Southern Ocean (SO) with characteristic velocities on the order of 10
m/s, corresponding to a surface wind stress of approximately 0.2 N/m2 [10]. The ACC is
characterized by a strong vertical shear of zonal velocity, with the large surface currents
diminishing to a weak flow near the ocean bottom. This vertical shear is associated with
the sloping of isopycnal surfaces across the ACC: isopycnals deepen moving away from the
Antarctic continent, with the rate of deepening being proportional to the strength of the
zonal mean shear. The SO is zonally reentrant in the Drake Passage latitude band near
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60S, but connects with the zonally-bounded ocean basins equatorward of the ACC. Isopy-
cnals in the ocean basins are relatively flat and are continuous with those in the ACC.
An emerging theoretical paradigm [14, 15] relates the depth of each isopycnal in the basin
interior to the slope of that isopycnal across the ACC. In this picture, isopycnal slopes in
the ACC play an important role in setting the deep stratification of the ocean basins. The
deep stratification in turn influences the large-scale meridional overturning circulation in
the Atlantic basin, which largely flows along isopycnal surfaces. The overturning circulation
redistributes carbon and heat on the planetary scale and thus plays a critical role in global
climate [10]. These considerations indicate that understanding the physical processes con-
trolling the strength and vertical structure of the ACC constitutes an important problem
in climate dynamics.

Observational records indicate that the strength and structure of the winds over the SO
are changing in time. These changes have been linked to Antarctic ozone depletion, and have
led to stronger eastward surface winds at ACC latitudes [19, 20]. How the ACC will respond
to this change in forcing is not well understood. Observational results have suggested that
the SO carbon sink is weakening as a result of the wind increases due to an associated
enhancement of the upwelling rate in the SO [8]. Some theoretical arguments [15] connect
such increases in upwelling with steepening of ACC isopycnal slopes. However, observations
have also suggested that isopycnal slopes in the ACC have remained essentially constant
[3], and high-resolution numerical modeling results have recently demonstrated that SO
overturning rate and isopycnal slopes may not covary as suggested by theoretical models
[12].

The spatial structure of the zonal mean isopycnals in the depth-latitude ACC cross-
section are determined by the interactions of several physical processes. These processes
include the surface buoyancy fluxes, which set the buoyancy structure in the outcrop region;
the surface Ekman transport, which tends to steepen isopycnals in the ACC region; and
heat fluxes due to baroclinic eddies, which act to flatten isopycnals. Surface buoyancy
fluxes are commonly taken to be constant in theoretical models of the ACC, although this
assumption has been shown to have important impacts on the response of the overturning
as winds are increased [2]. The Ekman response is well-understood and increases linearly
with the imposed wind stress. The eddy response is less straightforward, and understanding
how eddy effects vary with forcing constitutes a crucial step toward understanding the large
scale stratification and overturning of the world oceans.

Recent work has shown that numerical model predictions of the response of the ACC
mean state to changes in wind forcing is strongly dependent on how eddies are treated in
those models. Coarse resolution simulations typically parameterize eddies using the Gent-
McWilliams scheme and predict that the overturning and isopycnal slopes will respond
strongly to increases in the wind stress [14, 15]. In contrast, high resolution simulations
that permit or resolve eddies in the SO have predicted a dramatically reduced sensitivity
of isopycnal slopes to increasing winds [13]. This reduction in sensitivity associated with
the accurate simulation of SO eddies is referred to as eddy-saturation, and can produce
isopycnal slopes that are entirely independent of wind stress in some cases.

The effects of eddies on the SO mean state are frequently studied using the theoretical
framework of the transformed Eulerian mean (TEM) [9, 7]. The TEM description of the
relationship between eddies, winds, and isopycnal slopes is typically phrased as follows
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(following [2]). The steady-state Eulerian zonal mean budget buoyancy budget is

v∂yb+ w∂zb+ ∂yv′b′ + ∂zw′b′ = D (1)

in which (y, z) are the meridional and vertical Cartesian coordinates, (v, w) are the velocity
components in the y and z directions, b is the buoyancy, D represents any diabatic forcing
terms, and overbars and primes are used to indicate the zonal mean and deviations from
the zonal mean. Defining the TEM eddy streamfunction by ψ? = −w′b′/∂yb, (1) can be
rewritten as

J(ψres, b) = D − ∂y
[
(1− µ)v′b′

]
. (2)

Here we use the Jacobian notation J(f, g) = ∂yf∂zg−∂zf∂yg and have defined the quantities
ψres = ψ + ψ? and µ = −(∂zb)w′b′/(∂yb)v′b′, where ψ is the streamfunction corresponding
to the Eulerian mean velocities v and w. If the eddies act adiabatically so that their heat
fluxes are aligned with isopycnals then µ = 1 and in the absence of explicit diabatic terms
we obtain

J(ψres, b) = 0. (3)

This result shows that the residual circulation, which is the circulation relevant to heat
transport, is along isopycnals in an adiabatic ocean.

Many idealized models of the ACC are formulated in the geometry of a zonally-reentrant
channel bounded by zonal walls. In such a model isopycnals will intersect the wall on the
equatorward side, which constrains the residual circulation to vanish. This is because ψres

vanishes on the boundary by the condition of no normal flow at the wall, and ψres is constant
along isopycnals by (3). If µ = 0 we can rewrite the eddy streamfunction as ψ? = v′b′/∂zb
and the condition of zero residual circulation gives

0 = ψ + ψ? = ψ +
v′b′

∂zb
. (4)

The Eulerian mean streamfunction is given by the well-known Ekman overturning ψ =
−τ/(ρ0f) where τ is the surface wind stress, ρ0 is a reference density and f is the Coriolis
parameter. Assuming a Gent-McWilliams-like flux-gradient form for the eddy heat flux
v′b′ = −K∂yb in (4) immediately yields the formula

s = −∂yb
∂zb

=
τ

ρ0fK
(5)

which predicts the isopycnal slope s in terms of the external parameters τ , f , and ρ0 as well
as the eddy diffusion coefficient K. Although the real ACC is not bounded by zonal walls, it
remains plausible that (5) holds at leading order, as observations of the SO indicate that the
residual circulation is much weaker than either the eddy or Eulerian mean streamfunctions,
implying that the two contributions to ψres cancel one another heavily [10].

Equation (5) summarizes the competing effects of winds and eddies in determining the
isopycnal slopes. Increasing the wind stress τ steepens isopycnals according to the Ekman
response, while strengthening the eddy fluxes by increasing K flattens isopycnals. If K
is taken to be a constant, increasing τ produces a linear increase in the slope. On the
other hand, if K is taken to be proportional to the wind stress, then s will be invariant
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to changes in τ , i.e., the ACC will be completely eddy saturated. No accepted theoretical
argument currently exists to predict K, and many different assumptions have been used
to parameterize K and obtain a scaling for s(τ). Marshall and Radko [9] took K to be
proportional to the isopycnal slope K = αs to obtain s ∼ √τ . Based on mixing-length
arguments, Abernathey and Marshall [2] related K to the eddy kinetic energy (EKE) as
K ∼

√
EKE. In their simulations EKE was found to depend linearly on τ , predicting

K ∼ √τ . Meredith et al. [11] also suggested that K scales with EKE, but according to
a more complex relationship having two limiting cases. In the limit of small EKE, they
obtain K ∼ EKE3/2, while in the limit of large EKE they obtain K ∼

√
EKE. Assuming

EKE ∼ τ , these results predict a family of scaling laws s ∼ τγ with −1/2 < γ < 1/2. This
range of scalings includes cases in which isopycnal slopes steepen with τ , are constant with
τ , or decrease with τ .

Based on the above discussion it is clear that an improved understanding of eddy physics
in the ACC is required to make progress on the problem of the SO response to changes in
forcing. In this work, we use the two-layer quasigeostrophic (QG) equations to formulate a
highly-idealized model of the ACC. Within the context of this model, we identify a reduced
set of dynamics, the mean-field dynamics, which appears to reproduce the dependence of the
mean state on the winds that we observe in the full dynamics. The mean-field dynamics is
obtained by discarding eddy-eddy interactions from the full nonlinear equations of motion
while retaining the interactions between the eddies and the mean flow. This approach
has previously been successful in a variety of applications. O’Gorman and Schneider [16]
applied mean-field theory to an atmospheric GCM and obtained a mean state and storm
track statistics similar to those of the unapproximated GCM. Mean-field theory has also
been successful in predicting the formation and structure of zonal jets emerging on the
stochastically-driven barotropic β-plane [4, 17]. It is hoped that our application of the
highly-simplified mean-field dynamics to the ACC will provide a more tractable theoretical
framework within which progress toward understanding the eddy response to wind stress
variations may be made in the future.

