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Abstract

Convection in a van der Waals fluid, with no-stress and fixed flux boundary conditions is studied.
The problem is scaled with the infinite wavelength of the convection cell. A criterium is found
that predicts the onset of convection; it contains information from the Rayleigh and Scharzschild
criteria over the entire cell. The criterium is evaluated and compared with previous experiments
on a similar experiment. Governing equations, boundary conditions, constitutive equation and
convection mechanisms are explained.

1. Introduction

Past studies of convection have focused on incompressible or ideal gas fluids. The aim of this study is to
approach a theory of convection for a fluid containing both a liquid and a gas phase. This is done by focusing
on the conditions where the phase change originates, namely, the critical point of the substance.

Convection near the critical point is difficult both experimentally and theoretically because the fluctuation in
properties becomes very large and many thermodynamic properties (such as the heat capacities and thermal
conductivity) diverge. We model the fluid as an ideal van der Waals fluid, which a good qualitative (but not
quantitative) model because it captures two phases, the critical point, and the divergence of thermodynamic
properties. Because the thermal conductivity goes to infinity as the critical point is approached, we show
that a fixed flux, rather than a fixed temperature boundary is appropriate. By doing this we can find the
critical temperature difference by scaling the problem appropriately as done in [8].

This paper will first explain some of the previous research that has been done on convection near the critical
point of the fluid. Background information is given to explain the properties of the van der Waals fluid and
the onset of convection for both incompressible and compressible fluids. Finally, governing equations are
derived for the situation to be studied, these equations are scaled, and then the criterion for the onset of
convection is found.

2. Literature Review

The criterium for instability as well as the plan form function (the function which explains patterns and
evolution) for an ideal gas with fixed flux and no-stress boundary conditions are described in [8]. Analysis
of an incompressible fluid with no flux boundaries was done by Chapman and Proctor [7]. A derivation of
when to use the constant flux condition was Hurle [11], however, this paper has a number of errors in it, of
which the most crucial is that the thermal diffusivity and not thermal conductance was used to match the
fluxes in the solid and fluid. This error is corrected in the boundary condition derivation in this report.



Experimental studies have been done by Kogan [12] to determine the onset of convection for 3He near the
critical point. These find that the onset can be understood using only the Rayleigh criteria and the adiabatic
temperature gradient (aka Schwarzschild criterion), the same result was found by Carles and Ugurtas [6]
using the full governing equations and real data to determine which terms can be ignored. Experimental
studies by Assenheimer [2] show that close to the critical point hexagons, lines, roll patches, and target or
spiral patterns can be seen. This motivates the current research because it may be possible that additional
patterns can be formed, and a plan form function of a van der Waals fluid would help to find the proper
parameter regime.

Previous studies of convection near the critical point have focused on the ”piston effect” which is the heating
up of fluid close to the boundary, then the boundary fluid expands and compresses the bulk fluid, and
the compression of the bulk fluid raises the bulk temperature. This was explained using thermodynamic
arguments by Onuki [13] and then later derived by Pierre Carles in a lengthy manner using all the governing
equations [9], [5]. Further studies continue to look at this piston effect [1], and in this authors opinion it
is really boring because all that is done is the temperature of the walls is increased and then the fluid
temperature increases; there is really nothing new here.

There have been some numerical simulations of van der Waals fluids close to the critical point [1], [15] but
as mentioned before, these focus on the piston effect and do little in the way of making new predictions.

Lastly, there is a very good review of hydrodynamics near the critical point by Gitterman [10], and the
thermodynamics for phase changes and close to the critical point are concisely explained in the second
edition of Callen’s book on thermodynamics [4].

3. Gas Properties

A typical phase diagram is shown in Figure 1. The liquid and gas are separated by a phase transition line.
When the phase transition line is crossed there is a discontinuous jump in the thermodynamic properties of
the fluid (such as conductivity, density, and heat capacity). This jump becomes smaller and smaller as one
moves to higher temperature and pressure, until the discontinuities disappear at the critical point, which is
where the line ends. Incidentally, no critical point has been found for the liquid-solid phase transition.

