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1 Introduction.

In past decades there has been growing interest in propagation of nonlinear waves over a
variable bottom and internal waves in a variable medium, which leads to a nonlinear partial
differential equation of KdV type with variable coefficients (vc-KdV). The study of vc-KdV
equation could enhance our understanding of many problems in oceanography and plasma,
such as tsunami([10]) and dust ion acoustic waves([7]). A methodology in linear theory,
the so-called ray method, was extended to nonlinear wave theory in Cartesian geometry by
Shen&Keller[8] and in cylindrical geometry by Shen&Shen[9]. The wave amplitude satisfies
the vc-KdV equation along each ray which is determined by the Eikonal equation. The
solution is valid when the wavelength is small compared to other horizontal scale lengths.
Since the canonical Korteweg-de Vries equation describes the propagation of long waves in
shallow water, in some sense this method combines features of both the short wave theory
and long wave theory.

In section 2 a vc-KdV equation is derived by applying the ray method in Cartesian
coordinate system. Section 3 is dedicated to seek solutions to Eikonal equation in the case
that the topography is independent of one spatial variable. Rays in plane waves and circular
waves propagating over different bottoms are calculated and plotted. A variable coefficient
KdV equation in cylindrical geometry (vc-cy-KdV) is given in section 4, which can be
transformed into a vc-KdV by a suitable change of variables. Exact solutions to the vc-cy-
KdV equation and conditions under which we are able to find them explicitly are discussed.
We also obtain approximate solutions using the method developed by Grimshaw[4], and
study the large-time behavior of the amplitude of both cnoidal waves and solitary waves.
These two types of waves share the same critical value of the bottom slope for the amplitude
to blow up or vanish far away from the source of waves. Finally in section 5 we discuss
some directions in which future work could advance.

2 Formulation of the problem.

Let us consider an inviscid, incompressible fluid over an uneven bottom z∗ = −h∗(x∗, y∗),
as sketched in figure 1. The free surface is denoted by z∗ = η∗(x∗, y∗, z∗, t∗) where η∗ is an
unknown function. Denote by ρ, P and ~u the fluid density, pressure and velocity respectively.
We can define dimensionless variables as follows:

290



h =
h∗

H
, η =

η∗

H
, ε = (

H

L
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ρ∗
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ε
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H
y∗,
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H
), t = ε

3
2 (

g

H
)

1
2 t∗, (2.1)

P =
P ∗

gHD
, ~u = (u, v, w) = (gH)−

1
2 (u∗, v∗, ε−

1
2 w∗),

where H, L, D are scales for vertical length, horizontal length and density respectively.

x∗

y∗

z∗

z∗ = −h∗(x∗, y∗)

z∗ = η∗(x∗, y∗, z∗, t∗)

Figure 1: Flow region is between the rigid bottom z∗ = −h∗(x∗, y∗) and the free surface
z∗ = η∗(x∗, y∗, z∗, t∗).

Using these dimensionless variables, we can represent the equation of motion, equation
of continuity and boundary conditions on the rigid bottom and the free surface in the
following way:

• Equation of motion: ρ∗(∂~u∗
∂t∗ + ~u∗ · ∇∗~u∗) = −∇∗P ∗ becomes

ε[ρ(ut + uux + vuy) + Px] + ρwuz = 0, (2.2)
ε[ρ(vt + uvx + vvy) + Py] + ρwvz = 0, (2.3)

ε2ρ(wt + uwx + vwy) + ερwwz + Pz + ρ = 0. (2.4)

• Equation of continuity ∇∗ · ~u∗ = 0 becomes

ε(ux + vy) + wz = 0. (2.5)

• Two boundary conditions P ∗ = const, D∗
D∗t∗ (z

∗− η∗) = 0 at z∗ = η∗ and ~u∗ ·∇∗(z∗+
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h∗) = 0 at z∗ = −h∗ becomes

P = C, at z = η, (2.6a)
ε(ηt + uηx + vηy)− w = 0, at z = η, (2.6b)

ε(uhx + vhy) + w = 0, at z = −h. (2.6c)

Here∇∗ is the dimensional gradient operator and D∗
D∗t∗ is the dimensional material derivative

D
Dt .