2 Model Formulation

2.1 Model Geometry and Equations of Motion

Layer&1


Layer&2


h

H1


H2


Figure 1: Schematic (x, z) cross-section of the two-layer model geometry.
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We consider the motion of two fluid layers with thicknesses

h1 = H1 + h (6)

h2 = H2 − h (7)

where H1 and H2 are the (constant) mean thicknesses of layers 1 and 2 and h(x, y, t) is the
excess thickness of layer 1. We take x (increasing eastward) and y (increasing equatorward)
to be our zonal and meridional coordinates on a zonally-reentrant β-plane channel of merid-
ional width W and zonal extent L. A cross section of the model geometry is illustrated in
Fig. 1. The local slope of the interface between the two layers is given by the gradient of
h and is the analog of the isopycnal slope in the two-layer case. In the QG approximation,
the dynamics of the two layers are formulated in terms of the upper and lower layer QG
potential vorticities (PVs) q1 and q2, which are defined as

q1 = ∇2ψ1 + βy − F1(ψ1 − ψ2) (8)

q2 = ∇2ψ2 + βy + F2(ψ1 − ψ2). (9)

Here ψ1 and ψ2 denote the upper and lower layer geostrophic streamfunctions, which are
related to the geostrophic velocity components via u1,2 = −∂ψ1,2/∂y and v1,2 = ∂ψ1,2/∂x.
As we work on the β-plane, β = df/dy is a constant parameter. The parameters F1 and
F2 are defined in terms of the mean layer depths as

F1 =
f20
g′H1

F2 =
f20
g′H2

(10)

in which f0 is the constant background Coriolis parameter and g′ is the reduced gravity
g′ = g(ρ2 − ρ1)/ρ2 where ρi is the constant density of the fluid in layer i. We take ρ2 > ρ1
so that the fluid is stably stratified. The difference ψ1 − ψ2 appearing in (8,9) is related to
the interface deflection h through the relation

f0(ψ1 − ψ2) = g′h (11)

so that the zonal mean interfacial slope is given by

s ≡ −∂h
∂y

=
f0
g′

(U1 − U2) (12)

in which the overbar indicates a zonal average and we denote the zonal mean flow by
U1,2 = u1,2. Note the negative sign in the definition of s: as h is the excess thickness in
layer 1, s < 0 corresponds to h increasing with y. Equation (12) relates the baroclinic
component of the mean flow to the interfacial slope, and indicates that for positive shear
U1 > U2 the interface deepens as we move equatorward (f0 < 0).

The PV fields evolve according to the dynamical equations

∂tq1 + J(ψ1, q1) = −r(q1 − βy)− 1

ρ1H1
∂yτ + κ∇2q1 (13)

∂tq2 + J(ψ2, q2) = −r(q2 − βy)− dF2∇2ψ2 + κ∇2q2 (14)
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in which J(f, g) = (∂xf)(∂yg)−(∂yf)(∂xg). Conservation of PV in (13) and (14) is modified
by forcing, in the form of wind stress acting on layer 1, and by dissipation, in the form of
Rayleigh drag, diffusion, and bottom friction. We take the wind stress to be of the idealized
form

1

ρ1H1
τ(y) = A sin(lgy) (15)

where lg = π/W and A controls the strength of the forcing. The stress is thus zonally-
symmetric with a half-sinusoidal profile across the channel, and acts to drive eastward flow
in the channel. Rayleigh drag damps the dynamical part of the PV qi−βy in both layers with
coefficient r. This Rayleigh drag on PV derives from Rayleigh drag on the upper and lower
layer velocities as well as on the interface deflection h, all with equal coefficients. Bottom
friction acts only on the relative vorticity in layer 2. We take the drag coefficient to be dF2

so that d controls the strength of the bottom drag when F2 is held constant. Diffusion of
PV with coefficient κ is included for numerical stability of the mean-field dynamics, which
we introduce in Section 2.5. We set κ = 0 when working with the full nonlinear equations
of motion, and so we ignore diffusion when discussing the full dynamics.

The model boundary conditions are periodic in x and appropriate boundary conditions
are applied in the meridional direction to ensure mass conservation. Mass conservation
requires that the meridional velocity vanishes at the boundaries y = 0,W , including both
the geostrophic (v) and ageostrophic (va) parts of the meridional velocity. Since vi =
∂ψi/∂x = 0, the vi = 0 geostrophic condition implies that v′i = 0, where the prime denotes
the deviation from the zonal mean. The ageostrophic condition vai = 0 implies the boundary
condition U1 = U2 = 0 on the zonal mean zonal flow, which we discuss in Section 2.2. Free-
slip boundary conditions are applied to u′i.

2.2 Zonal Mean Dynamics and Residual Circulation

Although the PV-evolution equations (13,14) are sufficient to determine the dynamics, it
is illuminating to examine the zonal mean dynamics directly in terms of the velocities and
interface deflection. The zonal mean equations of motion for the interface and zonal flow
are

∂tU1 = v′1q
′
1 + f0v

†
1 − rU1 +

1

ρ1H1
τ (16)

∂tU2 = v′2q
′
2 + f0v

†
2 − rU2 − dF2U2 (17)

∂th = −w† − rh (18)

in which we have defined the residual meridional velocities

v†1 = v1a +
1

H1
v′1h
′ (19)

v†2 = v2a −
1

H2
v′2h
′ (20)

w† = w1 + ∂yv′1h
′ = w2 + ∂yv′2h

′. (21)

The second equality in (21) follows from continuity at the interface of the component of
velocity normal to the interface, which ensures that h is a material surface viewed from
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either fluid layer. Note that (11) implies v′1h
′ = v′2h

′ and that mass continuity implies v†1 =

−(H2/H1)v
†
2. The vertical and meridional residual velocities are related through H1∂yv

†
1 =

−H2∂yv
†
2 = w†. Note that (18) implies that in steady state the residual circulation w†

balances the diabatic effect of Rayleigh drag on the interface. The residual circulation in
our simplified model is thus strongly constrained by the imposed drag parameters, and
vanishes by necessity in the limit r → 0.

The boundary condition of no normal flow at y = 0,W places a constraint on the zonal
mean flow at the walls that can be understood from (16). The PV flux v′1q

′
1 = 0 and

thickness flux v′1h
′ vanish at the walls because v′ = 0 there, and τ = 0 at the walls by our

choice of forcing structure. The budget then becomes

∂tU1 = f0v1a − rU1. (22)

We require that the ageostrophic meridional flow v1a = 0 at the walls to prevent a net flux
of mass into or out of the layer. This implies that U1 decays exponentially at the walls,
and that if U1 = 0 at t = 0, then U1 = 0 for all time. Similar considerations apply to U2.
As described in Section 2.1, we take U1 = U2 = 0 at the channel walls as our boundary
conditions on the mean flow.

The upper layer mean zonal momentum equation (16) shows that in the absence of
eddies, Rayleigh drag, or time-dependence, the wind stress drives an equatorward residual
flow v†1 > 0 whose Coriolis force balances the stress. This is the representation of the Ekman

response in our simplified two-layer model. The residual return flow v†2 in the lower layer
produces an eastward Coriolis force that must be balanced by bottom friction on the zonal
flow U2, thereby requiring eastward flow U2 > 0 in the lower layer. In the presence of eddies,
the eddy PV fluxes v′1q

′
1 and v′2q

′
2 act to transfer momentum from the upper layer to the

lower layer. It is straightforward to show that H1〈v′1q′1〉 = −H2〈v′2q′2〉, where angle brackets
denote a mean over the entire domain. This shows that the rate at which eddies remove
momentum from the upper layer is equal to the rate at which they deposit momentum into
the lower layer. Eddies produced by a baroclinically unstable shear then act to barotropize
the flow, reducing the shear and flattening the interface.

We now use the zonal mean equations (16,17,18) to cast the eddy saturation argument
discussed in the introduction into the language of our model. We make the assumption that
diabatic effects are weak and that the residual circulation is unimportant. The steady state
zonal mean momentum budgets then become

0 = v′1q
′
1 +

1

ρ1H1
τ (23)

0 = v′2q
′
2 − dF2U2. (24)

Further assuming that the interface term in the potential vorticity is dominant over the
planetary and relative vorticity terms, we write the PV fluxes in terms of the thickness flux
as

v′1q
′
1 ≈ − f0

H1
v′1h
′ (25)

v′2q
′
2 ≈ +

f0
H2

v′2h
′ =

f0
H2

v′1h
′. (26)
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Finally, we assume a flux-gradient relationship for the thickness flux

v′1h
′ = −K∂h

∂y
. (27)

Combining expressions (23), (25), and (27) immediately yields an expression for the zonal
mean interfacial slope s in terms of the model parameters and the eddy diffusivity K:

s = −∂h
∂y

=
τ

f0ρ1K
. (28)

Equation (28) implies that if the eddy diffusivity K is constant, the slope of the interface
scales linearly with the imposed wind stress. On the other hand, if K is linear in the wind
stress K = ατ , then the slope of the interface does not depend at all on the winds. This
highlights the crucial role of eddies in determining the response of the ocean to changing
forcing conditions.

