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1 Introduction

Under the sea ice of the polar oceans, warm salty water flows below the cold, fresh surface
waters. Meanwhile, deep below the surface, geothermal heating warms the cold, salty waters
of the deep Arctic. In each of these systems, an unstable temperature gradient competes
with a stabilizing salinity gradient, creating conditions susceptible to two instabilities. One
of these instabilities, called double-diffusive convection, is due to the fact that heat diffuses
100 times faster than salt. This instability can lead to the formation of thermohaline
staircases in which a series of well-mixed, convective layers are separated by sharp interfaces
in both temperature and salinity. A second instability that exists in this system, called the
thermobaric instability, arises because cold water is more compressible than warm water
and therefore becomes denser with pressure

In the Arctic, waters from the North Atlantic provide the warm, salty water in the
aforementioned system, leading to the formation of double-diffusive staircases (Figure 1).
Contained within this North Atlantic water is enough heat to melt all of the Arctic sea
ice, were it transported to the surface [10],[13]. Processes controlling vertical heat flux in
this area of the world are not well understood, but double-diffusive convection has been
identified as an important mechanism [9], and may therefore play an important role in the
rapid disappearance of the Arctic sea ice.

Figure 1: Examples of double-diffusive staircases found in the deep Arctic (left) and the
shallow Arctic (right). Profiles taken from [13], [12]
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Figure 2: Cartoon description showing that the Atlantic was stably stratified by a salt
gradient during the last glacial maximum, taken from [1]

Several thousand meters deeper, quietly sits the strongly salt-stratified waters of the
deep Arctic. This water is slowly being heated from below by geothermal vents, again
leading to a salt-stratified system that is heated from below. Double-diffusive staircases
exist in this context as well, however, these staircases are notably thicker than than those
found in the shallow Arctic (Figure 1).

This system is under a large amount of pressure and is potentially thermobarically
unstable despite its strong salinity gradient. Interestingly, because this system has a strong
salinity stratification and is being heated geothermally, it bears resemblance to the Atlantic
Ocean during the last glacial maximum (Figure 2). It has been proposed that the bottom
of this glacial Atlantic Ocean slowly warmed until an intense overturn occurred due to the
thermobaric instability, leading to the rapid warming events observed in the paleoclimate
record [1].

On the other side of the planet, cool, fresh surface water flows above warm, salty water
near the coasts of Antarctica. Because the salinity is weakly stratified, it is susceptible to
both double-diffusive convection and thermobaric instability, making it surprisingly similar
to the deep Arctic, rather than its shallow Arctic counterpart. Susceptibility to these two
instabilities has been observed in the Weddell sea. Here, the thermobaric instability has been
invoked to explain periods of persistent deep convection and the formation of polynas [7],
which have important implications for general ocean circulation as well as sea ice formation.
Secondly, a recent study has suggested that double-diffusive convection may also have an
important impact on the vertical heat transport in this area [11].

Despite their coexistence in these important and exciting areas of the ocean, neither
the impact of thermobaricity on double-diffusive staircases, nor the influence of double-
diffusion on the thermobaric instability has been examined. Here, we take the first step in
studying how these two effects may interact by recreating a simple 1-D model of double-
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diffusive staircases [4] and, for the first time, including thermobaric effects. Specifically,
we examine how large changes in the thermal expansion coefficient affect the structure of
the double-diffusive staircases found in the polar oceans. In the following section, these
two instabilities are described in greater detail. In Section 3, we present the theory and
numerical model which form the basis of our work, followed by our additions that allow us
to include thermobaric effects in Section 4. Preliminary results are discussed in Section 5
and lastly, possible implications and future work is discussed in Section 6.

2 One system, two instabilities

When a pot of water is being heated from below, regular thermal convection can occur
because cold water is denser than warm water. However, when a stable salinity gradient is
added, the stability of the system depends on the ratio of the two background gradients.

This quantity is well described by the density ratio: R0 = βSz

αTz
, where Tz and Sz are the

background temperature and salinity gradients, α is the thermal expansion coefficient, and
β is the saline contraction coefficient. Thus, a larger density ratio describes a more stable
system and vice versa (see Figure 3).

Figure 3: Cartoon describing the various stages of stability as function of the density ratio
(see text) in a system with a negative temperature and salinity gradient.