Fig. 1. Typical Phase Diagram

3.1. Van der Waals Fluid

A van der Waals fluid is a bunch of particles that are attracted to each other by some potential effects
and repelled due to a hard spheres shell. We assume that the attraction force decays to the -6 power. The
constitutive equation

P =
RρT

1− bρ
− aρ2 (1)

can be derived from such a model. Here b contains the information of the finite size of the particles, and as
the density of the particles goes to 1/b the space is completely packed with particles so the pressure goes to
infinity. The aρ2 term represents the attraction of the particles, and this tends to decrease the pressure.
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In figure 2 are shown several isotherms of the van der Waals equation. The bottom (green) curve has an
isotherm temperature below the critical point, from the phase diagram this suggests that the fluid has two
phases. Where are the two phases? Imagine a fluid that lies on the green isotherm that has a density of
about one, so that the slope is positive. Imagine a fluid blob at this point in a bunch of surrounding fluid. If
the volume of this blob is made to be slightly bigger, then the pressure increases, so the volume continues to
increase until the slope of the curve is negative. Similarly, if the volume is perturbed to be slightly smaller,
the blob will continue to decrease in size until it reaches a point where the slope of the curve is negative. So
all of the liquid will break up into high density and low density blobs, and these are the two phases. Usually
a straight line is drawn across such there are no unstable slopes in the isotherm pressures, when this is done,
it is easy to see the discontinuity in density that occurs at the phase transition. When the temperature is well
beyond the critical value the top (red) curve shown in Figure 2 applies. This fluid has no phase transition
because there are no parts with positive slopes. The middle curve is the curve at the critical temperature,
the critical point is where the first and second derivatives of the pressure with respect to volume occur at
the same volumes (ρc = 1

3b ,Tc = 8a
27b ,Pc = a

27b2 ).

Fig. 2. Pressure for various isotherms

3.2. Diverging Properties near the Critical Point

By definition of an ideal van der Waals fluid the constant volume heat capacity is only a function of volume
and does not diverge at the critical point. The constant pressure heat capacity can be found from the standard
thermodynamic relation

CP = CV − T

ρ2

(
∂ρ

∂T

)

P

(
∂P

∂T

)

ρ

(2)

CP = CV − T

ρ2

1(
∂T
∂ρ

)
P

ρ

1− bρ
(3)

CP = CV −
8a
27b

2a 1
3b (1− 1/3)2 − 8a

27b

(4)

Where the last step was just inserting the critical values. The constant pressure heat capacity diverges the
the -1 power as the critical point is approached. The thermal conductivity diverges to the roughly -1/2 power
as shown in [14].
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4. Convection Mechanisms

The criterium that determine the onset of convection can be derived from physical arguments. For an
incompressible fluid the usual Rayleigh criteria is found. For a compressible fluid the adiabatic temperature
gradient (or Schwarzschild criterium) is found.

4.1. Incompressible Convection

Consider a fluid blob of volume V = a3 contained in the fluid. Perturb the blob upward slightly, now it has
a force directed upward due to the buoyancy and a force directed downward due to the viscous drag. Write
the buoyancy force as

FB = gV δρ (5)

The change in density is assumed to be due only due to the gradient in temperature

δρ = −ραδT (6)

α = −1
ρ

(
∂ρ

∂T

)

P

(7)

The change in temperature of the blob is due to the temperature of the surroundings changing at a rate
proportional to the temperature gradient times the rate at which this temperature diffuses into the blob.

δT =
∆T

d
vzC2

a2

κ
(8)

This makes the buoyancy force equal to

FB = −gραa5C2
∆T

dκ
vz (9)

The drag force is given by

FD = C1aµvz (10)

By Newton’s second law, the particle is stationary if the drag force is greater than the buoyancy force.

FD > FB (11)

C1aµvz > gραa5C2
∆T

dκ
vz (12)

a = C3d (13)
C1

C2C4
3

>
gαd3∆T

νκ
(14)

Rac >
gαd3∆T

νκ
(15)

This means that the fluid is stable if the Rayleigh number is below some critical Rayleigh number value.

4.2. Compressible Convection

Consider again a blob of fluid in its surrounding fluid. The blob has a density ρblob and the bulk fluid has
an equal density ρ. Perturb the fluid upward slightly, now the blob has a density ρblob + δρblob and the fluid
has a density ρ(z + δz). The force on the particle at its new hight is given by the buoyancy force

FB = gV (ρ(z + δz)− (ρblob + δρblob)). (16)
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Expand the density of the fluid in terms of z

FB = gV (
∂ρ

∂z
δz − δρblob). (17)

The fluid is neutrally stable if the force of buoyancy is zero.