The interfacial slope s is related to the zonal mean shear U1 −U2 by (12). By applying
the flux-gradient relation to the zonal mean momentum budget of the lower layer, we can
also obtain explicit formulas for U1 and U2 individually. Combining equations (26), (27),
and (28) yields

U2 =
δ

dF2

τ

ρ1H1
(29)

where δ = H1/H2 is the ratio of layer depths. Writing U1 = U2 + (U1 − U2) and applying
(28) then yields

U1 =

(
δ

dF2
+

1

F1K

)
τ

ρ1H1
. (30)

Equation (29) shows that, under these assumptions, the lower layer flow is independent of
the eddy diffusivity K and is determined solely by the winds and bottom friction. The
upper layer flow U1 weakens with increasing K as larger eddy diffusivities correspond to a
shallower interfacial slope and reduced vertical shear.

2.3 Model Fixed Point

As we are interested in the behavior of the model equations (13) and (14) as the wind stress
forcing is varied, it is useful to determine whether stable fixed point solutions exist over
some range of forcing strengths. The model indeed has a single, zonally-symmetric fixed
point that is stable for sufficiently weak wind stress. The fixed point becomes baroclinically
unstable as the wind stress is increased beyond a threshold value. For sufficiently strong
winds, the flow in the channel is turbulent.

To obtain the fixed point in terms of the model parameters, we first write

q1 − βy = Q̂1 cos(lgy) q2 − βy = Q̂2 cos(lgy) (31)

U1 = Û1 sin(lgy) U2 = Û2 sin(lgy) (32)

so that the steady state, zonally-symmetric PV budgets become (from (13) and (14))

0 = −rQ̂1 cos(lgy)− ∂y (A sin(lgy)) (33)

0 = −rQ̂2 cos(lgy)− dF2∂y

(
−Û2 sin(lgy)

)
. (34)
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Equations (33) and (34) can be solved for the steady state values of U1 and U2 by writing
the PV in terms of the zonal mean flow. We obtain

U1

∣∣∣
FP

= A
F2 + l2g

(
1 + F2d

r

)

F2d(l2g + F1) + r(l2g + F1 + F2)
sin(lgy) (35)

U2

∣∣∣
FP

= A
F2

F2d(l2g + F1) + r(l2g + F1 + F2)
sin(lgy). (36)

The corresponding upper and lower layer PV gradients are

∂q1
∂y

∣∣∣
FP

= β +
l2gA

r
sin(lgy) (37)

∂q2
∂y

∣∣∣
FP

= β −
l2gA

r

dF 2
2

dF2(l2g + F1) + r(l2g + F1 + F2)
sin(lgy). (38)

Several important theoretical properties of our model are revealed by expressions (35)-
(38). From (35) and (36) it is clear that the fixed point values of U1, U2, and U1 − U2

all increase linearly with the wind stress A. Equations (35) and (36) also show that the
fixed point structure depends crucially on the Rayleigh drag r. As r → 0, the fixed point
value of U1 tends to infinity while U2 asymptotes to a constant finite value. This can be
understood from the zonal mean momentum and thickness budgets (16) and (18). In the
absence of Rayleigh drag, (18) constrains the residual circulation to vanish. In the absence
of a residual circulation, eddies, or Rayleigh drag in the momentum equation, (16) shows
that the momentum injection by wind stress must be balanced by acceleration of the upper
level flow. This argument illustrates that no fixed point exists for r = 0: the solution is
always time-dependent, with the upper layer flow steadily increasing until the shear becomes
baroclinically unstable, even for very weak wind forcing. The fixed point PV gradients (37)
and (38) reveal the important role played by bottom drag in our model. The upper layer
PV gradient is always positive, while the PV gradient in layer 2 is positive for small A and
negative for sufficiently large A. However, if the coefficient of bottom friction d → 0, the
PV gradient in layer 2 can never become negative. As a change in sign of the PV gradient
must occur somewhere in the domain as a necessary condition for baroclinic instability, this
demonstrates that bottom drag is required for baroclinic instability to occur in this model.
We discuss the stability of the fixed point in more detail in the next section.

2.4 Model Parameters and Instability Properties

The model dynamics depends on a number of parameters, whose values we choose to be
approximately representative of the SO. As our primary interest is in the response of the
model dynamics to changing wind stress, we will normally vary the strength of the wind
stress A while keeping other parameters fixed. We also conduct a number of sensitivity tests
by varying the damping parameters r and d. We hold the following parameters constant in
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all model integrations:

W = 1000 km (39)

L = 2000 km (40)

F1 = 5.5× 10−4 km−2 (41)

F2 = 1.1× 10−4 km−2 (42)

β = 1.2× 10−3 (km day)−1. (43)

The zonal extent of the channel is thus twice its meridional width. The ratio F1/F2 =
H2/H1 = 5, so that the lower layer has a mean thickness of five times that of the upper layer.
The model dynamics does not depend on the values of H1 and H2 outside their appearance
in the F1 and F2 parameters. Similarly, the dynamics does not depend explicitly on g′ or
f0. The Rossby deformation radius Rd is given by Rd = (F1 + F2)

−1/2 = 38.8 km, so that
our channel extends over 50 Rossby radii in the zonal direction and approximately 25 in the
meridional direction. The value of β was chosen to represent a channel centered at 60◦S.

It remains to specify the values of the drag parameters r, d, and κ, as well as the
strength of the wind forcing A. We take a constant value of κ = 20 km2/day in the mean-
field dynamics and κ = 0 in the fully-nonlinear dynamics. The value of κ was chosen to be
as small as possible while still allowing the numerical model to remain stable. The Rayleigh
drag r and bottom drag d are varied in sensitivity tests, but our reference values are taken
to be

r = 1× 10−4 day−1 (44)

d = 500 km2/day. (45)

For the reference bottom friction value, the drag on the lower layer velocity has coefficient
dF2 = 0.05 day−1, so that the bottom drag acts approximately 500 times more rapidly than
the bulk Rayleigh drag. In the mean-field dynamics, the PV diffusion acts on the largest
scales with coefficient κl2g ∼ 2×10−4 day−1. Diffusion in the mean-field model is thus twice
as strong as the Rayleigh drag at the largest scales, and even stronger at smaller scales.
Diffusion plays an important role in the mean field equations (due to numerical constraints)
while playing no role in the nonlinear equations. This difference in dissipation constitutes
a limitation of our results, and resolving this issue is an important future direction of
this work. However, preliminary integrations of the nonlinear model in which comparable
diffusion was added to the dynamics produced results similar to those without diffusion for
wind stress values well beyond the stability boundary of the fixed point. This suggests that
comparisons between the mean-field and nonlinear dynamics remain informative in spite of
the differences in the dissipation properties of the two models.

We vary the wind stress over the range A = 0.1−7.0 km/day2. We take as our reference
value A = 1 km/day2. In our notation the wind stress A appears directly as an acceleration
of the zonal wind, and so has units of acceleration. To compare with realistic values of
the wind stress over the SO it is conventional to write the acceleration as τ0/(ρ1H1) where
τ0 has units of stress (N/m2) and ρ1 is the density of the upper layer. Choosing as a
typical density ρ1 ∼ 1035 kg/m3 and an upper layer depth H1 ∼ 1000 m, our reference
acceleration corresponds to a surface stress τ0 ∼ 0.14 N/m2. This is near the conventional
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value of τ0 = 0.2 N/m2, so that A = 1 km/day2 is reasonably representative of the SO wind
stress. By varying A over a wide range in the vicinity of this reference value, we assess how
the state of the two-layer model ocean responds to changes in wind stress.

