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1 The Swift-Hohenberg Equation as a Model

The Swift-Hohenberg equation has proved to be a very useful model system for studying
the properties of spatially localized structures in physical systems. This is because of the
following properties:

• The equation is fourth order in the spatial variables

• The equation has an intrinsic length scale 2π/qc

• The equation is spatially reversible

• The equation exhibits bistability due to competing nonlinear terms

• The equation is relatively easy to analyze, at least in one dimension.

The main reason the equation can be understood in such detail is a consequence of the
spatial reversibility and the fact that it can be written as a variational problem,

ut = −δF
δu

where F =

∫ ∞
−∞

dx

[
−1

2
ru2 +

1

2

[(
q2c +

∂2

∂x2

)
u

]2
−
∫ u

0
f(v)dv

]
. (1)

In this section we consider the symmetries of the Swift-Hohenberg equation in one spatial
dimension, and examine the effects of breaking some of these symmetries. In the following
sections we will use these results as a basis for examination of more complex systems, such
as those arising in fluid mechanics.

1.1 Two Cases: SH23 and SH35

We first look at two cases of the Swift-Hohenberg equation with different nonlinear terms,
and different corresponding symmetries, namely, SH23 and SH35.

SH23 has f(u) = b2u
2 − u3 and the following reflection and translational symmetries:

• R1 : x −→ −x, u −→ u

• T : x −→ x+ d, u −→ u.
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(a) SH23 (b) SH35

Figure 1: Growth along the L0 branch of states with even symmetry. The pinning region
is shaded. (a) SH23. (b) SH35. From [3].

As a result there are two types of localized solutions, those fixed by R1 (even states L0,
Lπ), and asymmetric “rung” states with no symmetry, together with their translates.

SH35 has f(u) = b3u
3 − u5 and the following reflection and translational symmetries:

• R1 : x −→ −x, u −→ u

• R2 : x −→ x, u −→ −u

• T : x −→ x+ d, u −→ u.

As a result there are three types of localized solutions: those fixed by R1 (even states L0,
Lπ) and their translates; those fixed by R1oR2 (odd states Lπ/2, L3π/2) and their translates,
and asymmetric “rung” states. It is important to observe that L0 and Lπ are related by R2,
and likewise for Lπ/2, L3π/2. Consequently the bifurcation diagram in Fig. 1(b) contains
only a single branch of even states and a single branch of odd states.

Figure 1 compares the growth along the L0 branches in SH23 and SH35 and shows that
SH35 has twice as many turns compared to SH23. It is therefore of interest to explore what
happens when the symmetry R2 of SH35 is progressively broken. How does the snaking
branch in Fig. 1(b) deform into the snaking branch in Fig. 1(a)? What are the consequences
of this process?

1.1.1 Variational case

To study the effect of breaking the R2 symmetry in SH35, we add a term εu2 to the right-
hand side SH35,

ut = ru− (1 + ∂2/∂x2)2u+ b3u
3 − u5 + εu2. (2)

When ε 6= 0 this equation, like SH23, possesses only R1 and T symmetries, and hence the
only symmetric states are L0, Lπ. The odd parity states Lπ/2, L3π/2 become states with no
symmetry and reconnect with the rung states forming two different types of branches: S
branches and Z branches [8]. Figure 2 shows the effect of breaking the R2 symmetry (for
ε = 0.03).
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Figure 2: The snakes-and-ladders structure in the variational case with ε = 0.03 and b3 = 2.
The solution branches for ε = 0 are shown dashed. For ε 6= 0 the even parity branch splits
into two distinct even parity states L0 and Lπ, while the odd parity states reconnect with
original “rung” states forming pairs of disconnected branches of asymmetric states referred
to as S and Z branches. The solutions u(x) at the saddle nodes: (a)–(d) are from the Lπ
branch, and (a’)–(d’) are from the L0 branch. (i)–(iv) are solutions at the saddle-nodes on
the S branches, and (i’)–(iv’) are from the Z branches. From [8].