2.1 Asymptotic expansion and Eikonal equation.

To find wave-like solutions to (2.2)-(2.6) we introduce a phase function S(x, y, t) and a
“fast-phase” variable ξ = ε−1S(x, y, t). Assume that u, v, w, P and η all have the form of
asymptotic expansion

G(t, x, y, z, ξ) = G0(t, x, y, z, ξ) + εG1(t, x, y, z, ξ) + O(ε2). (2.7)

By noting that operators ∂
∂t ,

∂
∂x and ∂

∂y become ∂
∂t +ε−1St

∂
∂ξ , ∂

∂x +ε−1Sx
∂
∂ξ and ∂

∂y +ε−1Sy
∂
∂ξ

respectively, we can expand equations (2.2)-(2.6). Equating O(1) terms to zero yields the
static-flow solution; and equating O(ε) terms to zero yields

ρu1ξSt + P1ξSx = 0, (2.8)
ρv1ξSt + P1ξSy = 0, (2.9)

P1z = 0, (2.10)
u1ξSx + v1ξSy + w1z = 0, (2.11)

P1 = ρη1, at z = 0, (2.12)
w1 = η1ξSt, at z = 0, (2.13)

w1 = 0, at z = −h(x, y). (2.14)

To solve equations (2.8)-(2.14) for unknowns u1, v1, w1, P1, η1 and S, we firstly solve (2.8)
and (2.9) for u1ξ and v1ξ to get

u1ξ = −P1ξSx

ρSt
, v1ξ = −P1ξSy

ρSt
. (2.15)

Substituting (2.15) into (2.11) yields

w1z =
P1ξ(S2

x + S2
y)

ρSt
. (2.16)

From (2.10) and (2.16) we know w1z is independent of z, so using boundary condition (2.14)
we have

w1 =
P1ξ(S2

x + S2
y)

ρSt
(z + h). (2.17)
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Equations (2.12) and (2.13) implies

w1 =
P1ξSt

ρ
, at z = 0. (2.18)

Now combining (2.17) and (2.18) and eliminating w1 we get the Eikonal equation

S2
t

S2
x + S2

y

= h(x, y). (2.19)

By solving the Eikonal equation with proper boundary conditions we can determine the
phase function S(x, y, t), which is postponed to section 3. Once the surface elevation η1 and
the phase function S are determined, P1 can be found by (2.12), and w1 by (2.17). From
(2.15) we can obtain special solutions u1, v1 as

u1 = −P1Sx

ρSt
, v1 = −P1Sy

ρSt
. (2.20)

Arbitrary functions independent of ξ can be added to the right-hand sides of (2.20). We
choose them to be zeros so that the fluid velocity has the same direction as rays.

2.2 Amplitude equation.

To determine η1, we need to proceed further by equating coefficients of O(ε2) terms in
equations (2.2)-(2.6):

SxP2ξ + ρStu2ξ = −(ρu1t + ρu1Sxu1ξ + ρv1Syu1ξ + P1x), (2.21)
SyP2ξ + ρStv2ξ = −(ρv1t + ρu1Sxv1ξ + ρv1Syv1ξ + P1y), (2.22)

P2z = −ρStw1ξ, (2.23)
w2z + Sxu2ξ + Syv2ξ = −u1x − v1y, (2.24)

P2 − ρη2 = 0, at z = 0, (2.25a)
w2 − Stη2ξ = η1t + u1Sxη1ξ + v1Syη1ξ − w1zη1, at z = 0, (2.25b)

w2 = −u1hx − v1hy, at z = −h(x, y). (2.25c)

Equations (2.21)-(2.24) are a system of equations of u2, v2, w2, η2 and P2 whose right-hand
sides are all known except for exactly one quantity (η1, w1, or P1). By straightforward but
a little tedious calculations we can eliminate u2, v2 and η2 to get a compatibility condition
under which a solution exists(see appendix in [8] for details). This compatibility condition
turns out to be in a following KdV-like form of a nonlinear partial differential equation

Ât +
Jt

2J
Â + (

ωh2

2
− ω

ρ2h
)ÂÂξ +

ω3h

6
Âξξξ = 0, (2.26)

where Â = ρη1, ω (angular frequency) will be defined in section 3, and J is the Jacobian
from the ray coordinates (τ, γ1, γ2) to the time-Cartesian coordinate system (t, x, y).

