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Abstract

The downstream development of baroclinic instability is studied in a 2-layer non-linear
Quasi-Geostrophic (QG) model with a semi-infinite downstream extense and rigid merid-
ional walls. Starting with a baroclinic current in a channel, a perturbation is invoked at the
entrance of the channel upstream and its spatial and temporal downstream development
is studied. For matters of simplicity, the study considers 2 y-modes which offers two ad-
vantages: it’s simple enough to follow the 2 modes easily, and it also gives insight into the
more complicated scenario of having more than a mode leading to interaction of the differ-
ent modes and hence modifying the dynamics of the flow. The boundary condition at the
channel entrance upstream is a temporally oscillating perturbation at x = 0; downstream,
the potential vorticity is zero at x = ∞. In the y−direction, the derivatives of the stream
function (i.e velocity) at the meridional walls are zero.

It has been found by Pedlosky (2011) that in a simple finite amplitude model of a
spatially developing baroclinic instability, there’s a regime during which the spatial and
temporal evolution of the instability amplitude along x, t characteristics exhibits chaotic
behaviour. This chaotic behaviour resulting from periodic initial conditions at the channel
entrance leads to sharp and abrupt spatial variations downstream. In the current study, the
non-linear development of a baroclinic instability is studied numerically in a slightly more
complicated but compelling manner. In the current study, persistence of these features and
the circumstances over which this behaviour persists in a more realistic oceanic model forms
the main motivation for the study.
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The Model

Consider the Quasi-Geostrophic(QG) equations for a two-layer model similar to the one
studied in (Pedlosky, 1970) and (Pedlosky, 2011). Here, the formulation will be given in
terms of the potential vorticity, q. The equations of motion in the two layers are given as
below:

(
∂

∂t
+ U1

∂

∂x

)
q(1) +Qy1

∂ψ(1)

∂x
+ J(ψ(1), q(1)) = −r∇2ψ(1). (1)

(
∂

∂t
+ U2

∂

∂x

)
q(2) +Qy2

∂ψ(2)

∂x
+ J(ψ(2), q(2)) = −r∇2ψ(2). (2)

Where the jacobian, J , is defined as J(a, b) =
∂a

∂x

∂b

∂y
− ∂b

∂x

∂a

∂y
and for a channel with no

topography as is the case in this study,

Q1 = ∇2ψ1 − F1(ψ1 − ψ2) + βy.

Q2 = ∇2ψ1 + F2(ψ1 − ψ2) + βy.

Proposing a truncated Fourier series solution to the equations (1) and (2) of the form

(
q(1)

ψ(1)

)
=

(
q
(1)
1 (x, t)sinπy + q

(1)
2 (x, t)sin2πy + · · ·

ψ
(1)
1 (x, t)sinπy + ψ

(1)
2 (x, t)sin2πy + · · ·

)
. (3)

(
q(2)

ψ(2)

)
=

(
q
(2)
1 (x, t)sinπy + q

(2)
2 (x, t)sin2πy + · · ·

ψ
(2)
1 (x, t)sinπy + ψ

(2)
2 (x, t)sin2πy + · · ·

)
. (4)

Substituting equation (3) into equation equation (1) and projecting onto sinπy and sin2πy
yields equations (5) and (6) respectively

(
∂

∂t
+ U1

∂

∂x

)
q
(1)
1 +Qy1

∂ψ
(1)
1

∂x
− π2

2
q
(1)
2

∂ψ
(1)
1

∂x
+
π2

4
q
(1)
1

∂ψ
(1)
2

∂x
−

π2

4
ψ
(1)
1

∂q
(1)
2

∂x
+
π2

2
ψ
(1)
2

∂q
(1)
1

∂x
= −rq(1)1 . (5)

(
∂

∂t
+ U1

∂

∂x

)
q
(1)
2 +Qy1

∂ψ
(1)
2

∂x
+
π2

4
q
(1)
1

∂ψ
(1)
1

∂x
− π2

4
ψ
(1)
1

∂q
(1)
1

∂x
= −rq(1)2 . (6)

In the reduced model, the equations (5)and (6) are the equations of motion in layer 1. In
a similar way, the equations of motion in layer 2 are obtained as :