2.1 Thermobaric instability

The thermal expansion coefficient is a negative value that is defined as

α =
1

ρ0

(
∂ρ

∂T
+

∂2ρ

∂T∂P
+
∂2ρ

∂T 2
+ ...

)
, (1)

where ρ0 is a mean density, p is pressure, and T is temperature. The first term is negative
and implies that the density of a parcel decreases as its temperature increases. The two
nonlinear terms describe cabbeling and thermobaricity, respectively, which imply that α
varies as both a function of pressure and temperature (Figure 4). This implies that by
simply moving our system to a deeper pressure, the density ratio (and the stability) will
decrease.

Moreover, as described by the thermobaric term, cold water is more compressible than
warm water. Therefore, the thermal expansion coefficient increases with depth more rapidly
for cold water. This allows for the possibility of a local instability in which a small per-
turbation to the system could cause a cool, fresh water parcel to fall towards the warmer,
saltier part of the system. The colder parcel compresses enough (equivalently, α increases
enough) to make the parcel denser than its salty surroundings causing it to continue to fall
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Figure 4: The thermal expansion coefficient (left) and the ratio of the salinity contraction
coefficient to the thermal expansion coefficient (right) as a function pressure for several
temperatures. The figures demonstrate that the thermal expansion coefficient increases
with depth more rapidly in cold water compared to warm water.

towards the warm, salty part of the system [3],[6]). This instability is notably different and
often stronger compared to regular thermal convection because it is internally driven by
this thermobaric effect rather than continually forced at a boundary [2], [7].

2.2 Double-diffusive convection

Between the stable and fully convective states lives the double-diffusive instability (Figure
3). The initial instability of double-diffusive convection is well-described by a linear stability
analysis [17]. Conceptually, it can be understood by imagining a small perturbation that
causes a cool, fresh fluid parcel to fall toward the warm, saltier region of the system. The
parcel will quickly diffuse in the surrounding heat but its salinity will remain nearly constant,
causing the parcel to become warmer but remain fresher than its surroundings. Now much
lighter than its environment, the parcel will float to a point somewhat higher than its initial
position, where it will quickly diffuse its heat, maintaining its salinity to become denser
than its surroundings and fall into the warm, salty area below. This fluid motion continues
to oscillate, with the amplitude growing with each oscillation. Eventually, turbulent effects
become dominant and a coherent structure emerges. This is called a thermohaline staircase,
where each ’step’ is made up of a cool, fresh layer over a warmer, saltier layer separated by
a well-mixed interface.

3 Previous work

Turner and Stommel[14] performed the first laboratory experiments in which a stable salt
gradient was heated from below. They found that within a few minutes, the bottom layer
would overturn and form a well mixed layer. Within the hour, a series of well-mixed layers
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Figure 5: Image from Stommel and Turner 1964, showing results from a laboratory experi-
ment where a stable salinity gradient is heated from below. (a) shows that one mixed layer
has formed after 10 minutes. (b)-(d) shows that subsequent layers form after 25, 60 and 90
minutes, respectively.

(i.e. a double-diffusive staircase) formed in a similar fashion (Figure 5). In this section, we
discuss a theory and numerical model that was developed to describe what had been seen
in these laboratory experiments and form the foundation of our work.

3.1 Theory

Turner[15] describes the evolution of a system with an initially linear, negative salt gradient,
Sz, and a uniform background temperature, T , that is heated from below by a constant
heat flux, H (Figure 6). In particular, the evolution of the first layer as well as the growth
and eventual formation of the second layer are discussed.

3.1.1 Evolution of the first layer

By implementing the conservation of heat and salt, the salinity (S1), temperature (T1) and
thickness (h1) of the first well mixed layer can be described by

∆S1 =
−1

2
hSz, Ht = ρch1∆T1, (2)

where ∆S1 and ∆T1 are the change in salt and temperature across the top of the 1st layer
(and are positive), t is time, ρ is the mean density of the system and c is the specific heat.
To close this system of equations, we invoke

344



Figure 6: Cartoon depiction of the theory describing the formation of the first two mixed
layers. The green arrows indicate that the layer warms, freshens and grows with time.

α∆T1 + β∆S1 = 0, (3)

which relates the two interfaces and implies that the density contributions from the heat
and salt combine to create a continuous density profile (Figure 7).