The growth rate of baroclinic instability is shown in Fig. 2 as a function of zonal
wavenumber for A = 1.0 km/day2 and reference values of the drag parameters. Panel (a)
shows the growth rate in the nonlinear model (κ = 0) and panel (b) shows the growth
rate in the mean-field dynamics (κ = 20 km2/day). For this forcing value the fixed point
is unstable with or without diffusion, and the e-folding time of the fastest growing wave
is on the order of a few days. The growth rate peaks near zonal wavenumbers 4 and 5.
The Rossby radius Rd = 38.8 km corresponds to a wavenumber kd ∼ 1/Rd = .025 km−1

which is near zonal wavenumber 8. Baroclinic instability thus sets in at scales somewhat
larger than the Rossby radius. In the absence of diffusion the stable high wavenumbers
decay on the timescale of the Rayleigh drag. With diffusion, all growth rates are reduced,
and higher wavenumbers decay more rapidly. For κ = 0, instability sets in at a minimum
wind strength of A ∼ .015 km/day2 for the reference drag values. For κ = 20 km2/day,
baroclinic instability does not set in until A = 0.25 km/day2. As we vary A over the range
A = 0.1− 7.0 km/day2, all model integrations are in the unstable regime for the nonlinear
model diffusion. The mean-field model is stable for the first few wind stress values and
unstable thereafter.
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Figure 2: Growth rate of baroclinic instability as a function of wavenumber (a) without
diffusion and (b) with diffusivity κ = 20 km2/day. Blue circles indicate the quantized
wavenumbers permitted by the periodic geometry. Reference values are used for all param-
eters.

2.5 Mean-Field Dynamics

Mean-field dynamics is a simplified theoretical model of the system (13,14) in which the
nonlinearity associated with the advection of eddy quantities by the eddy velocity field is
discarded but the nonlinearity associated with wave-mean flow interaction is retained. To
derive the mean-field equations, we first rewrite the nonlinear equations of motion in the
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Reynolds decomposition:

q1 = q1 + q′1 = Q1(y, t) + q′1(x, y, t) (46)

q2 = q2 + q′2 = Q2(y, t) + q′2(x, y, t). (47)

The mean PV fields Q1 and Q2 evolve according to the dynamical equations

∂tQ1 = −∂yv′1q′1 − r (Q1 − βy)− 1

ρ1H1
∂yτ + κ∂yyQ1 (48)

∂tQ2 = −∂yv′2q′2 − r (Q2 − βy)− dF2∂yyψ2 + κ∂yyQ2. (49)

These equations are equivalent to the set of equations (16,17,18) except that we include
the diffusion term for numerical stability of the approximated equations derived in what
follows. The eddy PV fields q′1 and q′2 evolve according to

∂tq
′
1 = −U1∂xq

′
1 − v′1∂yQ1 − rq′1 + κ∇2q′1 + EENL1 (50)

∂tq
′
2 = −U2∂xq

′
2 − v′2∂yQ2 − rq′2 + κ∇2q′2 − dF2∇2ψ′2 + EENL2. (51)

Here we use the notation EENL to denote the eddy-eddy nonlinearities, given by

EENL1 = −∂y
(
v′1q
′
1 − v′1q′1

)
− ∂x

(
u′1q
′
1 − u′1q′1

)
(52)

EENL2 = −∂y
(
v′2q
′
2 − v′2q′2

)
− ∂x

(
u′2q
′
2 − u′2q′2

)
. (53)

Equations (48)-(51) are exact. To form the mean field equations, we simply drop the EENL
terms, thereby discarding the effects of eddies advecting eddies. The discarded EENL
terms are those responsible for the scattering of energy between different zonal wavenumber
components of the flow. In the mean-field approximation, the dynamics is that of wave-
mean flow interaction: the structure of the eddy field is shaped by its interaction with the
mean flow, and the eddy fluxes in turn modify the mean flow to complete the two-way
wave-mean coupling.

The mean-field dynamics has considerable conceptual and practical advantages over the
full nonlinear equations of motion. As result of our approximation, the eddy equations of
motion (50,51) become linear in eddy quantities. We write the eddy PV fields as Fourier
series in zonal wavenumber components kn = 2πn/L

q1(x, y, t) = Re

[ ∞∑

n=1

q̃1,n(y, t)eiknx

]
q2(x, y, t) = Re

[ ∞∑

n=1

q̃2,n(y, t)eiknx

]
. (54)

Equations (50,51) then imply that each wavenumber component n evolves independently
of the others, interacting only through their mutual interaction with the mean flow. This
is in contrast to the full nonlinear equations in which Fourier components interact directly.
Since wavenumbers do not interact directly in the mean-field dynamics, it is mathematically
consistent to retain a single zonal wavenumber k in the expansions (54) and write

q1(x, y, t) = Re
[
q̃1(y, t)e

ikx
]

q2(x, y, t) = Re
[
q̃2(y, t)e

ikx
]
. (55)
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The resulting equations of motion for the single wave and the mean flow are

∂tq̃1 =
[
−ikU1 − r + κ(∂yy − k2)

]
q̃1 + [−ik∂yQ1] ψ̃1 (56)

∂tq̃2 =
[
−ikU2 − r + κ(∂yy − k2)

]
q̃2 +

[
−ik∂yQ2 − dF2(∂yy − k2)

]
ψ̃2 (57)

∂tQ1 = (k/2)∂yIm
(
ψ̃1q̃

?
1

)
− rQ1 −

1

ρ1H1
∂yτ + κ∂yyQ1 (58)

∂tQ2 = (k/2)∂yIm
(
ψ̃2q̃

?
2

)
− rQ2 + dF2∂yU2 + κ∂yyQ2 (59)

in which we have used the relation v′iq
′
i = −(k/2)Im(ψ̃iq̃

?
i ) to write the eddy PV fluxes ex-

plicitly in terms of the Fourier coefficient. Stars indicate complex conjugation. In equations
(56)-(59), the retained wavenumber k is a free parameter. We choose k based on the dom-
inant wavenumber observed in nonlinear model integrations. The mean-field dynamics is
also often referred to as the quasilinear approximation. Based on this nomenclature, we will
refer to the closed dynamical system (56)-(59) as the quasilinear model, abbreviated “QL”.
To mirror our naming convention we refer to the fully nonlinear dynamics (13)-(14) by the
abbreviation “NL”. We emphasize that the difference between NL and QL is in the EENL
terms only. As these terms play no role in the zonally-symmetric fixed point solution, the
QL dynamics has the same fixed point and stability properties as NL, with the exception
of the influence of PV diffusion which is included in QL but not in NL.

In the full nonlinear dynamics (13,14), a flow initialized with energy concentrated in
single zonal wavenumber component would nonlinearly produce a full spectrum of waves
through the EENL terms. In the mean-field dynamics this scattering of energy to other
waves does not occur and the interaction of a single wave with the mean flow can be con-
sistently investigated. The choice to retain a single wavenumber constitutes an extreme
simplification of the dynamics, reducing the dynamical variables of the model from two-
dimensional fields fluctuating in time ψ′(x, y, t) to one-dimensional Fourier structures vary-
ing in time ψ̃k(y, t). In addition to practical simplification, the mean field equations also
provide conceptual clarity by isolating the effects of wave-mean flow sector of the model
physics from the EENL effects. This separation allows us to evaluate the importance of
EENL processes in determining the model’s response to forcing. In the remainder of this
paper we will compare solutions of the nonlinear and mean-field equations to evaluate the
extent to which the mean-field theory can reproduce the response of the nonlinear model to
changes in wind forcing. The success or failure of the mean-field dynamics in mirroring the
behavior of the full model has important implications for our understanding of how eddies
influence the mean climate state.

2.6 Numerical Implementation

The NL equations (13)-(14) are integrated numerically on a staggered finite-difference grid
with nx = 128 points in the zonal direction and ny = 64 points in the meridional direction.
This corresponds to a model grid spacing of dx = dy ≈ 15 km, so that we have several
grid points within each Rossby radius Rd ≈ 40 km. PV inversion is performed spectrally.
Advection terms are calculated in flux form and a van Leer flux limiter is used for numerical
stability. We use a second-order Runge-Kutta method for the marching scheme with a time
step of dt = 1/64 days. The model is initialized near the fixed point solution for low values of
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the wind stress. For large values of wind stress U1,FP is so large that initialization near the
fixed point constrains the timestep due to the CFL condition, so we instead initialize with
zonal mean fields equal to those of the fixed point but rescaled by a coefficient with value
less than one. Small scale noise is added to break the symmetry and allow the instability
to develop. Model integrations are typically carried out for 5000 days, which was found
to be sufficient to obtain reasonable flow statistics. For some parameter values very long
runs (50000 days) were carried out, and the statistics were not found to change very much
compared to the shorter integrations. The sensitivity of the model results to the spatial
resolution was also tested. Model integrations at doubled resolution (Fig. 12, Appendix)
showed minor quantitative differences when compared with the default resolution, but the
similarity of the two solutions demonstrates that the model dynamics are sufficiently well-
resolved at 64× 128 resolution.

The QL equations (56)-(59) are solved numerically using finite-differences on an ny = 64
point meridional grid. PV inversions were performed using finite differences. The same
marching scheme, time step, and initialization procedure was used as in NL. As the QL
model is inexpensive to numerically integrate (even compared with our highly simplified
two-layer QG model) we integrate the QL model for 100000 days to obtain reliable statistics.
In many cases the QL model exhibits long transient oscillations after the initial instability,
but these were eliminated from the statistics by averaging only over the second half of the
model integrations.