(
∂

∂t
+ U2

∂

∂x

)
q
(2)
1 +Qy2

∂ψ
(2)
1

∂x
− π2

2
q
(2)
2

∂ψ
(2)
1

∂x
+
π2

4
q
(2)
1

∂ψ
(2)
2

∂x
−

π2

4
ψ
(2)
1

∂q
(2)
2

∂x
+
π2

2
ψ
(2)
2

∂q
(2)
1

∂x
= −rq(2)1 . (7)
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(
∂

∂t
+ U2

∂

∂x

)
q
(2)
2 +Qy2

∂ψ
(2)
2

∂x
+
π2

4
q
(2)
1

∂ψ
(2)
1

∂x
− π2

4
ψ
(2)
1

∂q
(2)
1

∂x
= −rq(2)2 . (8)

q ≡ potential vorticity, ψ ≡ stream function, r ≡ dissipation coefficient.
Linearising the equations (5),(6),(7) and (8) yields a slightly modified set of equations

from which the linear stability of the equations can be investigated. Proposing potential
vorticities and stream functions of the form below:

q
(`)
j = q̂

(`)
j eik(x−ct) and ψ

(`)
j = ψ̂

(`)
j eik(x−ct) for ` = 1, 2; j = 1, 2. (9)

where x is the downstream coordinate and k is the x-direction wave number.
The superscripts in equation (9) denote layers while the subscripts denote the wave mode
under consideration. The linearised forms of equations (5) and (7) can be presented in
matrix form as




r + ik(U1 − c)−
ikQy1(K

2
1 + F2)

K2
1(K

2
1 + F1 + F2)

−ikQy1F1

K2
1(K

2
1 + F1 + F2)

−ikQy2F2

K2
1(K

2
1 + F1 + F2)

r + ik(U2 − c)−
ikQy2(K

2
1 + F1)

K2
1(K

2
1 + F1 + F2)




(
q̂
(1)
1

q̂
(2)
1

)
= 0

(10)
where K2

1 = k2 + π2 and k is the x-direction wave number.
The linearised forms of equations (6) and (8) take a similar form and can be presented

in matrix form in the same form as equation (10) but with K1 swapped for K2 = k2 + 2π2.
For non-trivial solutions, the determinant of the matrix in equation (10) must vanish,

thus,

(
r + ik(U1 − c)−

ikQy1(K
2
1 + F2)

K2
1(K

2
1 + F1 + F2)

)(
r + ik(U2 − c)−

ikQy2(K
2
1 + F1)

K2
1(K

2
1 + F1 + F2)

)
−

( −ikQy1F1

K2
1(K

2
1 + F1 + F2)

)( −ikQy2F2

K2
1(K

2
1 + F1 + F2)

)
= 0 (11)

For matters of simplicity, discarding the β-effect from our consideration and also defining
the shear as Us = U1 −U2. Also considering that F1 = F2 = F, then

Qy1 = FUs, Qy2 = −FUs thus

Qy1 +Qy2 = 0, Qy1 ·Qy2 = −F2U2
s (12)

Equation (11) generates a quadratic equation in c whose solution is obtained to be

c =

(−ir
k

+
1

2
(U1 + U2)

)
± Us

2

(
1− 4F

(
F3

y2
− Fx2

y2
+
x

y

))1/2

(13)

where x = K2
1 + F, y = K2

1(K
2
1 + 2F) and thus

c−UB =
−ir
k
± Us

2

(
K2

1 − 2F

K2
1 + 2F

)1/2

. (14)

302



Thus c is generally complex and can be written as c = cr + ici where cr and ci are the real
and imaginary parts of c respectively. In case the term in the last parentheses vanishes,
then the dispersion relation reduces to

c =

(−ir
k

+ UB

)
where UB =

1

2
(U1 + U2), the barotropic flow. (15)

It is also observed that the decay of the perturbation is proportional to the dissipation in
the system and is higher for lower wave numbers. In this case, the shear does drop out of
the dispersion relation rendering the dissipation, r, and the magnitude of the barotropic
flow as the parameters governing the flow dynamics in the channel under study.

However if K1 < (2F)1/2, then the last parentheses in equation (14) also contribute to
the complex part of c and in turn the shear, Us and the Froude number, F become effective
parameters of the system.