∂ρ

∂z
δz = δρblob (18)

The density is written as a function of T and P:

ρ = ρ(T, P ) (19)
∂ρ

∂z
=

(
∂ρ

∂T

)

P

∂T

∂z
+

(
∂ρ

∂P

)

T

∂P

∂z
(20)

Inserting this into Eq. 18 gives

∂ρblob

∂z
=

(
∂ρ

∂T

)

P

∂T

∂z
+

(
∂ρ

∂P

)

T

∂P

∂z
(21)

Using the momentum and adiabatic energy balance (heat transfer term is neglected) we obtain

∂ρblob

∂z
=

Cvρ2 ∂T
∂z

T
(

∂P
∂T

)
ρ

(22)

Simplifying and using some thermodynamic relations,

(
∂ρ

∂T

)

P

∂Tz +
(

∂ρ

∂P

)

T

gρ =
Cvρ2 ∂T

∂z

T
(

∂P
∂T

)
ρ

(23)

∂T

∂z
=

(
1− Cv

CP

) (
∂T

∂P

)

ρ

ρg (24)

which is an expression for the adiabatic temperature gradient in terms of experimentally accessible quantities.

5. Governing Equations

The mass balance for an incompressible fluid is

∂ρ

∂t
+∇ · (ρv) = 0. (25)

The Navier-Stokes equations contain the effects of viscosity due to compressibility.

ρ(
∂v

∂t
+ (v · ∇)v) +∇P = µ[∇2v +

1
3
∇(∇ · v)] + ρgk̂ (26)

The conservation of energy is a bit tricky, so I will derive it.

dÛ = TdŜ − PdV̂ (27)

Û = Û(T, V ) (28)

dÛ =
∂Û

∂T V
dT +

∂Û

∂V T
dV̂ (29)

∂Û

∂V T
= T

∂Ŝ

∂V T
− P = T

∂P

∂T V
− P (30)
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dÛ = ĈV dT + (T
∂P

∂T V
− P )dV̂ (31)

ĈV dT = −T
∂P

∂T V
dV̂ + TdŜ (32)

ρCV
DT

Dt
= −T

∂P

∂T V
∇ · v +∇ · q + µΦ (33)

Inserting the van der Waals equation of state and the diverging thermal conductivity gives

Cvρ(
∂T

∂t
+ v · ∇T ) = −(P + aρ2)∇ · v + k∇ · [(1 + Λ(T/Tc − 1)−1/2)∇T ] + µΦ (34)

where Φ is given by:

Φ = (
∂vi

∂xj
+

∂vj

∂xi
− 2

3
δij∇ · v)

∂vi

∂xj
(35)

Recall the van der Waals equation of state

P =
RρT

1− bρ
− aρ2 (36)

The parameters a and b are found from their values at the critical point, and Λ is given by [1]

a =
9
8

TcR
ρc

(37)

b =
1

3ρc
(38)

Λ = 3/4 (39)

5.1. Boundary Conditions

Unlike incompressible convection, the amount of particles put into the cell needs to be specified. In order to
avoid ever calculating an infinite pressure at ρ = 1/b set

max(ρ) = ρmax (40)

as the boundary condition on the density.

The temperature is specified as a combination of temperature and flux. I follow [11] to match the flux and
temperature at the solid - fluid interface. Focus just the bottom solid, the only difference in the top is that
the z coordinate is flipped.

The energy balance in the solid is

Csolidρsolid
∂Tsolid

∂t
= ksolid∇2Tsolid. (41)

The boundary condition at the interface is:

Tsolid = Tfluid (42)

ksolid
∂Tsolid

∂z
= kfluid

∂Tfluid

∂z
. (43)

Expand Tsolid as a static solution plus a deviation:

Tsolid = T ′solid + θ (44)

Static solution for solid:
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Fig. 3. Conductivity of 3He close to the critical point

T ′solid = Tbottom +
ksolid

kfluid
z (45)

Assume the solid plate is infinite and the disturbances decay at − inf, then

Csolidρsolid
∂θ

∂t
= ksolid∇2θ (46)