3 Results

3.1 Reference Case
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Figure 3: (a) EKE as a function of zonal wavenumber in the NL model (b) Eddy PV flux
as a function of wavenumber in the NL model. Both EKE and PV flux show large peaks
at zonal wavenumbers 4 and 5, indicating that these waves are dominant in the statistical
mean state

We now compare the results of the NL and QL model integrations for the reference case
A = 1 km/day2, r = 1 × 10−4 day−1, d = 500 km2/day. Figure 3 (a) shows the time and
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domain average EKE as a function of zonal wavenumber in the equilibrated NL state, where
EKE is calculated as

EKE =
H1〈u′21 + v′21 〉+H2〈u′22 + v′22 〉

H1 +H2
=
F2〈u′21 + v′21 〉+ F1〈u′22 + v′22 〉

F1 + F2
. (60)

Angle brackets indicate a time and domain average. The contribution from each wavenum-
ber was determined by expanding the velocity field in a Fourier series as in (54) and calcu-
lating the energy of each wavenumber component separately. The energy spectrum shows a
clear peak at zonal wavenumber 4, with some energy at the neighboring wavenumbers and
very little energy at small scales. Figure 3 (b) shows the time and domain mean eddy PV
flux 〈v′q′〉 for the upper and lower layers as a function of wavenumber. In the upper layer
the eddies flux PV poleward, decelerating the upper layer flow by (16). The eddy flux in
the lower layer is in the opposite direction, with the eddies acting to drive the lower layer
flow against bottom friction. The eddy flux spectrum indicates that zonal wavenumber 4
dominates the flux of PV, in addition to containing the most kinetic energy. Based on these
observations, we take k = 4 as our QL wavenumber.

Figure 4 (a) and (c) show snapshots of the upper layer PV fields in QL and NL in
statistical equilibrium. The zonal wavenumber 4 and 5 structures appearing in the energy
spectrum are also visibly evident in the NL PV field. The NL and QL PV fields are
qualitatively similar, although EENL effects in the NL model produce PV filaments that
are not present in the QL model. The QL PV field is by design characterized by an exact
wave-4 structure, since only k = 4 is included in our calculation.

Panels (b) and (d) in Fig. 4 show the zonal mean flow in the upper and lower layers for
the QL and NL models. It is informative to compare these equilibrated turbulent structures
to the fixed point solutions (35,36). For the reference parameter values, the upper and lower
layer unstable fixed point jets have strengths U1,FP ∼ 180 km/day and U2,FP ∼ 3 km/day
so that the fixed point baroclinic shear is O(175 km/day). The shear maintained by the
equilibrated turbulence is O(15 km/day) at the channel center, indicating that the action
of baroclinic eddies produces a dramatic barotropization of the flow. The magnitude of the
upper layer flow is approximately 20 km/day ≈ 23 cm/s, which is realistic for the ACC.

The strengths of the zonal jets U1 and U2 are similar in the QL and NL models. In-
spection of the upper layer flow in NL shows that the eddies have modified the meridional
profile of the zonal jet in addition to severely reducing its strength relative to the fixed
point solution. The initially sinusoidal profile has been intensified at the channel center
and weakened in the flanks of the center jet, with the appearance of an additional slight
inflections of the jet profile near y = 200 km and y = 800 km. The QL upper layer jet
has a meridional structure qualitatively different from that of the NL jet. The QL jet is
intensified at the channel center and weakened on the flanks in agreement with the NL
profile. However, additional flank jets are evident in the QL simulation near the locations
of the minor inflections seen in the NL profile. These strong flank jets do not seem to form
in the NL system. As the upper-level QL jet is stronger than the NL jet in some regions of
the channel and weaker in other regions, the QL dynamics may track the behavior of NL
more closely in the domain-average picture in which these differences in structure may be
partially averaged out. The lower layer jets of NL and QL agree much more closely than
the upper layer jets, although the QL dynamics still produces additional meridional struc-
ture on the flanks of the sharpened center jet. Additional work is in progress to identify
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the physical explanation for these differences in structure, which we suspect are due to the
development within the jet of critical layers for the equilibrated wave which are smoothed
out by the turbulence of the NL model.
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Figure 4: (a) Snapshot of upper layer PV in the QL model. (b) Upper level zonal mean flow
in the QL (red) and NL (blue) models. (c) Snapshot of upper layer PV in the NL model.
(d) Lower level zonal mean flow in the QL (red) and NL (blue) models. PV snapshots show
qualitatively similar structures in both models, with NL showing a mixture of waves 4 and
5 as well as some small scale structure absent from the QL model. Zonal mean flows in QL
and NL are close in amplitude but differ in meridional structure, with the QL dynamics
producing a multiple jet structure that is not found in NL.

3.2 Model Response to Increasing Wind Stress

Motivated by the qualitative agreement between the QL and NL models in the reference
configuration, we next vary the strength of the wind stress and compare the responses of
NL and QL over a wide range of parameter space. Figure 5 shows the domain and time
mean shear U1 − U2 as a function of the wind stress A for the NL and QL models. The
abrupt change in the behavior of the QL curve at very weak wind stress is due to the
onset of baroclinic instability, which sets in near A = 0.25 km/day in QL. The NL model is
unstable for all plotted A values due to the absence of diffusion in NL system. Away from
the instability boundary the shapes of the NL and QL curves are quite similar, with the
behavior appearing to be loosely separated into two regimes. For relatively weak wind stress
A . 1 km/day, the shear increases rapidly as A is increased. We emphasize that even in
this relatively weak forcing regime the shear of the equilibrated state is much weaker than

224



that of the fixed point solution, and that the rate of increase of the shear with A is also much
shallower than that which would result from the fixed point solution. The sharp increase
of shear with A for the fixed point solution can be seen in the first few points of the QL
curve before the flow becomes unstable. As A is increased beyond A ≈ 1 km/day, the shear
becomes less sensitive to changes in wind stress, indicating a degree of eddy saturation that
occurs in both the QL and NL models. From Fig. 5 it does not appear that the shear ever
becomes independent of A, which would correspond to complete eddy saturation, but we
have not carried out model runs beyond A = 7 km/day.
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Figure 5: Domain and time average shear in statistical equilibrium in the QL (red) and
NL (blue) models as functions of wind stress. Behavior in both models is characterized
by increased sensitivity to wind stress at low values of A, transitioning to partial eddy
saturation as the winds become stronger.

We also show the dependence of the criticality parameter ξ on wind stress in Fig. 5
(right axis). The criticality is defined as

ξ =
f0s

H2β
=
F2

β
(U1 − U2) (61)

and serves as a nondimensionalization of the shear. A commonly-invoked theoretical argu-
ment [18] suggests that baroclinic turbulence will adjust the mean state such that the lower
layer PV gradient vanishes. This is motivated by the necessary condition for baroclinic
instability that the PV gradient change sign somewhere in the domain: as the upper layer
PV gradient is positive, zero PV gradient in the lower layer is the marginal state to which
the eddies relax the mean state. Ignoring relative vorticity, the lower layer PV gradient is

∂yQ2 = β − F2(U1 − U2) (62)

so that a vanishing gradient implies that F2(U1 − U2)/β = ξ = 1. Values of the criticality
ξ > 1 then correspond to interfacial slopes steeper than those expected from the marginal
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instability criterion and a more strongly reversed lower layer PV gradient. Criticality values
ξ < 1 indicate the opposite mean state properties. The model results shown in Fig. 5
indicate that ξ = 1 does not appear to be a preferred value for this system. In the NL
dynamics, the turbulent state is subcritical for weak wind stress and passes through ξ = 1
to become supercritical for larger wind stress. The QL model shows similar behavior,
although the subcritical range is obscured by the transition to baroclinic instability. These
results are consistent with the recent idealized modeling study of Jansen and Ferrari [6],
who showed that the turbulent state of the atmosphere can be moved from a subcritical to
a supercritical regime by varying the external control parameters.