By algebraically solving these equations, the expressions for the evolution of ∆T1, ∆S1

and h1 are

h1 =

√√√√
(
H̃∗t

S̃∗

)
, −αg∆T1 = βg∆S1 =

√
H̃∗S̃∗t, (4)

where H̃∗ and S̃∗ are the buoyancy fluxes, defined by

H̃∗ =
−αgH
ρc

, S̃∗ =
−βgSz

2
. (5)

Thus, this layer, which is heated from below, warms and grows taller with time. As the
layer grows, it overtakes the less salty water above and becomes fresher (Figure 6).

3.1.2 Evolution of boundary layer, formation of layer 2

While this layer grows, heat and salt are diffused through the top of the interface, causing
a boundary layer to form. Because heat diffuses 100 times faster than salt, the diffusion
of salt through the interface is neglected and a simple heat equation is used to describe its
thermal evolution,

∂θ

∂t
= κ

∂2θ

∂z2
, θ(z = h1) = T1 (6)

θ(z →∞) = T ,
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Figure 7: Cartoon depiction of equation (3)

where κ is the thermal diffusivity, θ is the temperature of the boundary layer and T is the
initial uniform background temperature.

As heat diffuses through the boundary layer, cool, fresh water lies above increasingly
warmer, salty water. These are the conditions necessary for the double-diffusive instability
to occur. Turner suggests that this boundary layer will overturn and consequently form
a second convective mixed layer when the temperature gradient grows strong enough such
that it is linearly unstable to double-diffusive convection. The criterion for overturn is then
given by Veronis[16], who found that the onset for double-diffusive convection between two
freely moving boundaries is given by

R = RT −
σ

σ + 1
RS ≥

27π4

4
, (7)

where RT = −αg∆BLTδ
3

κν , RS = βg∆BLSδ
3

κν , δ is the scaling length of the boundary layer, ν
is the kinematic viscosity, and σ = ν

κ is the Prandtl number. ∆BL is a positive value that
signifies the change in temperature and salinity above the interface. Thus,

∆BLT = T1 − T , ∆BLS = −Szδ,
because we have assumed that the diffusion of salt through the top of the layer can be
neglected (Figure 6).

3.2 Numerical model

Using the framework put forth in [15], Huppert[4] developed a one-dimensional numerical
model that could describe this system with multiple (N) layers. However, some additional
assumptions are included in this model:

• Loss of heat through the top of the staircase can be neglected in the heat budget.

• Only the top layer grows. Interior layers have a constant thickness unless they merge
together to form a thicker layer.

• If two layers create a neutral density profile, the two layers merge.
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• heat and salt fluxes across the interface are given by experimentally determined flux
laws [5]:

φi = 0.32κ

(−αg
κν

)1/3

(∆Ti)
4/3

(
α∆Ti
β∆Si

)2

(8)

ψi =





−α
β φi

(
1.85 + 0.85

(
β∆Si

α∆Ti

))
, 1 < β∆S

−α∆T ≤ 2

−0.15φi

(
α
β

)
, 2 < β∆S

−α∆T .

(Equations (8) appear slightly differently in [5] because we have followed the formalism of
[15] and [4] and defined α as a negative value).

3.2.1 Evolution of initial layer

The equations describing the evolution of the initial layer are given by equation 4. When
only one layer is present in the simulation, the magnitude of the interfaces are given by

∆T1 = T1 − Tt ∆S1 = S1 − St. (9)

Tt and St are the background temperature and salinity at the top of the staircase, which
can be expressed as

Tt = T , St = Szh1 + S0, (10)

where S0 is the initial salinity at the bottom of the system (Figure 8).

3.2.2 Evolution of multiple layers

Once two or more layers are present in the staircase, flux conservation laws are used to
describe the evolution of the layers. The general form of these equations are

ρc
d

dt
[hi(Ti − Ti] = ρc(φi−1 − φi),

d

dt
[hi(Si − Si)] = ψi − ψi− 1,

where φi and ψi are the fluxes through the ith layer.

Ti = T , Si = Sz(di − hi/2) + S0

are the background temperature and salinity imposed by the initial conditions, where di =∑i
j=1 hj .