Θ = θilxx+pt (47)

pΘ =
ksolid

Csolidρsolid

(
∂2

∂z2
− l2x

)
Θ (48)

Θ = A0exp

[
z

√
l2x + p

Csolidρsolid

ksolid

]
(49)

Recall the boundary conditions

ksolid
∂θ

∂z
= kfluid

∂θfluid

∂z
(50)

θ = θfluid (51)

This can solved for the fluid variables and rearranged to give

∂θfluid

∂z

θfluid
=

ksolid

kfluid

√
l2x + p/κ (52)

∂θfluid

∂z
=

ksolid

kfluid
lxθfluid (53)

If the thermal conductivity of the solid is much greater than that of the fluid, then using a constant temper-
ature is a reasonable approximation. If the reverse is true, then a constant flux should be imposed.

It was noted earlier that the conductivity of the fluid goes to infinity as the critical point is approached; this
initially lead to the conclusion that all past theoretical work was incorrect. This was checked by looking up
the conductivity of 3He in [14], and this is displayed in figure 3

The conductivities of some common materials are
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kCopper = O(1− 100)
W

cm◦K
(54)

kSteel = O(0.01)
W

cm◦K
(55)

kKevlar = O(10−6)
W

cm◦K
(56)

For experiments done by Kogan [12] copper was used, and for this the fixed temperature boundary (for which
the critical Rayleigh number was found) is appropriate. It is assumed that the boundaries satisfy no-shear,
whereas Kogan and others have used no-slip.

Boundary Conditions:

∂T

∂z (z=0)
= Fbottom (57)

∂T

∂z (z=1)
= Ftop (58)

vz(z=0) = vz(z=1) = 0 (59)
∂vx

∂z (z=0)
= 0

∂vx

∂z (z=1)
= 0 (60)

6. Dimensionless Equations

Because the Prandlt number goes to infinity, a thermal time scale is used. Let t̃ = tk
Cvρcd2 , T̃ = T

Tc
, x̃ = x

d ,
ρ̃ = ρ

ρc
, ã = 9

8 and b̃ = 1/3 where the tilde represents the dimensionless variables. Dropping the tilde we
obtain the following dimensionless equations:

Mass Balance:

∂ρ

∂t
+∇ · (ρv) = 0 (61)

Momentum Balance:

ρ(
∂v

∂t
+ (v · ∇)v) +∇P = σ[∇2v +

1
3
∇(∇ · v)] + σλρk̂ (62)

Energy:

λmρ(
∂T

∂t
+ v · ∇T ) = −(P + λm(γ − 1)aρ2)∇ · v + λm∇ · [(1 + Λ(T − 1)−1/2)∇T ] + σΦ (63)

where Φ is given by:

Φ = (
∂vi

∂xj
+

∂vj

∂xi
− 2

3
δij∇ · v)

∂vi

∂xj
(64)

Equation of state:

P = λm(γ − 1)(
ρT

1− bρ
− aρ2) (65)

Boundary Conditions:

max(ρ) = ρmax (66)
∂T

∂z (z=0)
= Fbottom (67)
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∂T

∂z (z=1)
= Ftop (68)

vz(z=0) = vz(z=1) = 0 (69)
∂vx

∂z (z=0)
=

∂vx

∂z (z=1)
= 0 (70)

where the dimensionless parameters are given by

σ =
µCv

k
(71)

λ =
gCvd3ρ2

c

µk
(72)

m =
C2

vTcµ

kgd
(73)

γ − 1 =
R
Cv

(74)

Notice that the right hand side of the equation of state could have used a much simpler expression, this one
was chosen so that when a perturbation method solution is done such that λ was expanded then the first
order deviation of λ would drop out of the first order equations.

7. Onset of Convection

7.1. Scaling

Hurle shows that as the thermal conductivity of the fluid over the conductivity of the solid goes to infinity,
the wavenumber of the least unstable mode is zero. Because the convection cell is much wider than it is high,
let

x = ε−1/2ζ (75)

t = ε−2τ (76)

where the time scaling is the standard one and I do not know what motivates it.