In the following, simulations will be conducted in two main categories; the first being
the case when the dissipation, r = O(1) and the second being the case when the dissipation
is almost zero in the system i.e r = O(∆) for very small ∆.

(i) r = O(1)
In this case, the only way of having a growing instability is that 2F > K2

1 and the

whole term in the parentheses must be large enough to outweigh the decay term,
−ir
k

.

This yields the relation for the marginal condition on Us in order to have a growing
instability. With values selected as r = 4.6,F = 40, l = π and 0 < k < 5.0

Us =
2r

k

(
2F + K2

1

2F−K2
1

)1/2

(16)

(ii) r = O(∆)
With r small, the marginal curve is given in terms of the parameter, F and takes the
form

F =
K2

1

2
=
k2 + l2

2
(17)

F thus has a parabolic form with a minimum at k = 0 and takes the form below:
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Numerical Simulations and Results

The case r = O(1)

The model set up is such that the system is slightly above its neutral criticality. The
barotropic velocity in the channel is set at UB = 13.125 and the most unstable mode is to
be k = 4.34 . The parameter values of the model when neutrally critical and those used in
the numerical simulation are given in table 1.

Table 1: Model parameters used for the case r = O(1)

Parameter Symbol Critical values Simulation value

Shear Us 3.00 3.25
Froude number F 40.0 40.0
Dissipation r 4.60 4.60

With the shear slightly increased above the neutrally critical value of the shear, an initial
perturbation is set up at the entrance of the channel (i.e at x = 0) and it’s downstream
development with time is studied. The boundary conditions are such that at the channel
entrance, a perturbation, Aosin(ωt) with frequency ω = kUB is seeded. At the end of the
channel, spongy boundaries are considered such that whatever is incident on the wall, goes
in and none of it is reflected back into the channel. The meridional walls are rigid and the
potential vorticities there are zero*.
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Discussion

It’s observed that to first order, the solution has both the barotropic and baroclinic modes
on sin(πy) as the leading terms of the solution to the nonlinear set of equations (5,6,7 and
8). The leading terms of the solution exhibit the oscillations of the initial perturbation
imposed at the entrance of the channel (see figures 1 and 3) all the way downstream.
The amplitude of the perturbation grows initially until it reaches a finite amplitude and
thereafter momentarily stabilises before eventually decaying off to zero. The stabilisation
in growth of the perturbation at finite amplitude is longer downstream.

In all cases and for all the modes considered, it is observed that the part of the growing
perturbation behind the front reaches finite amplitude before saturation such that in the
regions ahead of the front, the amplitude of the perturbation remains constant in the vicinity
of the front and decays quite quickly away from the front downstream. The slightly unique
cases amongst the modes considered in this study are those of the baroclinic and barotropic
modes on sin(2πy) which appear to be relatively smooth compared to the leading order
terms. With the exception of a few oscillations whose amplitudes are still small near the
channel entrance, any information about the oscillatory nature of the perturbation is lost
downstream and the resulting correction to the mean flow is of a largely smooth structure.

Behind the front, wiggles are observed in the spatial and temporal structure of the
perturbation before finally reaching finite amplitude in the vicinity of the front. Ahead
of the front, the perturbation has already reached finite amplitude and therefore remains
constant (for longer time scales) or immediately decays (for shorter time scales) ahead of
the front. This is in agreement with Pedlosky (2011) who highlighted that the correction to
the mean flow carries the oscillatory information of the perturbation only behind the front
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Figure 1: Snapshots of the barotropic potential vorticity on the sin(πy) mode with Us =
Uso + 0.25 and r = ro

during which time the perturbation also attains finite amplitude. In that study, they also
observe that ahead of the front, the structure is basically a smooth one with the perturbation
having reached finite amplitude.

However, it is also observed that the baroclinic mode on sin(2πy) is also the largest
of the projections on the sin(2πy) modes. This is consistent with the results obtained by
(Pedlosky, 2011) which highlighted that the first order correction to the mean flow was fully
baroclinic.

However, the non-linear simulations carried out in this study reveal that there’s a
small contribution to the mean flow correction by the barotropic component carried by
the barotropic component on the sin(2πy) mode. It’s the smallest of all the components
but it is worth mentioning that although the asymptotic approach adopted using the finite
amplitude model in Pedlosky (2011) fails to capture this contribution, it is not necessarily
zero as observed in figure 2.