3.2.3 Evolution of interior layers

Because Ti,Si, and hi are constant for all interior layers (i < N), equation (11) becomes

ρch1
dT1

dt
= H − ρcφ1, h1

dS1

dt
= −ψ1 (11)

for the first layer, and
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Figure 8: Cartoon depiction of the N-layer model.

hr
dTr
dt

= φr−1 − φr, hr
dSr
dt

= ψr−1 − ψr, (12)

for all other layers, where 1 < r ≤ N − 1.

3.2.4 Evolution of top layer

The thickness of the top layer grows with time, and the heat and salt flux exiting the top
of the staircase are neglected, thus equation (11) becomes

d

dt

(
hN (TN − TN )

)
= φN−1,

d

dt

(
hN (SN − SN )

)
= ψN−1. (13)

Finally, by satisfying equation (3), the third equation describing the top layer is

α
(
TN − T t

)
+ β

(
SN − St

)
= 0.

Again, T t = T , but now St = SzdN + S0.

3.2.5 Boundary layer

Equation (6) describes the evolution of the initial layer and boundary layer, with the ad-
justed boundary condition, θ(z = dN ) = TN . The criterion for overturn is given by equa-
tion (7) where, by assuming that the temperature profile of the boundary layer becomes
relatively linear at the time of overturn, we let
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δ =
2

TN − TN

∫ ∞

dN

θdz.

3.2.6 Formation of new, N+1 layer

Once a boundary layer has overturned to form a new layer, the characteristics of this new
layer are determined by conserving heat and salt and by satisfying equation (3):

(
TN+1 − T

)
hN+1 =

∫ ∞

dN

θdz, SN+1 = Sz

(
dN +

hN+1

2

)
+ S0

α
(
TN+1 − T t

)
+ β

(
SN+1 − St

)
= 0,

where the salinity at the top of the staircase has become St = Sz (dN + hN+1) + S0.

3.2.7 Merging layers

Lastly, if the density is neutral across an interface (i.e. α∆T + β∆S = 0), the two layers
will merge while conserving heat and salt. So the characteristics of the new layer are given
by

Tnew =
hiTi + hi+1Ti+1

hi + hi+1
, Snew =

hiSi + hi+1Si+1

hi + hi+1
,

hnew = hi + hi+1.

4 Adding thermobaric effects

The equations presented in the previous section differ slightly from those found in [4]. This
is because they assume that T = S0 = 0 and also because their equations are written
using the following non-dimensional scaling where hatted variables indicate dimensional
quantities:

t =
√
S∗t̂, z =

S
3/4
∗

H
(
∗1/2)

ẑ, T =
−α0gT̂

H
1/2
∗ S

1/4
∗

S =
βgŜ

H
1/2
∗ S

1/4
∗

, φ =
−α0gφ̂

H∗
, ψ =

βgψ̂

H∗
.

The scaling for the buoyancy fluxes are defined as

H∗ =
−α0gH

ρc
, S∗ =

−βgSz
2

, (14)

where α0 is a constant, mean thermal expansion coefficient (note that this differs from H̃∗).
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In order to include thermobaric effects, we simply introduce a new, non-dimensional
variable,

α =
α̂

α0
.

We set α̂ = α0 + cẑ, where c is determined by linearizing alpha near the local pressures
of each experiment. The resulting equations using this non-dimensionalization are given
below.

4.1 Heat and salt fluxes through interfaces

Non-dimensionalizing equations (8) leads to

φ = 0.32

(
αQ

σ

)1/3

(∆T )4/3

(
α∆T

∆S

)2

ψ =

{
αφ
(
1.85− 0.85

(
∆S
α∆T

))
, 1 < ∆S

α∆T ≤ 2

0.15αφ, 2 < ∆S
α∆T .

4.2 Growing 1st layer

Non-dimensionalizing equations (4) leads to

h1 =
√
αt, T1 = T +

√
t

α
, S1 = S0 −

√
αt.

4.3 Evolution of interior layers

Non-dimensionalizing equations (11) and (12) leads to

h1
dT1

dt
= 1− φ1, h1

dS1

dt
= ψ1

hr
dTr
dt

= φr−1 − φr, hr
dSr
dt

= ψr−1 − ψr.