293



Denote A = J1/2Â, then (2.26) becomes

At + f1(t)AAξ + f2(t)Aξξξ = 0, (2.27)

where f1(t) = J−1/2(ωh2

2 − ω
ρ2h

), and f2(t) = ω3h
6 .

Equation (2.27) is called the variable coefficient Korteweg-de Vries equation(vc-Kdv) and
was derived by Shen&Keller[8]. It was shown by Joshi [5] that it is completely integrable if
and only if coefficient functions f1 and f2 satisfy

f2(t) = f1(t)(c1

∫ t

f1(s)ds + c2), (2.28)

for arbitrary constants c1 and c2. Under this condition, Lax pair and infinitely many
conservation laws of (2.27) can be found(see e.g. Fan[2] and Zhang[12]).

3 Ray tracing.

Eikonal equation (2.19) can be solved by using the method of characteristics. By doing
so, we obtain the following system of ordinary differential equations

ẋ(τ) = − Sx√
S2

x + S2
y

θ, (3.1a)

ẏ(τ) = − Sy√
S2

x + S2
y

θ, (3.1b)

ṫ(τ) = 1, (3.1c)

and
Ṡx(τ) =

√
S2

x + S2
y θx, (3.2a)

Ṡy(τ) =
√

S2
x + S2

y θy, (3.2b)

Ṡt(τ) = 0, (3.2c)

and very importantly,
Ṡ(τ) = 0, (3.3)

where θ(x, y) = −h
1
2 (x, y), and dot is the total derivative with respect to τ .

System of equations (3.1) determines a two-parameter family of space-time curves, which
are called rays; (3.2) determine the change of gradient of S along a ray; and (3.3) indicates
that S remains constant along a ray. In following discussion we often do not distinguish ∂t
and ∂τ due to (3.1c) unless special attention is drawn. It follows from (3.2c) that on each
ray St(τ) is also a constant. We will only consider in this paper the case when St is the
same constant for all rays. We call ω = −St the angular frequency.
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We can parameterize rays by using parameters γ1 and γ2 which are constants along a
ray. They can be chosen to be, for instance,

γ1 = S(x, y, t),
γ2 = y − y(τ(x)),

(3.4)

then ∂γ1

∂x = Sx, ∂γ1

∂y = Sy, ∂γ2

∂x = − ẏ
ẋ , and ∂γ2

∂y = 1. The Jacobian J from the ray coordinates
(τ, γ1, γ2) to the time-Cartesian coordinate (t, x, y) can be calculated as

J =
∣∣∣∣
∂γ1

∂x

∂γ2

∂y
− ∂γ1

∂y

∂γ2

∂x

∣∣∣∣
−1

=
Sx

S2
x + S2

y

=
Sxh

S2
t

. (3.5)

In general the system of ordinary differential equations (3.1)-(3.3) is difficult to solve
since they are coupled with each other. But if the topography is only dependent on one
variable they can be solved analytically. Assume hy = 0, then it follows from (3.2b) that
Sy(τ) = Sy(0) = k2. We substitute θx = θ̇

ẋ into (3.2a) and use (3.1a) to get

SxṠx

S2
x + k2

2

= − θ̇

θ

Integrating it from 0 to τ gives us

Sx(τ) = [h0(k2
1 + k2

2)h
−1 − k2

2]
1
2 , (3.6)

where k1 = Sx(0) and h0 = h(0). The location of rays can be obtained by substituting
Sx(τ) into (3.1a) and (3.1b):

ẋ(τ) =

√
h(x(τ))− k2

2

h0(k2
1 + k2

2)
h2(x(τ)), (3.7a)

ẏ(τ) =
k2√

h0(k2
1 + k2

2)
h(x(τ)). (3.7b)

Equation (3.7a) is a first-order ordinary differential equation thus can be solved analyt-
ically for a large scope of bottom functions h(x); then (3.7b) is solved readily. The value
of S at any point P will be given by its value at a boundary point Q from which the ray
emits and passes through P .

Next we will consider several physical scenarios (various topography & various forms
of waves) when (3.7) is solved with suitable boundary conditions and rays are calculated
explicitly.