As we are interested in the role of the eddies in determining the equilibrated turbulent
state, we next relate the mean states shown in Fig. 5 to the properties of the eddy field.
Figure 6 (a) shows the eddy diffusivity K in the NL and QL models as a function of
wind stress. Both models produce eddy diffusivities on the order of O(100 km2/day) ≈
1000 m2/s, which is in the realistic range for the ocean at mid depths [10]. We estimate
K using two independent methods. First, taking the interfacial slope s from our numerical
simulations we can solve for K in (28) to obtain

Ktheory =
τ

f0ρ1s
=

τ/(ρ1H1)

F1(U1 − U2)
. (63)

We use the subscript ‘theory’ to indicate that this estimate of K is not based on observations
of the PV flux and gradient from the numerical model, but is derived from the equilibrium
state using the assumptions outlined in Section 2.2. We also estimate K directly from our
numerical simulations using the definition

Kest = − v′1q
′
1

∂yQ1
(64)

which we calculate at every model timestep and average over the domain and in time to
estimate K. Figure 6 (a) shows that the eddy diffusivity depends strongly on the wind
stress in both the QL and NL dynamics, increasing by a factor of 4 as A is varied from
1 km/day2 to 7 km/day2. The diffusivity becomes somewhat less sensitive to A as A is
increased. The QL model equilibrates with a larger shear than the NL model in Fig. 5, and
correspondingly the QL eddy diffusivity is weaker than that of the NL model.

Mixing length arguments suggest that K is related to the EKE through a functional
relationship of the form K ∼

√
EKE [2]. Figure 6 (b) shows the domain-average total

EKE as a function of wind stress in NL and QL, calculated using equation (60). The EKE
behaves similarly in the two models as A is increased. For very small A values the QL EKE
is exactly zero since the fixed point is stable. Beyond the instability threshold the EKE of
both NL and QL increase close to linearly as wind stress is increased, with the QL EKE
growing more rapidly with A than the NL EKE. For A . 2 km/day2, the NL EKE exceeds
the QL EKE as the NL model is further from the threshold for baroclinic instability. For
larger values of the wind stress the eddies in the QL model contain more energy than those
in the NL model in spite of the additional diffusion in the QL dynamics. This suggests
that the EENL terms produce an effective eddy viscosity acting on the eddies themselves,
scattering energy from the wavenumbers capable of extracting energy from the mean state to
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small-scale damped waves where the energy is dissipated. In our numerical implementation
of NL this small-scale damping may be accomplished by the flux limiter or by numerical
diffusion. Although we do not quantitatively examine the scaling relationship between K
and EKE in this work, the downward concavity of the diffusivity curve and approximate
linearity of the EKE with A is suggests that a relationship similar to K ∼

√
EKE may be

applicable to our results. However, it appears that if such a functional relationship is valid
it may not hold across both models, as for larger A values the QL EKE is greater than the
NL EKE, while the diffusivity of the NL dynamics is always larger than that of the QL
dynamics.
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Figure 6: (a) Eddy diffusivity K in the QL (red) and NL (blue) models as functions of wind
stress. Ktheory is an estimate based on the equilibrium shear using equation (63), while Kest

is an estimate based directly on the eddy flux and PV gradient in model simulations using
equation (64). The results show that K increases substantially with increasing winds. (b)
EKE as a function of wind stress in the QL (red) and NL (blue) models. In both models
EKE increases approximately linearly with A.

3.3 Parameter Sensitivity

In Section 3.2 we presented the behavior of the NL model as the wind stress was increased
and evaluated the ability of the mean-field dynamics to reproduce the observed NL behavior.
In this section we vary the drag parameters d and r to test the robustness of the general
agreement between the QL and NL models demonstrated in the previous section. Figure
7 shows the time and domain mean shear as a function of wind stress in the NL and QL
models for four additional parameter cases. In panels (a) and (b) the bottom drag coefficient
d is halved and doubled, respectively, relative to its reference value of d = 500 km2/day.
In panels (c) and (d) the Rayleigh drag coefficient r is halved and doubled with respect
to its reference value of r = 10−4 day−1. For each case, all parameters are held constant
except A and the drag parameter that was changed for that sensitivity test. In all cases
the qualitative behavior of the NL model as A is increased is the same as discussed for the
reference case. For weak wind stress the shear increases rapidly with A, with the sensitivity
of the shear to the wind stress lessening as A is increased. For large wind stress the shear
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appears to increase approximately linearly with A. It is clear from Fig. 7 that the success
of the QL model in reproducing the NL shear scaling is robust to alternate choices of the
the drag parameters.
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Figure 7: Testing the robustness of the agreement of QL and NL to changes in the drag
parameters. All panels show the time and domain average shear in the QL (red) and
NL (blue) models as functions of wind stress, for four different parameter cases. (a) d =
250 km2/day, r = 10−4 s−1. (b) d = 1000 km2/day, r = 10−4 s−1. (c) d = 500 km2/day,
r = 0.5× 10−4 s−1. (d) d = 500 km2/day, r = 2× 10−4 s−1. The model behavior is similar
in all cases.

Comparison of the NL curves in Fig. 7 (a) and (b) shows that the equilibrium shear in
NL weakens as the bottom drag is increased for fixed A (note the difference in scale between
(a) and (b)). This result is shown more clearly in Fig. 8 (b), which shows the equilibrium
shear in QL and NL for the reference wind stress value A = 1 km/day2 and three values of
the bottom drag, corresponding to our reference drag d = 500 km2/day and the halving and
doubling cases shown in Fig. 7 (a) and (b). Both QL and NL show weakening shear with
increasing bottom drag. Based on the scaling relation (28), this indicates that the eddy
diffusivity K increases as the bottom drag is increased for constant winds. The physical
explanation for this behavior is not obvious. From (29) increasing bottom drag results in
a reduced lower level flow. However, this effect only changes the barotropic component of
the flow, whereas the shear component is the one most relevant to the eddy physics. The
shear associated with the fixed point solutions (35) and (36) also does not depend on d, in
the limit dF2/r � 1 relevant to this work. Understanding the physical mechanisms behind
the parameter dependencies shown in Fig. 8 is an important future direction of the work.

228



The equilibrated shear also depends to some extent on the bulk Rayleigh drag as shown
in Figs. 7 (c), (d) and 8 (a). As r is increased at constant wind, the shear decreases slightly
in NL and somewhat more substantially in QL. The relation (28) implies that this decrease
in shear results from an increase in the eddy diffusivity with increasing Rayleigh drag.
This is somewhat surprising since the drag acts to remove energy from the eddy field, thus
presumably weakening the eddy fluxes. However, the arguments in Section 2.2 were based
on the assumption that the diabatic effects could be ignored in the mean budgets. In the
complete dynamics, the drag r acts not only on the eddies but on the mean state as well,
including directly damping the interface deflection through (18). The decrease in shear with
increasing drag in Fig. 8 (a) likely results from a competition between the direct diabatic
damping of the shear and the simultaneous reduction of the EKE and corresponding eddy
diffusivity by the drag.
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Figure 8: (a) Time and domain average shear in the QL (red) and NL (blue) models as
functions of Rayleigh drag r. Wind stress is fixed at A = 1 km/day2. (b) Same, but for
varying bottom drag d. The equilibrium shear is seen to weaken with both forms of drag
in both the QL and NL models.

In Fig. 9 we show the meridional structure of the shear for the reference wind stress
A = 1 km/day2 and the four alternate drag parameter choices previously discussed. As was
found in the reference case (Fig. 4), important qualitative differences between the shear
profiles of NL and QL are visible. The QL model forms multiple jets in all cases. Similar
flank jets are also found in the NL model in the case of weak bottom drag (Panel (a)),
but the additional jets are much weaker than their QL counterparts. Evidently, the wave-
mean flow dynamics of a single zonal Fourier component has a strong tendency to produce
multiple jets that is strongly suppressed in the NL dynamics. In the next section we will
show the results of a preliminary attempt to produce a more realistic jet structure in the
QL model by including additional zonal wavenumber components and modeling the effect
of EENL interactions with stochastic forcing.

Based on our observations of the NL EKE and PV flux spectra in Fig. 3, we chose
k = 4 as our single zonal wavenumber component in the QL dynamics. Figure 10 (a) shows
the shear as a function of wind stress for reference drag values in the QL dynamics and in
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Figure 9: Comparison of the QL and NL profiles of time and zonal mean shear for different
drag values. In all cases QL produces multiple jets that are not seen in NL. (a) d =
250 km2/day, r = 10−4 s−1. (b) d = 1000 km2/day, r = 10−4 s−1. (c) d = 500 km2/day,
r = 0.5× 10−4 s−1. (d) d = 500 km2/day, r = 2× 10−4 s−1.

two alternate QL models in which k = 3 and k = 5 were chosen as the QL wavenumbers.
Although the choice of wavenumber does have a quantitative effect on the shear, the shapes
of the curves are quite similar for all three wavenumber choices. The k = 3 model maintains
the largest shear, indicating that the eddy diffusivity is smallest for this choice of k. This
is conceptually consistent with our observations of the NL spectrum, which showed that
the EKE and PV flux associated with k = 4 and k = 5 were comparable while k = 3
was relatively weak. We take this as an indication that the k = 3 wave is less efficient at
extracting energy from the equilibrated NL mean state than k = 4 and k = 5, consistent
with the behavior shown in Fig. 10 (a) for the QL models.