Figure 3 shows the effect of increasing ε for the variational case (2). Both symmetric
and asymmetric states are stationary, and the Z branches are stretched by increasing ε.

1.1.2 Nonvariational case

We can also break the R2 symmetry by adding the term ε(∂u/∂x)2 to SH35. The new
equation, i.e.,

ut = ru− (1 + ∂2/∂x2)2u+ b3u
3 − u5 + ε(∂u/∂x)2, (3)

is not variational, i.e., it cannot be written in the form (1). The effect of increasing ε in this
case is qualitatively similar to the variational case. However, here the asymmetric states
are no longer stationary, as shown in Fig. 4.

Because (asymmetric) states are now nonstationary, we can consider the effect of colli-
sions between two such states. Figure 5(a) shows a collision between two identical localized
states drifting in opposite direction. The result is a symmetric (and, therefore, stationary)
state. In contrast, Figs. 5(b)–5(e) show that collisions of nonidentical states can lead to
other types of behavior. The collisions result in either stationary (symmetric) states or
moving (asymmetric) states. The outcome of the collision is determined in general by the
shape of the approaching fronts – whether these are like (in phase) or unlike (out of phase).
See Figs. 5(b)–5(e) and [8] for more details.

3



0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

-0.78 -0.76 -0.74 -0.72 -0.70 -0.68 -0.66 -0.64 -0.62 -0.60

S
ol

ut
io

n 
am

pl
itu

de

Forcing, r

Lπ

L0

Lπ

L0

Lπ

Z branch

S branch

(a) ε = 0.1

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

-1.00 -0.90 -0.80 -0.70 -0.60 -0.50 -0.40
S

ol
ut

io
n 

am
pl

itu
de

Forcing, r

Z branch

(b) ε = 0.5

Figure 3: The effect of increasing ε in the variational case, with b3 = 2: only one S and one
Z branch is shown. In (b) the S branch has vanished and the Z branch has straightened
out. From [8].
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Figure 4: (a) The S and Z branches in the nonvariational case when ε = 0.01 and b3 = 2.
(b) The corresponding drift speed c; when ε 6= 0 c is generically nonzero although it can
vanish at isolated values of the bifurcation parameter r. From [8].
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Figure 5: Space-time diagrams showing the collision of different states, for r = −0.65,
b3 = 2 and ε = 0.1: (a) two identical states, resulting in a symmetric state; (b)–(e) noniden-
tical collisions, resulting in either symmetric (stationary) or asymmetric (moving) localized
states. Time increases upward. From [8].

In all cases the collisions are inelastic and the length of the final state exceeds the
combined length of the colliding states. This is a consequence of the fact that additional
nucleation events take place just before the collision.

2 Applications

We now briefly consider the relevance of the Swift–Hohenberg results to several physical sys-
tems. Specifically we consider (1) collisions between convectons, and (2) ‘multipulse’ states
(multiple localized states in the domain) in systems which share the symmetry properties
of the Swift-Hohenberg equation, but not its variational behavior.

2.1 Binary fluid convection

Two-dimensional binary-fluid convection was discussed in lecture 9. In particular lecture 9
described in some detail the properties of spatially localized solutions termed convectons.
We use this same system now to generate moving convectons. To do so we relax the
midplane symmetry of the system that was imposed through the use of the Boussinesq
approximation and of identical boundary conditions at top and bottom. In the following we
retain the Boussinesq approximation and imagine the top and bottom boundaries in contact
with appropriate heat baths, of temperature TU and TL, respectively, with flux boundary
conditions

dT−
dz

= −B−
d

(TL − T−) at z = 0, (4)

dT+
dz

= −B+

d
(T+ − TU ) at z = l, (5)

where l is the depth of the layer, T+ and T− are the temperatures immediately outside
the upper and lower heat baths (which vary in time), and B± are the Biot numbers of the
boundaries: B = 0 corresponds to insulating boundaries, while B =∞ corresponds to pure
conducting boundaries. The key observation here is that, if B+ 6= B−, these boundary
conditions mark a departure from the symmetric conditions imposed in lecture 9.