3.1 Plane waves.

Let us suppose that a sinusoidal plane wave is generated at x = −∞ and propagating
towards the shore at x = l. The angle between the wavefronts and positive y−axis is ϕ.
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The bottom function is selected in the following way so that (3.2a) and (3.2b) can be solved
easily,

h(x) =
{

α2l2, x ≤ 0;
α2(l − x)2, x ≥ 0.

with α > 0. (3.8)

A phase function representing sinusoidal plane waves is S(x, y, t) = k1x + k2y − ωt with
k2
k1

= arctan(ϕ). Parameters k1, k2 and ω are related by the dispersion relation ω2

k2
1+k2

2
= hloc,

where hloc is the local depth of water. The boundary conditions for the system are prescribed
on Γ1 = {(x, y, z)|x = 0, y ∈ R, t > 0} as

Sx(0) = k1, Sy(0) = k2, St(0) = −ω, S(0, y, t) = k2y − ωt. (3.9)

It immediately follows from (3.2) that Sy(τ) = k2, St(τ) = −ω, and

Sx(τ) =
1

2c1
(c2

1e
ατ − k2

2e
−ατ ), (3.10)

where the constant c1 is defined as c1 =
√

k2
1 + k2

2 + k2. The location of characteristics can
be readily calculated

ẋ = α(l − x)
c2
1e

ατ − k2
2e
−ατ

c2
1e

ατ + k2
2e
−ατ

ẏ =
αl(c2

1 + k2
2)

2c1k2
[sech(log

c1

k2
+ ατ)]2

ṫ = 1.

(3.11)

Using initial conditions x(0) = 0, y(0) = y0 and t(0) = t0 we can integrate (3.11) to obtain

x(τ) = l(1− c2
1 + k2

2

c2
1e

ατ + k2
2e
−ατ

)

y(τ) = y0 +
l(c2

1 + k2
2)

2c1k2
(
c2
1e

ατ − k2
2e
−ατ

c2
1e

ατ + k2
2e
−ατ

− c2
1 − k2

2

c2
1 + k2

2

),

t(τ) = t0 + τ,

(3.12)

which are plotted in figure 2(a).
To find the phase function S at any point (x∗, y∗, t∗), we need to find y0, t0 and τ such

that x(τ) = x∗, y(τ) = y∗, and t(τ) = t∗. Then the phase function is

S(x∗, y∗, t∗) = S(0, y0, t0) = k2y0 − ωt0.

One can easily see in (3.12) that

lim
τ→∞x(τ) = l, and lim

τ→∞ y(τ) = y0 + (
√

k2
1 + k2

2 + k1)−1k2l,

indicating that the rays will approach the shoreline asymptotically.
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3.2 Waves generated by a point oscillator.

Suppose that there is a point source oscillator at the origin, generating sinusoidal waves.
In this case all information on the phase function are only available on a straight line
Γ2 = {x = y = 0, t ≥ 0}, where all rays are emitted. Therefore in order to determine value
of the phase function it is necessary to find both the point on t−axis and the angle from
which a ray emits. Since in a small neighborhood of the origin the phase function can be
written in the form of S = kr − ωt + o(r), the boundary condition for phase function on
t−axis is S = −ωt. For a ray leaving the origin with an angle φ to the positive x−axis, its
initial condition is (Sx, Sy, St)|x=y=0 = (k cosφ, k sinφ,−w).

The analysis leading to the result in previous section can be applied here, with k1, k2

replaced by k cosφ, k sinφ respectively. A straightforward calculation shows that the rays
are given by

x(τ) = l − l(cos2(
φ

2
)eατ + sin2(

φ

2
)e−ατ )−1,

y(τ) =
l

sinφ
(
cos2(φ

2 )eατ − sin2(φ
2 )e−ατ

cos2(φ
2 )eατ + sin2(φ

2 )e−ατ
− cosφ),

t(τ) = t0 + τ,

(3.13)

for φ ∈ (−π
2 , π

2 )\{0}. Notice that lim
τ→∞x(τ) = l, showing that rays approach the shore

asymptotically which is similar to the plane-wave case. When φ ∈ (π
2 , 3π

2 ), waves are
traveling in a medium with constant water depth, thus all rays in this region are propagating
radially. Rays given by (3.13) are plotted in figure2(b).