Because conservation of volume might dominate when convection starts, it is suggestive to scale the x and
z velocities as

u = ε1/2U (77)

w = εW (78)

Expand the variables as follows:

ρ = ρs + ερ1 + ε2ρ2 + ... (79)

T = Ts + εT1 + ε2T2 + ... (80)

P = Ps + εP1 + ε2P2 + ... (81)

U = Us + εU1 + ε2U2 + ... (82)

W = Ws + εW1 + ε2W2 + ... (83)

7.2. Order 1 (Static Solution)
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∂Ps

∂ζ
= 0 (84)

∂Ps

∂z
= σλρs (85)

0 =
∂

∂z
[(1 + Λ(Ts − 1)−1/2)

∂Ts

∂z
] (86)

Ps = λm(γ − 1)(
ρsTs

1− bρs
− aρ2

s) (87)

Order one boundary conditions:

∂Ts

∂z (z=0)
= Fbottom (88)

∂Ts

∂z (z=1)
= Ftop (89)

max(ρs) = ρmax (90)

The temperature profile has an analytic profile

Ts = c1z + c2 + 2Λ2 − 2Λ(c1z + c2 + Λ2 − 1)1/2 (91)

The density and pressure profiles are solved numerically

(
Ts

1− bρs
+

bTsρs

(1− bρs)2
− 2aρs

)
dρs

dz
=

(
σ

(γ − 1)m
− 1

1− bρs

dTs

dz

)
ρs (92)

Ps =
ρsTs

1− bρs
− aρ2

s (93)

The temperature profile is shown in Figure 4 for an artificial case. Λ = 0 is what is used for ideal gases and
far away from the critical point, and Λ = 10 is a fluid strongly effected by deviations close to the critical
point.

1 1.05 1.1 1.15 1.2
0

0.2

0.4

0.6

0.8

1

T
s

z

Λ = 3/4
Λ = 0

Fig. 4. Static Temperature Profile. The addition of the the Lambda effects cause the temperature profiles to be nonlinear

The pressure and the density profiles are shown in Figures 5 and 6 respectively. The effects of the van
der Waals gas can easily seen from the pressure profiles. Increasing the attraction parameter decreases the
pressure, whereas increasing the size of the hard spherical particles causes the pressure to increase. These
effects cause the differences in the density profiles.
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Fig. 5. Static Pressure Profile. The addition of the attractive force a, reduces the pressure, whereas the repulsive forces b cause
the pressure to increase. A combination of the two is the linear sum of the two effects.
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0

0.2
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0.8

1

ρ
s
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a=1/4 b=1/3

Fig. 6. Static Density Profile. The adverse temperature gradient causes the fluid at the bottom to be less dense than the fluid
above it. Clearly this is an unstable situation.

7.3. Order ε

The governing equations at order ε give:

0 = ρs
∂U1

∂ζ
+ ρs

∂W1

∂z
+ W1

∂ρs

∂z
(94)

∂P1

∂ζ
= σ

∂2U1

∂z2
(95)

∂P1

∂z
= σλρ1 (96)

0 =
∂

∂z
[(1 + Λ(Ts − 1)−1/2)

∂T1

∂z
− 1

2
Λ(Ts − 1)−3/2T1

∂Ts

∂z
] (97)

P1 = λm(γ − 1)
(

ρ1Ts

(1− bρs)2
+

ρsT1

1− bρs
− 2aρsρ1

)
(98)

The order ε boundary conditions are:
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W1(z = 0) = W1(z = 1) = 0 (99)(
∂U1

∂z

)

(z=0)

=
(

∂U1

∂z

)

(z=1)

= 0 (100)

(
(1 + Λ(Ts − 1)−1/2)

∂Ts

∂z
− 1

2
Λ(Ts − 1)−3/2T1

∂T1

∂z

)

(z=0)

= 0 (101)

(
(1 + Λ(Ts − 1)−1/2)

∂Ts

∂z
− 1

2
Λ(Ts − 1)−3/2T1

∂T1

∂z

)

(z=1)

= 0 (102)

The solution to these equations is given by

T1 =
f(ζ, τ)

1 + Λ(Ts − 1)−1/2
= f(ζ, τ)g1 (103)

ρ1 = f(ζ, τ)g2 (104)

P1 = λm(γ − 1)f(ζ, τ)g3 (105)

U1 =
λm(γ − 1)

σ

∂f(ζ, τ)
∂ζ

g4 (106)

W1 =
λm(γ − 1)