The system is characterized by cross-diffusion such that the concentration field is coupled
to the temperature field: the effects of this coupling are described by a separation ratio S.
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Binary fluid convection with β = 1

Newton’s law of cooling:

(1 − β)θz + βθ = 0 on z = 1, θ = 0 on z = 0.
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(a) (b)

Figure 6: (a) Bifurcation diagram for β = 1 showing odd (blue curve) and even (red curve)
states together with the asymmetric states (black curves). (b) Contours of constant temper-
ature fluctuation (upper panels) and concentration (lower panels) for traveling convectons
on the rungs of the snakes-and ladders bifurcation diagram. The location of each state is
indicated by dots in (a). Parameters: S = −0.1, σ = 7, and τ = 0.01. From [12].

Here (as in lecture 9) we assume that S < 0, such that the heavier molecular weight fluid
migrates up the temperature gradient, towards the hotter bottom boundary. As a result
we have bistability between the background conduction state and the periodic convecting
state. The brief overview that follows is based on [12], where further details may be found.

In order to characterize the amplitude of convection and construct a bifurcation diagram
we must define a parameter that characterizes the system, i.e., we need a parameter that
remains fixed even during time-dependent evolution of the system. The usual Rayleigh
number, defined in terms of the temperature drop ∆T across the fluid layer, is inappropriate
as soon as the temperature of the boundaries can change in response to the heat deposited
by flow, in other words, as soon as the boundaries fail to be perfectly conducting. For
this purpose we define the Rayleigh number Ra in terms of the temperature difference ∆T ′

across the layer in the conduction state [12]. When the boundaries are perfectly thermally
conducting this definition reduces to the usual definition. We also define the Prandtl number
σ = ν/κ, the ratio of viscosity to thermal diffusivity, and the Lewis number τ = D/κ,
the ratio of compositional to thermal diffusivity. In the following we assume that the
lower boundary is perfectly conducting (B− = ∞) and suppose that the upper boundary
is characterized by a finite Biot number B+. Under these conditions the thermal boundary
conditions (4) and (5), written in terms of dimensionless variables, become

(1− β) θz + βθ = 0 on z = 1, θ = 0 on z = 0, (6)

where θ is the dimensionless departure of the temperature from its conduction profile. Here
β is the effective Biot number of the upper boundary and is given by β ≡ B+/(1+B+). We
also impose no-slip impenetrable boundary conditions on the upper and lower boundaries.
It follows that β = 1 implies that the system is symmetric, with a perfectly conducting
boundary at z = 1 as well as z = 0. If instead β = 0, the upper boundary is perfectly
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Binary fluid convection with heat loss: β = 0.95
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Binary fluid convection with heat loss: β = 0.50
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Binary fluid convection with heat loss: β = 0.30
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Binary fluid convection with heat loss: β = 0

1500 1520 1540 1560 1580 1600
0.8

1

1.2

1.4

1.6

Rayleigh number

ki
n

e
tic

 e
n

e
rg

y Z−branch

S−branch

1500 1520 1540 1560 1580 1600

0

0.02

0.04

0.06

Rayleigh number

v−
d
ri
ft

Z−branch

S−branch

Mercader et al., submitted to JFM (2012)

Edgar Knobloch (UC Berkeley) Localized patterns June 2012 24 / 58

(a) β = 0.95 (b) β = 0.5

(c) β = 0.3 (d) β = 0

Figure 7: Left panels: bifurcation diagrams showing the even parity states generated by
splitting of the β = 1 even states and the S and Z states resulting from the reconnection
between the β = 1 odd states and the asymmetric rung states, for different values of β.
Right panels: velocity c of the S and Z states. The parameter values are given in Fig. 6.
From [12].