To find the value of S at any point (x∗, y∗, t∗), we need to find φ, t0 and τ such that
x(τ) = x∗, y(τ) = y∗ and t(τ) = t∗. Then the phase function is

S(x∗, y∗, t∗) = S(0, 0, t0) = −ωt0.

3.3 Reflected rays in plane waves.

The fact that rays approach to shoreline asymptotically without being reflected is due
to the nature of varying topography. Indeed it can be easily shown that the rays will not
be reflected back for a bottom function h(x) ∼ (x− l)−β if and only if β ≥ 2.

In the case of a piecewise linear topography:

h(x) =
{

α2l, x ≤ 0;
α2(l − x), x ≥ 0.

with α > 0, (3.14)

we can solve equations (3.7a) and (3.7b) to get

x(τ) = l − h0(k2
1 + k2

2)
2k2

2

[1− sin(
k2α√

h0(k2
1 + k2

2)
τ + arcsin(

k2
1 − k2

2

k2
1 + k2

2

))],

y(τ) = y0− k1l

k2
+

(k2
1 + k2

2)l
2k2

2

[
k2α√

l(k2
1 + k2

2)
τ +cos(

k2α√
l(k2

1 + k2
2)

τ +arcsin(
k2

1 − k2
2

k2
1 + k2

2

))], (3.15)
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Figure 2: Rays of (a) plane waves propagating from x = −∞ and (b) circular waves
generated by a point source at the origin, moving toward a shoreline. The bottom function
is chosen to be that in (3.8) with α = 1 and l = 2. Other parameters are: (a) k1 = k2 =
1, y0 = −1, 0, 1, 2; (b) k = 1, φ = nπ

8 (n = 0, ..., 15).

for τ ≤ τM = arccos( 2k1k2

k2
1+k2

2
). Here τM is the time when rays hit the shoreline and bounce

back.
At the initial stage of traveling along the beach, rays propagate in an apparently anal-

ogous way as that in figure 2a, and tend to be perpendicular to the shore. At some finite
time they reach the beach where the water depth is zero. Therefore current theory breaks
down in the vicinity of the shore and a more careful examination is needed to correctly
describe the process taking place therein. Nevertheless, this difficulty does not hinder us
from obtaining a solution to the Eikonal equation if we assign to S on x = l the value
carried by incoming rays and use them as the boundary conditions for reflected rays. Both
incoming rays and reflected rays are plotted in figure 3.

4 Solutions to vc-cy-KdV equation.

The corresponding KdV-like equation in the cylindrical coordinate system can be ob-
tained by a similar approach (Shen&Shen[9]); namely,

η1t + (2ω−1rJ)−1 dω−1rJ

dt
+

3ωη1η1ξ

2h
+

1
6
ω3hη1ξξξ = 0, (4.1)

where r stands for the radial component; η1, ω, J and h are analogously defined in the
cylindrical coordinate system.
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Figure 3: Rays of plane waves (solid curves) traveling over a beach with constant slope
are reflected by the beach (dot-dashed curves), with α = 1, l = 1, k1 = 1, k2 = 8, and
y0 = −1, 0, 1.

Assume now that h is a function of r only and all other variables do not depend on the
azimuthal variable φ, then the phase function is

S(r, φ, t) = −t +
∫ r

r0

h−
1
2 dr, (4.2)

for some fixed radius r0. If we introduce a function A(t, r, ξ) such that η1 = Ah(r), then
(4.1) can be written as a vc-cl-KdV equation

Ar + (
3
2
h−

1
2 )AAξ + (

1
6
h

1
2 )Aξξξ + (

5
4
hrh

−1)A +
A

2r
= 0, (4.3)

Equation (4.3) is the counterpart of (2.27) in the cylindrical coordinate system under the
assumption of azimuthal independence.