σ

∂2f(ζ, τ)
∂ζ2

g5 (107)

where g2 through g5 are given by

(
− σ

m(γ − 1)
+

d

dz

(
Ts

(1− bρs)2
− 2aρs

))
g2 +

(
Ts

(1− bρs)2
− 2aρs

)
dg2

dz
= − d

dz

(
ρsg1

1− bρs

)
(108)

g3 =
g2Ts

1− bρs
+

ρsg1

1− bρs
− 2aρsg2 (109)

d2g4

dz2
= g3 (110)

dg5

dz
+

1
ρs

dρs

dz
g5 = −g4 (111)

with boundary conditions

g5(z = 0) = g5(z = 1) = 0 (112)(
dg4

dz

)

(z=0)

=
(

dg4

dz

)

(z=1)

= 0 (113)

where the functions g2 through g5 are found numerically. The boundary value problems are solved using the
shooting method. Integrating across the z domain, the x-component momentum equation gives the condition
that

1∫

0

g3dz = 0. (114)

This trick makes the problem substantially easier, instead of shooting in two directions at the same time,
first an iterative method is used to find g2(z = 0) and once this solution is obtained an independent shooting
method is used to obtain the value of g4(z = 0) = 0 that matches g5(z = 1) = 0.

For T−Tc

Tc
= 0.01 and ρmax = 0.99 the horizontal and vertical velocities are shown in Figures 7 and 8
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Fig. 7. Horizontal Perturbation Velocity
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Fig. 8. Vertical Perturbation Velocity

7.4. Order ε2

Only the heat equation is necessary, this is

λmρsW1
∂Ts

∂z
= − (

Ps + λm(γ − 1)aρ2
s

) (
∂U1

∂ζ
+

∂W1

∂z

)
+ λm

[
1 + Λ(Ts − 1)−1/2

] ∂2T1

∂ζ2
+

∂q

∂z
(115)

Inserting the order ε solution and integrating from 0 to 1 eliminates the flux in the z-direction. It is seen
that ∂2f

∂ζ2 is in front of all the terms so this cancels.

0 =

1∫

0

[
λm(γ − 1)

σ
g5ρs

∂Ts

∂z
+

(γ − 1)
σ

(
Ps + λm(γ − 1)aρ2

s

)(
g4 +

∂g5

∂z

)
− 1

]
dz (116)

The expression is then simplified using the order ε governing equations.

λm(γ − 1)
σ

1∫

0

g5[ρs
∂Ts

∂z
− (γ − 1)Ts

1− bρs

∂ρs

∂z
]dz = 1 (117)
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The equivalent expression

λm(γ − 1)
σ

1∫

0

g5ρs[
∂Ts

∂z
− (γ − 1)Ts

1− bρs

∂ln(ρs)
∂z

]dz = 1 (118)

is sometimes preferred.

For an experimentalist the difference in top and bottom temperatures was calculated for a given temperature
of the bottom plate. For a fixed density of ρmax = 0.99, with heat conductivity from [14], heat capacity from
[3], and viscosity from [16] this is shown in Figure 9
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10
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1

8.6362

8.6363

8.6364

8.6365

8.6366
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8.6368
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x 10

−6

(T−T
c
)/T

c

∆ 
T

Fig. 9.

Figure 9 can be compared with Figure 2 in Kogan et. al [12]. Kogan used He3 for constant temperature and
no slip walls. The magnitude of the ∆T close to the critical point for the simulation is about 20µK whereas
the experimental value is closer to 4µK. The slope of the plot as curve further away from the critical point is
also much shallower than that shown in [12], but this depends highly on the value of viscosity, heat capacity,
and conductivity; none of which were divulged in the paper by Kogan.

8. Conclusion

A criterium for the onset of convection for a van der Waals fluid was found. It is an average over the cell of
the Rayleigh and Schwarzschild criteria. Numerical solutions have some similarities with experimental data,
but are far from quantitative. The boundary conditions used were constant flux, although most experiments
done so far have been justified in their use of constant temperature, so this work predicts the onset of
convection for a situation with walls made of a low conducting material, such as kevlar. Interesting aspects
of this problem that require further work involve finding the evolution equation for this situation, to see if
any patterns occur that are previously unknown. It would also be interesting to move away from the critical
point and try to model two different phases.
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