Binary fluid convection with heat loss: β = 0.9
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Binary fluid convection with heat loss: β = 0.9
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(b)

Figure 8: Space-time plots showing two different collisions of two states, with S =-0.5,
β = 0.9, σ = 0.6, τ = 0.03, and Ra = 2750. The collisions result in complex dynamics and
the generation of waves, and ultimately end up in a symmetric state higher up the snaking
branch than either of the initial states. From [12].
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insulating. Thus the departure of β from β = 1 provides a measure of the magnitude of the
breaking of the midplane reflection symmetry in this system.

It follows that when β = 1, the system has a midplane symmetry, and we then expect
that both odd and even solutions are present and stationary. Figure 6(a) shows the re-
sulting snakes-and-ladders bifurcation diagram and reveals that the asymmetric rung states
now drift (Fig. 6(a)). This is a consequence of the absence of variational structure of the
equations. Three of the resulting drifting convectons are shown in Fig. 6(b).

When β < 1 the midplane symmetry is absent, and the snakes-and-ladders structure of
the pinning region breaks up. The odd parity solutions and the rung states become drifting
S and Z states, just as in the case of SH35 with a nonvariational R2 symmetry-breaking
term. Figure 7 shows the bifurcation diagrams for a sequence of different values of β < 1
as specified below each pair of panels. The even parity solutions have split into two, and
the new S and Z states now drift. One can check [12] that the Z branch connects the two
even parity branches produced by the splitting of the even parity states while the S branch
connects an even parity branch to itself. The corresponding speeds of the S and Z states
are shown in Fig. 7(b).

Since some of states now move we can study collisions between them by direct numer-
ical integration in time, just as in the Swift-Hohenberg equation. The nice thing about
generating moving convection by breaking the midplane symmetry is that in principle one
has access to multiple drifting states of different lengths, all of which are simultaneously
stable. However, it turns out that for the parameter values used in lecture 9 the drifting
convectons are unstable. This is no longer so for the parameter values characteristic of liq-
uid 3He-4He mixtures and in Fig. 8 we show two of the resulting collisions [12]. Unlike the
Swift-Hohenberg equation, this system supports waves, and the collisions result in complex
dynamics. However, ultimately a new symmetric state is formed with a greater width than
either of the incident convectons, just as in the Swift-Hohenberg equation.

The correspondence between the behavior of this complex physical system and the cor-
responding behavior in the Swift-Hohenberg equation is striking. The reason that the Swift-
Hohenberg equation is so successful at describing complex systems of this type is ultimately
due to the presence of a tangency between the unstable manifold of a homogeneous state
and the stable manifold of a periodic orbit. Once these manifolds intersect transversely as
described in lecture 8 the intersections are robust and hence insensitive to (small) changes
in parameter values, and indeed in the equations and boundary conditions themselves.

2.2 Binary fluid convection in a porous medium

Next we consider binary fluid convection in a two-dimensional fluid-saturated porous layer,
characterized by porosity ε and a separation ratio S, which controls the separation between
lighter and heavier components. Again, if S < 0 the heavier component migrates toward
the hotter boundary. As in the bulk binary fluid convection case discussed in lecture 9,
the competing effects of composition and temperature on the density lead to bistability
between the background conduction state and a periodic convecting state. The discussion
of the section is based on [10], to which the reader is referred for more information.

The flow u = (u,w) in the porous medium is described by Darcy’s law and is incompress-
ible, while the temperature T and concentration C satisfy advection-diffusion equations.
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(ii)(i)

(b)

Figure 9: (a) Bifurcation diagram showing secondary branches of localized states connecting
different periodic states. The inset shows enlargements of the behavior near the onset and
termination of the secondary branches. The snaking region is not resolved on this plot.
(b) The snaking region from (a), showing (i) examples of even (solid) and odd (dashed)
single-pulse states, and (ii) equally spaced two-pulse states. The parameters are τ = 0.5
and S = −0.1. From [10].
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50