By applying a change of variables

A(r, ξ) =
2
√

6
3

h−5/4r−1/2B(σ, ξ), and σ =
1
6

∫ r

h1/2dr, (4.4)

equation (4.3) becomes
Bσ + f(σ)BBξ + Bξξξ = 0, (4.5)

where
f(σ) = 6h−9/4(

∫ σ

h−1/2dσ)−1/2 = 6
√

6r−1/2h(r)−9/4. (4.6)

Equation (4.5) is in the form of (2.27), except that the ”time” variable σ now has a different
scale from the actual time variable t.
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4.1 Exact solutions

To look for exact solutions to (4.5), we apply the following change of variables suggested
by Grimshaw (appendix in [3])

B(σ, ξ) = f(σ)[Q(s, x)−m1ξ], x = f(σ)ξ, s = g(σ), (4.7)

where m1 is some constant, g(σ) is to be determined, and Q(s, x) satisfies the standard
KdV equation

Qs + QQx + Qxxx = 0. (4.8)

Substituting (4.7) into (4.5) yields

(f ′ −m1f
3)Q + (ξff ′ −m1ξf

4)Qx + (m2
1ξf

3 −m1ξf
′)

+ fg′Qs + f4QQx + f4Qxxx = 0. (4.9)

Therefore Q(s, x) will satisfy (4.8) if each bracketed term in (4.9) vanishes and fg′ = f4.
This means that when m1 6= 0, f and g have to satisfy

f(σ) = (−2m1σ + m2)−1/2, g(σ) =
1

m1
(−2m1σ + m2)−1/2. (4.10)

where m2 is an integrating constant. This is consistent with the integrability condition
(2.28) with c2 = 0. According to (4.6), (4.10) and definition of σ, the bottom function has
to satisfy

h(r) = (−72m1)1/4(m3r
−8/9 + 1)1/4. (4.11)

When h is chosen as in (4.11), we may combine (4.4), (4.7) and any exact solution to
the standard KdV to obtain a new solution to the vc-cy-KdV equation. Nevertheless, the
presence of the term ”m1ξ” in transformation (4.7) changes the condition of the solution
at infinity both in temporal and spacial variables. Consequently, solutions to the standard
KdV with physical meanings become unbounded solutions to vc-cy-KdV. As an illustration
to it, let us take a soliton solution to (4.8)

Q(s, x) = 3c sech2[
√

c

2
(x− cs− b)], (4.12)

where b is any constant and c encodes information of amplitude, wavenumber and frequency
of the soliton. Then

A(r, t) = κ1r
−1 sech2[κ2r

− 1
2 (r − κ3t) + κ4r

− 1
2 + κ5] + κ6r

− 1
2 (r − κ3t), (4.13)

for some constants κi, (i = 1, ..., 6). Solution (4.13) is plotted in figure 4.
We notice that when f(σ) is a constant (m1 = 0), there is no need of applying another

transformation to (4.5); thereupon any bounded solution to it remains bounded to vc-
cy-KdV. In particular, solitary waves will keep their soliton-like shape except that the
amplitude may vary due to combined effects of geometrical spreading and shoaling. Suppose
f = 6λ1 for some constant λ1, then one soliton solution to (4.5) is

B =
c

2λ1
sech2[

√
c

2
(ξ − cσ − b)], for a constant b. (4.14)
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Figure 4: An unbounded solution (4.13) at different times. The dotted curve is the envelope
of local solitons.

Now
σ = 2−

35
9 3

10
9 λ

− 2
9

1 r
8
9 − λ2, (4.15a)

h(σ) = [
8λ2

1

9
(σ + λ2)]−

1
4 = (

36
λ4

1

)1/9r−
2
9 . (4.15b)

where λ2 is an arbitrary constant. Combining (4.4),(4.14),(4.15) and definition of ξ we
obtain a bounded soliton solution to vc-cy-KdV (4.3):

A(r, ξ) = 2
2
9 3−

7
9 r−

2
9 λ−1

1 sech2[
√

c

2
(ε−1ξ − cσ − b)], (4.16)

which is plotted in figure 5 for r ≥ r0. An examination of solution (4.16) shows that for large
r the amplitude decays to 0 as r−2/9. Moreover, the dominant term inside the hyperbolic
secant function is C1r

10
9 − C2t for some constants C1 and C2, indicating that the traveling

speed of the soliton decays to 0 as r−
1
9 .

4.2 Approximate solutions – Cnoidal waves.

As we can see in previous section, the choice of the topography is fairly restrictive in order
for us to obtain explicit solutions. Even in the most special case when the bottom is flat, we
are not able to obtain a solution which is physically meaningful. Therefore developing an
approach to find approximate solutions is of necessity. We look for an approximate solution
to vc-KdV (4.5) which is periodic (cnoidal waves) in this section, and non-periodic (solitary
waves) in next section.