4.4 Evolution of top layer

Non-dimensionalizing equations (13) leads to

d

dt

(
hN (TN − T0)

)
= φN−1,

d

dt
(hN )) = ψN−1 −

dhN
dt

(2dN − S0)

α(TN − T̄ ) = SN + 2dN − S̄0.

After much algebra, these equations can be rewritten as
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dhN
dt

=
1

2hN
(αφ− ψ),

dTN
dt

=
1

hN

(
φ− TN − T

2h
(αφ− ψ)

)

dSN
dt

=
1

hN

(
ψ − αφ− ψ

2hN
(SN + 2dN − S0)

)
.

4.5 Evolution of boundary layer

Non-dimensionalizing equations (6) and (7) leads to

∂θ

∂t
= Q

∂2θ

∂z2
, R =

δ3

σQ2

(
α(TN − T )− 2σδ

σ + 1

)
.

This is semi-analytically solved using the solution for heat through a finite, one-dimensional
system with temperatures fixed on each boundary, where the length of the system, xf , is
chosen such that it is effectively infinity. Following [8], that semi-analytical solution is given
by

θ(x, t) = v + w, v(x) = TN + (T − TN )
x

xf
(15)

w(x, t) =

Nmax∑

n=1

bn sinλnx exp−λ2
nkt, λn =

nπ

xf
(16)

bn =
2

xf

∫ xf

0
−v(x) sin

nπx

xf
dx. (17)

4.6 Formation of new layer

Non-dimensionalizing equations (14) leads to

(
TN+1 − T

)
hN+1 =

∫ ∞

dN

θdz ≡ γ, SN+1 = −2

(
dN +

hN+1

2

)
+ S0

α
(
TN+1 − T t

)
+
(
SN+1 + 2(dN + hN1)− S0

)
= 0.

After much algebra, we find that this leads to

hN+1 =
√
αγ, TN+1 = T +

√
γ/α

SN+1 = S0 − 2dN −
√
γα.

4.7 Merge layers

Finally, while the criterion for merging becomes α∆T = ∆S, the equations which describe
the new layer that results from merging (equations (14)), remain unchanged.
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5 Preliminary results

To begin exploring how the thermobaric instability and double-diffusive convection interact,
we first address the question of how the structure of the staircases may change as a function
of α. One could imagine two possible outcomes of such an experiment. First, increasing
α may have the same effect as increasing the heating rate or increasing the background
temperature gradient. This would cause the density ratio to decrease as α increases, leading
to a less stable system that transports heat and salt more efficiently. Alternatively, one could
imagine that the steps might reorganize in such a way as to maintain its density ratio. In
this case, the salinity interface would increase or the temperature interface would decrease,
causing Sz/Tz to increase and the density ratio to remain constant. Finally, in either case,
we would expect the overall thickness of the layers to increase with α in order to sustain
the larger interfaces or fluxes that would result in either scenario.

To try to answer this question, we ran our model using the same parameters that were
used by [4] for a variety of αs. Specifically, we chose αs such that they were equivalent
to systems where double-diffusive staircases are found in the deep and shallow Arctic, a
laboratory and finally, one that would correspond to the Marianas trench, as a way to
gauge how the staircases would behave for very large, yet realistic expansion coefficients
(see Tables 1 and 2 for full description of parameters used). Although α is computed as
a function of depth within each experiment, the staircases presented are sufficiently small
that we may consider α to be constant.

Our results are presented in Figures 9-14. Figure 9 shows how the top of each layer
evolves in time for each experiment and demonstrates that layers appear to form and merge
more rapidly for larger values of α. This can be rationalized upon inspection of equation
(7), the expression for R, which must reach a critical value in order for a new layer to form.
One can see that R increases as a function of α and thus a smaller temperature gradient is
required for overturn.

The rapid formation of layers also appears to correspond to rapid merging events. This
might be because a layer that takes a short time to form will be smaller, less resilient and
will then quickly have a similar density to the layer below compared to a layer that takes
longer to form.

Secondly, the fourth subplot of Figures 12-14, which show the evolution of the layer
heights for the first three layers and compares them to each experiment, demonstrate that
once a quasi-steady layer forms (i.e. persists without merging immediately), it is likely to
be larger when formed under conditions with a larger α. This result is consistent with what
is observed in the shallow Arctic compared to the deep Arctic (see Figure staircase).