A probable explanation as to why the asymptotic approach shows that the sin(2πy)
barotropic mode does not contribute to the mean flow correction could be that as observed
from figure (2), the average of this mode over a period is zero. So, it could be asserted that
the reason for the failure to capture to this mode in the theory is not because it’s so small
in magnitude but it’s because it vanishes on average. More interestingly for all time, apart
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Figure 2: Snapshots of the baroclinic potential vorticity on the sin(2πy) mode with Us =
Uso + 0.25 and r = ro

from the initial transients, the sin(2πy) barotropic mode manifests as a periodic oscillation
whose average over a period vanishes.
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Figure 3: Snapshots of the baroclinic potential vorticity on the sin(πy) mode with Us =
Uso + 0.25 and r = ro

The case r=O(∆)

Table 2: Model parameters used for the case r = O(∆)

Parameter Symbol Critical values Simulation value

Shear Us 1.30 1.30
Froude number F 4.9348 4.9348 + 0.02
Dissipation r 0.001 0.001

The barotropic flow in this case is reduced to UB = 1.65 and the most unstable mode
corresponds to the wave number k = 0.15.

Several simulations are carried out with various degrees of super criticalities (i.e for
increasing values of ∆) and the results are presented in the following figures. For most
values of ∆, the flow does not seem to change significantly but it happens that as ∆
increases, more features emerge ahead of the front for longer times.

As the theory predicts, the largest component of the correction to the leading order
solution is baroclinic (the sin2πy baroclinic mode). However, the fully non-linear solution
shows that a barotropic contribution is also present. The latter is initially small (≈ 0) but
develops with time until it is one order of magnitude lower than the baroclinic correction.
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Discussion

It’s observed that at the leading order, the dominant part of the flow is the sinπy barotropic
mode. The sinπy baroclinic mode is lower than the former but it’s significantly appreciable.
This is in agreement with the findings of Pedlosky (2011) that showed that in this regime,
the leading order solution is the sinπy mode and that its baroclinic counterpart is an order
of magnitude lower. Although not as much as an order of magnitude, the fully nonlinear
solutions strongly yield similar results.

At the next order, the major correction component to the mean flow is found to be fully
baroclinic (i.e the sin2πy baroclinic mode). The sin2πy barotropic mode is consistently
zero throughout the time of the simulation. This is also in agreement with the findings
from the multi-scale asymptotics which yielded that the correction to the mean flow is fully
baroclinic.

Increasing the degree of super criticality leads to a complete break down of the predic-
tions of the linear and weakly non-linear theory. In this case, at leading order, the dominant
term is the sinπy baroclinic mode as opposed to the sinπy barotropic mode predicted by
theory. Also, at the next order, the barotropic correction to the mean flow becomes appre-
ciable which is, of course, another difference from the case considered when the dynamics
are slightly super critical. The other remarkable feature that emerges with increasing levels
of supercriticalities is that the features formed ahead of the front become more apparent and
highly variable downstream as one would expect when the non-linearirities in the system
are at full operation.

In conclusion, the findings from this study qualitatively show that the degree of dissi-
pation in the system is a major determinant of the dynamics of the flow. When the system
is substantively dissipative, the marginal curve is given in terms of the shear and the dom-
inant correction component to the mean flow is largely baroclinic. In the case when the
dissipation is so small, the marginal curve is expressed in terms of the parameter, F - the
Froude number. In this case, the lowest order compnent is found to be barotropic and the
correction is fully baroclinic.

For further study, it would be meaningful to consider using a periodic channel so that the
flow statistics can be obtained with a good degree of accuracy to enable giving a quantitative
account of the dynamics of the flow and how the different components exchange the energy
in both spatial and temporal considerations. Of course, inclusion of the β− effect would also
serve the purpose of comparing the results obtained to what happens in a real oceanographic
scenario.
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Figure 5: Snapshots of the barotropic and baroclinic potential vorticities. ∆ = 0.02
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Figure 6: Snapshots of the barotropic and baroclinic potential vorticities. ∆ = 0.05
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Figure 7: Snapshots of the barotropic and baroclinic potential vorticities. ∆ = 0.1
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Figure 8: Snapshots of the barotropic and baroclinic potential vorticities. ∆ = 0.7
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