301



0 1 2 3 4
0

0.2

0.4

0.6

0.8

r

A

Figure 5: An exact solution A(r, ξ) given by (4.16), plotted at time t = 0, 1, 2, 3 with
parameters c = 0.01, b = 1, λ1 = 1, λ2 = 0, r0 = 0.2 and ε = 0.01. The dotted curve is the
envelope of the moving soliton.

Assume that f(σ) slowly varies in σ, then we can introduce a slow-time variable T =
εσ (ε << 1) and write f(σ) as

f = f(T ). (4.17)

Denote

ζ = k(ξ − ε−1

∫ T

V (T )dT ), (4.18)

where k is some constant wavenumber. We seek for a periodic solution B which is periodic
in ζ with a period 2π and has the asymptotic expansion

B = B0(ζ, T ) + εB1(ζ, T ) + O(ε2). (4.19)

Plugging it into (4.5) we obtain the leading order term as

−V B0ζ + fB0B0ζ + k2B0ζζζ = 0. (4.20)

Equation (4.20) is an ordinary differential equation in ζ, with T as a parameter; furthermore,
it has a cnoidal wave solution

B0(ζ, T ) = a[b + cn2(γζ;m)] + d, (4.21)

where
b =

1−m

m
− E(m)

mK(m)
, (4.22a)

a =
12mK2(m)k2

π2f
, (4.22b)
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and V = [d + a(
2−m

3m
− E(m)

mK(m)
)]f. (4.22c)

Here notations are: cn(x;m) is the Jacobian elliptic function with parameter m ∈ (0, 1);
K(m) and E(m) (or K and E for necessary abbreviations) are complete elliptic integrals of
the first and second kind respectively. Since cn2(x; m) is known to have a period of 2K(m),
γ = K(m)

π . The constant b is so chosen that the integration of the sum in the bracket of
(4.21) over one period is zero.

There are three free parameters in the cnoidal wave solution, which are chosen by us
to be the amplitude a, mean level d and elliptic parameter m. They are functions of T
(or r) describing how waves are modulated. To determine a, d and m, we apply the so-
called Whitham averaging method ([11]), which considers the following two conservation
laws directly deduced from (4.5)

∂
∂t

∫ 2π
0 Bdζ = 0, (4.23)

∂
∂t

∫ 2π
0 B2dζ = 0. (4.24)

These conservation laws hold for each term in the expansion of B. It follows from (4.23)
that d = const. Plugging (4.21) into (4.24) and using (4.22b) we get

a2 =
m2K(m)4I0

F (m)
≡ G(m)I0, (4.25)

and F (m) =
π4I0

144k4
f2, (4.26)

where
F (m) ≡ K(m)2[(4− 2m)E(m)K(m)− 3E(m)2 − (1−m)K(m)2], (4.27)

and I0 is a sum of a constant depending only on d and another integrating constant. F (m)
and G(m) are plotted in figure 6. The wavenumber k and V can be determined from (4.22b)
and (4.22c), respectively.
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Figure 6: Plots of F (m) and G(m) versus m.
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To study the remote behavior of the amplitude of a cnoidal wave solution (4.21), us
choose a representative example of bottom function

h(r) = (r + r1)−β r1 ≥ 0, β > 0. (4.28)

Then it follows from (4.6) that

f(r) = 6
√

6r−1/2(r + r1)9β/4. (4.29)

We remark that in a more generalized case the bottom can be chosen to be h = a1(r +
r1)−β + a2 which takes into account the slope of the basin at origin and the place where
water depth vanishes.

At large r, from (4.29) we have f ∼ r
9β−2

4 . Thus when β < 2
9 , f(r) → 0 as r →∞. From

(4.26) and monotonicity of F (m)(figure 6a), we have lim
r→∞m(r) = 0. Since lim

m→0
G(m) =

8
3
(figure 6b), it follows from (4.25) that the amplitude a decreases to a finite value as r →∞.