Although we have chosen to work with the maximally-simplified QL dynamics in which
only a single wavenumber is retained, it is also possible to formulate the QL dynamics
with more than one wavenumber. In such a model each eddy component q̃1,k(y, t) has its
own evolution equation of the form (56), (57). Each component interacts with the same
mean field Q1(y, t), Q2(y, t), so that the waves are indirectly coupled through their mutual
interactions with the mean flow. Figure 10 (b) shows an example of the results of a QL
integration in which the first 8 wavenumber components k ∈ (2π/L) {1, . . . , 8} were retained
and reference parameter values were chosen. During the initial transient phase of instability
growth, all unstable waves begin to grow. (See Fig. 2 (b) for the instability growth rates
as a function of k for this case). Waves 3,4, and 5 grow to large amplitude, while all
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other waves remain too weak to be seen on our axis scale. At equilibrium waves 4 and 5
persist. The structure of the resulting jets (not shown) is similar to the jets produced by the
k = 4 single-wave model. In particular, the multi-wave QL dynamics continues to produce
multiple jets in qualitative disagreement with NL solutions.
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Figure 10: (a) Time and domain average shear as a function of wind stress for QL models in
which different zonal wavenumbers were retained. All three cases show similar qualitative
behavior, but the k = 3 QL model supports a larger equilibrium shear. (b) Time series of
EKE for each wavenumber in a QL model run for reference parameter values in which the
first 8 wavenumber components were retained. Initially all unstable waves grow, and some
waves reach large amplitude before decaying to zero asymptotically. Two waves, k = 4 and
k = 5, survive at finite amplitude in the statistical equilibrium state.

3.4 Stochastically-Driven QL Dynamics

In this section we present the results of a preliminary attempt to resolve the discrepancy
between the jet structures of the QL and NL dynamics. Our approach is to introduce
additional stochastic forcing into the QL model with multiple wavenumber components.
The motivation for this model comes from several observations. First, it is clear from the
NL energy spectrum (Fig. 3) that although the EKE is concentrated at k = 4 and k = 5
in the reference simulation, the wavenumber spectrum is populated up to about wave 10,
with most of these waves producing non-negligible contributions to the PV flux. Second,
the timeseries in Fig. 10 (b) shows that wavenumbers that are not present in the statistical
equilibrium state still have the capacity to extract substantial energy from the mean flow
as demonstrated by their rapid growth at early times. Although the equilibrium state has
been adjusted so that waves other than k = 4 and k = 5 have negative growth rates on the
mean state, the linear dynamics of these waves remains highly non-normal and thus can
exhibit large transient growth if they are somehow excited. In the QL dynamics no such
excitation occurs and these waves remain at zero amplitude forever. This is an unrealistic
aspect of the QL model, since EENL interactions in the NL dynamics scatter energy into
all wavenumbers. We make the simplifying assumptions that the EENL scattering is not
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correlated in time and not dependent on the system state, and model the effect of the
EENL terms by adding stochastic forcing to the evolution equations for all wavenumber
components in the QL dynamics.

The stochastic QL model modifies the usual QL equations of motion to include an
additional term on the RHS of the eddy PV equations:

∂tq̃1,k =
[
−ikU1 − r + κ(∂yy − k2)

]
q̃1,k + [−ik∂yQ1] ψ̃1,k + εGk(y, t) (65)

∂tq̃2,k =
[
−ikU2 − r + κ(∂yy − k2)

]
q̃2,k +

[
−ik∂yQ2 − dF2(∂yy − k2)

]
ψ̃2,k + εGk(y, t).

(66)

The evolution equations for Q1 and Q2 remain the same, since EENL terms appear only
in the eddy equations in the NL dynamics. In these equations Gk(y, t) is a random forcing
term that is applied equally in both layers for simplicity. We choose our random forcing
to be δ-correlated in time and correlated in space with a structure gk(y, y

′) such that
〈Gk(y, t)G?k(y′, t′)〉 = gk(y, y

′)δ(t− t′) where angle brackets indicate the ensemble mean over
realizations of the noise. We take the stochastic forcing to be equal for all wavenumbers so
that gk(y, y

′) = g(y, y′). We choose the spatial correlation structure of the noise to be given
by

g(y, y′) = exp

(
−(y − y′)2

`2c

)
exp

(
−(y − W

2 )2

2∆2

)
exp

(
−(y′ − W

2 )2

2∆2

)
. (67)

This correlation function produces noise with Gaussian correlation in space with correlation
length `c and noise amplitude peaked in the channel center. We take `c = 78 km and
∆ = 156 km. These choices ensure that the noise is locally smooth over a few model
gridpoints and that the amplitude of the forcing is substantial over the middle third of the
channel, tapering toward the boundaries. This choice of forcing structure was chosen for
its simplicity. An important extension of this work will be to use observations of EENL
scattering in the NL dynamics to understand what forcing structure is most realistic of the
true EENL dynamics. The parameter ε controls the overall amplitude of the noise forcing
and has units of day−3/2 so that ε2 has units of potential enstrophy injection rate. In the NL
model the EENL interactions do not inject energy into the eddy field, but rather move energy
from wavenumber to wavenumber while leaving the total EKE invariant. Our stochastic
forcing is deficient in this sense because forcing of the form described above injects energy
directly into the eddy field. The stochastic parameterization could thus be improved by
augmenting the eddy dissipation such that the eddy energetics are consistent with those of
NL [5]. For simplicity we ignore these concerns and proceed with the formulation described
above as a first step. We refer to the stochastic dynamics introduced above as the stochastic
quasilinear model (SQL).

Figure 11 summarizes several results from SQL. All SQL integrations were performed
with reference values for the wind stress and drag parameters, and the first six zonal
wavenumber components were retained in the calculations. Panel (b) shows the time evo-
lution of the energy of each wavenumber component during a 10000 day model integration
with stochastic forcing strength ε = .05 day−3/2. It is clear that all waves are excited and
fluctuate at finite amplitude. Wavenumbers 4 and 5 (cyan and green curves) are no longer
dominant, with the largest contribution to the eddy energy being due to k = 1. This is
clearly seen in panel (c) which shows the time average EKE spectrum. The spectrum is red
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and in poor agreement with the NL spectrum shown in Fig. 3. Note, however, that our
maximally simple forcing in which each component of the eddy PV is forced with equal am-
plitude leads to a preferential injection of energy into the large scales (enstrophy is injected
into each scale equally). This forcing bias, together with the action of diffusion to dissipate
higher wavenumbers, may underlie the complete lack of agreement between the SQL and
NL spectra. Panel (d) shows the dependence of the total EKE on the forcing strength. As
expected, the eddies are more energetic when they are forced more strongly, and we expect
this stronger eddy field to suppress the equilibrium shear.

The SQL equilibrium shear profiles are shown in Fig. 11 (a) for three values of the
stochastic forcing amplitude, with the results of the NL reference case reproduced for com-
parison. For the smallest value of ε the shear profile is close to that of the ordinary QL
model, showing strong jets on the flanks of the center jet. As ε is increased both the ampli-
tude and the structure of the jets undergo substantial changes. The amplitude of the shear
decreases as ε is increased, consistent with our understanding that the stochastic forcing
supports the transient growth of waves whose eddy fluxes barotropize the zonal flow. The
flank jets also weaken substantially as ε increases. For ε = .05 day−3/2 (red curve), the jet
structure is quite similar to that of the NL model. The amplitude of the shear, however, is
too weak for this choice of forcing. Keeping the correlation structure of the forcing fixed and
varying the parameter ε only, it is not possible to accurately fit the NL jet structure: either
the strength or the structure of the shear can be approximately matched, but matching
both simultaneously is not possible. However, the reduction of the strength of the unre-
alistic flank jets when stochastic forcing is included is an encouraging result, and future
work with the SQL model will involve experimenting with the forcing structure gk(y, y

′) to
evaluate whether SQL is capable of producing fully-realistic jet structures and amplitudes.