This result is further supported by Figures 10 and 11, which show the final form of
the staircase at the end of each experiment. Moreover, one can see that the interfaces in
salinity seem to increase as a function of α, while the temperature interfaces behave in the
opposite manner. This can be explored further through the first and second subplots of
Figures 12-14, which show how the two interfaces evolve for the first three layers. Although
the result is far from indisputable, the same trend seems to exist, particularly for the more
stable bottom two layers.

The size of the temperature interfaces, ∆T , are closely related to the fluxes across the
interfaces (equation (8) but are also functions of α. These two quantities appear to have
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opposite effects on both fluxes. Interestingly, the fifth and sixth subplots of Figures 12-
14 clearly demonstrate that the heat flux decreases with α while the salt flux (even more
strongly) increases with α. This implies that for the heat flux, the impact of ∆T outweighed
that of α while the opposite was true for the salt flux. Again, these results are most clear
for the more stable bottom two layers.

Lastly, we test our hypothesis from the beginning of this section and analyze how the
density ratio varies for large changes in α. Upon inspection of the third and sixth subplot
of Figures 12-14, it appears that the ratio of the two interfaces, ∆S/∆T , increases with
α, leaving the density ratio fairly constant by comparison (although there may be a small
decrease as a function of α). This result suggests that increasing α has consequences which
may not include destabilizing the water column but are reflected in the structure of the
staircase.

Table 1: Simulation Parameters
κ σ H∗ S∗ TBG (◦C) SBG (psu)

1.4 · 10−7 7 −1.48α0 · 10−2 .167 .1 35

Table 2: Experiments

Description α0 (10−4 ◦C−1) c (10−8 ◦C−1m−1) depth range (m)

lab -.53 -2.88 0-.85
shallow Arctic -.61 -2.86 292-316

deep Arctic -1.24 -2.6 2611-2814
Marianas Trench -2.92 -1.67 10800-10860

6 Implications, speculations and future work

Although we have not yet directly tested the effects of thermobaricity on double-diffusive
staircases, these results help us to understand how the staircases change as a function
of α. From our results, we might expect that in a system where thermobaric effects are
important (i.e. α increases quickly with depth), the staircase will have certain features.
First, we would expect that the layer thickness and salinity interfaces would increase with
depth while the the temperature interfaces would decrease with depth (or increase less with
depth , as this seems to be a necessary characteristic of all staircases). This in turn would
lead to a divergent heat flux and a convergent salinity flux.

These results may explain why and how double-diffusive steps appear to increase with
depth in nature. Furthermore, one could speculate that these thermobaric effects on the
staircases may be important for understanding thermobaric convection. For example, be-
tween thermobaric overturning events, one might suspect that the system could be double-
diffusively unstable (see Figure 3) and would therefore contain double-diffusive staircases.
If the staircase supports converging and diverging vertical fluxes, they may impact the rate
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at which the system reaches the density ratio required for the system to be thermobarically
unstable.

However, these are merely speculations and require further scrutiny. Specifically, in the
future we aim to determine how and under what conditions we might expect thermobaric
effects to be important. This will be done by comparing experiments in which α is held
constant to those in which α is allowed to vary appreciably within a staircase, based on
the temperature gradient. We will explore a parameter range in which we will vary the
heating rate, the salinity gradient and α. These experiments will include simulations with
parameters that correspond to those found in the Antarctic as well as the shallow and
deep Arctic, where both double-diffusion and thermobaricity may be important. This will
hopefully lead us to a nice set of predictions that will allow us to begin to compare our
results to observations.
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Figure 9: The evolution of the layer heights for the four experiments.
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Figure 10: Final form of the staircases in temperature-depth space for the four experiments.
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Figure 11: Final form of the staircases in salinity-depth space for the four experiments.
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Figure 12: Comparison of the bottom layer between the four experiments. Evolution of the
layer heights, magnitude and ratio of the interfaces, heat and salt fluxes, and density ratio
is plotted.
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Figure 13: Comparison of the 2nd layer between the four experiments. Evolution of the
layer heights, magnitude and ratio of the interfaces, heat and salt fluxes, and density ratio
is plotted.
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Figure 14: Comparison of the third layer between the four experiments. Evolution of the
layer heights, magnitude and ratio of the interfaces, heat and salt fluxes, and density ratio
is plotted.
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