Then the physical amplitude

â = h−5/4r−1/2a ∼ r(5β−2)/4 (4.30)

decreases to zero as well. When β > 2
9 , lim

r→∞ f(r) = ∞, and lim
r→∞m(r) = 1, so a → ∞.

However the physical amplitude

â = h−
5
4 r−

1
2 a ∼ F 4(β− 1

3
)/(9β−2), as r →∞. (4.31)

Therefore if 2
9 < β < 1

3 , the amplitude of cnoidal wave â still decreases to 0. But if β > 1
3 ,

(4.31) still holds by the same argument, and â →∞ as r →∞. At the critical slope β = 1
3 ,

the wave amplitude remains finite and converges to a non-zero constant. It has the physical
implication that the effects of geometrical spreading and shoaling are offset.

4.3 Approximate solutions – Solitary waves.

Heuristically, cnoidal waves will become solitary waves when the elliptic parameter
equals unity. However, techniques discussed in section 4.2 can not be directly applied
to find solitary wave solution by merely taking the limit m approaching 1, because the two
processes m → 1 and ε → 0 do not commute. A new concept of slowly-varying is required
and we adopt the one given by Grimshaw[4]. Equation (4.17) is to be used as before but
(4.18) is now replaced by

δ = ξ − ε−1

∫ T

V (T )dT, (4.32)

and (4.19) replaced by
B = B0(δ, T ) + εB1(δ, T ) + O(ε2). (4.33)

The solution B is no longer required to be periodic in δ. Substitution of (4.33) into (4.5)
gives the leading order term as

−V B0δ + fB0B0δ + B0δδδ = 0, (4.34)
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which has a soliton solution
B0 = a sech2(qδ), (4.35)

where V = af
3 = 4q2, for some constant q. Substituting (4.35) into the conservation law

∂

∂t

∫ ∞

−∞
B2

0 dδ = 0 (4.36)

leads to
a3 = const.f. (4.37)

Combining (4.29) and (4.37) we can see that for large r,

a ∼ r(9β−2)/4.

The physical amplitude is then

â ∼ h−5/4r−1/2a ∼ r2(β− 1
3
), as r →∞. (4.38)

Therefore β = 1
3 is again a critical value for the behavior of the amplitude.

Let us now examine when the approximate solutions of cnoidal waves and solitary waves
are valid. We treat f and a, m etc. as functions of r instead of T (or σ) since the variable
r represents the radial distance from the origin. Approximate solutions are only true for
a slowly varying function f , which is determined by the bottom function h(r) as in (4.6).
Moreover, generation of circular waves (such as dropping a stone into a pond) usually
involves very complicated mechanism near the origin where current theory fails. These
two difficulties can be circumvented by considering the flow domain to be the whole plane
excluding vicinity of the origin.

As a summary to this section, we characterize as follows the amplitude â to vc-cy-KdV
equation (4.3) in terms of β while the bottom function is in the form of h(r) = (r + r1)−β:

(i) when 0 < β < 1
3 , â →∞ as r →∞;

(ii) when β = 1
3 , â → const. as r →∞;

(iii) when 1
3 < β < 2, â → 0 as r →∞.

It is perhaps an interesting but not a surprising fact that both cnoidal waves and solitary
waves share the same critical value β = 1

3 , even though the analysis leading to the result
are not identical.

5 Discussion.

Equation (2.27) was originally derived by Shen&Keller[8] for a compressible fluid rotat-
ing at a constant angular velocity about the z−axis. In that case an adiabatic equation
must be added to the governing equations and the equation of motion must be modified to
include the effect of rotation. Therefore our equation is a special case of the KdV equation
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obtained by them. The features of nonlinearity and dispersion of waves traveling in shallow
water are captured in this variable coefficient KdV equation.

The critical value β = 1
3 for which wave amplitude approaches to zero/finity/infinity

may not be verified in practice, since the occurrence of reflected waves from the rising
topography is neglected. As remarked in section 3.3, waves are certainly reflected if β < 2.
This raises the possibility that returning waves interact with advancing waves and modify
the wave amplitude in a non-trivial way. Mathematically, a possible remedy is to allow the
sign in front of variable t in the phase function (eqn.(4.2)) to be reversed, giving rise to
another vc-cy-KdV equation. The new KdV equation needs to be solved together with the
existing one.
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