4 Discussion and Conclusion

The goal of this work is to advance our theoretical understanding of the interactions between
eddies and the large scale mean state in baroclinically unstable flow driven by surface stress.
In particular, we are interested in understanding how eddy-mean flow interactions change in
response to changes in the external forcing. The ACC provides a concrete example system
for which the external forcing is changing and the eddy response must be understood if we
are to understand the response of the mean state. Theoretical models of the ACC mean state
typically rely on the assumption of eddy diffusion. The manner in which the eddy diffusivity
is parameterized in terms of the large-scale variables in such models can be the determining
factor in the model predictions of the ACC response to changing forcing. Although the
sensitivity of model predictions to the eddy diffusion parameterization indicates that the
eddy diffusivity is a quantity crucial to our understanding of the turbulent dynamics, no
accepted theory exists to predict its value or how it depends on the external parameters
of the system. In this work, we make progress on this problem by demonstrating that
a reduced dynamics, the mean-field equations, reproduces many aspects of an idealized,
but fully turbulent, model of the ACC, including the variation of important mean state
properties as the external forcing is varied. Although the theoretical prediction of mean
state variations with forcing remains an open problem, the identification of the mean-field
model as a significantly simplified theoretical framework that contains the essence of the
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Figure 11: Summary of results of the stochastically-driven QL model. In all calculations
reference parameter values were used and 6 zonal wavenumber components were retained.
(a) Equilibrium shear profiles for three stochastic forcing strengths ε. The shear is seen to
weaken overall as ε is increased, as well as shift toward a single-jet meridional structure. (b)
Time series of EKE for each wavenumber in the stochastic model. All waves are sustained
at finite energy in the equilibrium state. (c) Time average EKE spectrum for the stochastic
model. In disagreement with the NL reference spectrum in Fig. 3, the eddy field is ener-
getically dominated by the largest structures. (d) Total EKE as a function of stochastic
forcing strength.

eddy-mean flow interaction and its dependence on the external model parameters provides a
promising pathway for future efforts toward understanding the physics of the ACC response
to forcing.

We used the idealized two-layer QG model in a flat-bottom channel configuration as
our model ACC. We refer to this fully-nonlinear model formulation as the NL model. The
flow was driven by wind stress at the surface, with the injected momentum being removed
from the system in the lower layer by bottom friction. For very weak wind stress the flow is
baroclinically stable, but the flow becomes unstable and turbulent for wind strengths that
are realistic for the SO. By integrating the model equations numerically to a statistically-
steady state for different values of the wind forcing, we assessed how the slope of the
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interface, or equivalently the baroclinic component of the zonal mean flow, responded to
changes in the winds. For weak winds the mean state was very sensitive to changes in
forcing, with the shear increasing rapidly as the winds were increased. The shear responded
less sensitively to further increases in the winds, demonstrating eddy saturation to some
degree. However, the shear was not found to become entirely independent of the winds for
any range of parameters tested, and so the model does not appear to exhibit complete eddy
saturation.

We formulated the mean-field model by removing eddy-eddy advection terms from the
equations of motion and retaining a single zonal wavenumber component in the eddy field.
We refer to the mean-field equations by the abbreviation QL. In the domain mean picture,
this highly simplified theoretical model reproduced many qualitative aspects of the NL
dynamics. The dependence of the mean shear on the wind stress in QL mirrored that of NL,
with differences occurring primarily at the quantitative level. The QL model also reproduced
the sense of the dependence of the mean state on the imposed drag parameters. Our
QL experiments demonstrated that the QL model robustly reproduces the domain-mean
properties of the NL dynamics over a wide range of parameters in spite of the substantial
simplifications made in deriving the model equations. Our results indicate that, in the
domain mean sense, the strength and parameter-dependence of the eddy diffusivity are not
fundamentally controlled by eddy-eddy processes.

We also compared the QL and NL models in the zonal mean, but not channel-mean,
picture. When the channel-mean was not taken, important differences between the two
models were evident. The equilibrated meridional structure of the shear flow in the NL
takes the form of a broad single jet intensified at the channel center. In contrast, the QL
equilibrium jet structure features multiple jets, with additional strong jets occurring on
the flanks of the center jet. These qualitative differences in structure occur over all tested
parameter ranges. This fundamental difference in structure points to qualitative differences
in model physics that should be resolved if the QL dynamics is to be used to understand
the NL model behavior.

In an attempt to improve the agreement between the meridional jet structures of the
QL and NL model, we modified the QL dynamics to include additional wavenumber com-
ponents and stochastic forcing as a parameterization of the EENL terms appearing in the
NL dynamics. When stochastic forcing was included, the QL model attained an equilib-
rium state with a populated energy spectrum, and the flank jets were seen to weaken and
disappear as the strength of the noise was increased. However, the energy spectrum of the
stochastic model was in poor agreement with that of NL, and the QL jet amplitudes were
too weak when compared with those of NL when the noise was strong enough to suppress
the unrealistic multiple jets. We believe that these failures of the stochastic model may be
due to bias introduced by the simplified structure chosen for the noise forcing as well as the
diffusion introduced into the QL model for reasons of numerical stability.

The results presented here constitute a step toward understanding the relationship be-
tween the QL and NL dynamics but many aspects of the problem require additional research.
At the level of the NL dynamics, a more detailed consideration of the eddy energy budget
is required to understand the effects of the various forms of drag on the eddy field, and also
how energy is passed between wavenumbers by eddy-eddy interactions. These results will
be useful for informing the parameterization of the eddy-eddy terms in the QL dynamics.

235



Incorporating an improved noise parameterization is likely to improve the realism of the
QL jet structure.

Beyond the problem of simply reproducing the NL simulation results with the QL model,
it also remains an open problem to leverage the simplicity of the QL dynamics to develop a
theoretical understanding of eddy-mean flow interactions in this problem. In the QL model
without stochastic forcing, a possible approach is to identify and trace the unstable fixed
point solution that exists, at least in some cases, beneath the fluctuating equilibrium state
as a function of the wind stress. This fixed point consists of an equilibrated baroclinic
wave and a steady mean flow, and becomes unstable in a supercritical Hopf bifurcation to
an oscillatory state which becomes chaotic as the ‘turbulent’ QL state is reached. As the
fluctuations in equilibrium appear to remain fairly close to this fixed point, the unstable fixed
point solution is a relatively simple, time-independent mathematical object whose analysis
may lead to a physical understanding of how eddy fluxes are determined in cooperation
with the mean state. In the case of the stochastic QL model, a theoretical framework for
analyzing the statistical mean equilibrium state has been developed by Farrell and Ioannou
[4]. A promising future direction of this research is to use their covariance-matrix formalism
to understand how the ensemble-mean eddy fluxes are determined by interaction with the
mean state.

Our decision to model the ACC using the two-layer QG equations in a flat-bottomed
reentrant channel was motivated by its simplicity. However, it is well-established that bot-
tom topography plays an important role in the ACC dynamics. In a flat-bottom geometry
the overall momentum balance must be between momentum injection by the winds and
removal by bottom drag. This requires the development of a strong barotropic flow compo-
nent capable of dissipating the required amount of momentum at the bottom. In the real
ACC the momentum balance is between wind input and bottom form drag on topography,
and the barotropic flow is weak. Flow over bottom topography also produces stationary
waves that can have a significant effect on the ACC stratification by increasing the efficiency
of eddy heat transport and correspondingly shallowing isopycnal slopes [1]. Our idealized
model cannot account for these effects in its current formulation. However, topography
could in principle be included in both the NL and QL models discussed in this work, and
understanding the impact of topography in our framework is an important future direction.
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6 Appendix: Sensitivity of NL Model to Numerical Resolu-
tion

Figure 12 shows a comparison of nonlinear model runs at two different resolutions: the
default resolution with 64 × 128 spatial grid points, and a doubled resolution run with
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128 × 256 gridpoints. Reference parameter values are used for wind and drag. Panels (a)
and (c) show snapshots of the upper layer PV fields. Panels (b) and (d) show the statistical
mean upper and lower layer zonal jets. The PV fields show similar features and have similar
characteristic magnitude in both cases. The higher resolution run shows some small-scale
filamentation that is less prominent in the default resolution case. However, these small-scale
features do not appear to dominate the flow. The time mean flow is also nearly identical
in the two runs. The mean flow in the doubled-resolution run is not perfectly symmetric
about the channel center. This is due to an insufficiently long period of averaging due to
the increased computational cost to run the model at this resolution. Based on Fig. 12 we
conclude that 64 × 128 gridpoints is sufficient to resolve the structures most important to
the dynamics, at least in the parameter ranges considered here.
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Figure 12: Test of spatial resolution in the NL model. Default resolution is 64 × 128
gridpoints, doubled resolution is 128 × 256 gridpoints. Panels (a) and (c) show snapshots
of the upper layer PV fields. Although some smaller scale features are seen in the high
resolution case that are absent from the default resolution case, the PV field still appears
to be dominated by wave 4 and wave 5 structures. Panels (b) and (d) show the upper and
lower level zonal mean flows in statistically steady state. High resolution jets (red) show
some deviations from perfect cross-channel symmetry due to insufficiently long averaging
periods. The high and default resolution flows are of nearly the same amplitude and similar
meridional structure.
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