100

150

200

250

300

53.45 53.5 53.55 53.6

50

100

150

200

250

300

53.45 53.5 53.55 53.6

E

Ra

E

Ra

L1+
20

L1−
20

L2+
20

L2−
20

(a) (b)

Edgar Knobloch (UC Berkeley) Localized patterns June 2012 39 / 58Bound states of two convectons (Lo Jacono et al., PF 22, 073601, 2010)

Edgar Knobloch (UC Berkeley) Localized patterns June 2012 40 / 58

(a) (b) (c)

(i)

(ii) (ii)

(i) (i)

(i)

(ii)

(ii)

Figure 10: Line plots of the midplane vertical velocity w (i) and the streamfunction (ii) up
the snaking region, for τ = 0.5 and S = −0.1: (a) even parity state; (b) odd parity state;
(c) even and odd states for two convectons. From [10].
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These equations are given in dimensionless form by

u = −∇p+Ra (T + SC) ez, ∇ · u = 0, (7)

∂tT = − (u · ∇)T +∇2T, (8)

ε∂tC = − (u · ∇)C + τ
(
∇2C −∇2T

)
. (9)

To obtain these equations we have used a linear equation of state ρ = ρ0(1 − α(T − T0) +
β(C−C0), where α > 0 and β > 0 are the constant coefficients of thermal and compositional
expansion, respectively. The dimensionless parameters are the Lewis number τ = D/κ, the
Rayleigh number Ra = gα∆T l/λκ, and the separation ratio S = Ssoretβ/α < 0. Here λ is
the Darcy friction coefficient and l is the layer depth.

The boundary conditions are given by

w = T − 1 = (C − T )z = 0 at z = 0, (10)

w = T = (C − T )z = 0 at z = 1, (11)

and are periodic in the x direction with period Γ. We consider the departure from the base
(conduction) state T = 1 − z, C = 1 − z, u = 0, given by the variables (θ,Σ,u). The
equations for these variables have important symmetry properties:

• Invariance under translations in x;

• Invariance under reflection with respect to x = 0 (R1);

• Invariance under reflection with respect to z = 1/2 (R2).

With periodic boundary conditions in the horizontal, these operations generate the sym-
metry group O(2)× Z2, and as a consequence we expect the equations to exhibit behavior
that is qualitatively similar to that already described for SH35. Figure 9(a) demonstrates
that this is indeed the case. The figure reveals the presence of several subcritical branches
of periodic states of which the branch P20 sets in first. This is a consequence of choosing
a periodic domain Γ = 20 for the computations. The figure also shows three pairs of sec-
ondary branches of localized states, all of which snake. In particular, the branches labeled
L1±
20 bifurcate together from P20 at smallest amplitude and terminate together on P17. The

reason why on finite periodic domains the snaking branches may terminate on a different
periodic state than the one they bifurcate from (or indeed on two different branches) can be
traced to the Rayleigh number dependence of the wavelength within the localized structure
as discussed in detail in [2]. Figure 10(a) shows the even parity states L1+

20 at successive
left saddle-nodes proceeding up the snaking diagram while Fig. 10(b) shows similar results
for the odd parity states L1−

20 . Both are single-pulse states in the sense that as Γ → ∞
the phase space trajectory returns to the conduction after a single visit to a neighborhood
of the limit cycle corresponding to the periodic state. In contrast, the branches L2±

20 bi-
furcate from P20 at larger amplitude (and terminate on P18) because they are branches of
equidistant two-pulse states (Fig. 10(c)). The states L2+

20 consist of a bound state of two
identical even parity pulses in the domain Γ, while L2−

20 consists of a bound state of two
identical odd parity pulses in Γ. Since the pulses are equidistant they behave exactly like
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single-pulse states in a domain Γ/2 as seen in Fig. 9(a). As mentioned in lecture 7 this is no
longer the case for unequally spaced two-pulse states which are located on isolas within the
snaking region. In contrast, the two-pulse states L1+

21 bifurcating from the second primary
branch P21 consist of a bound states of opposite even parity states, i.e., equidistant bound
states of a pulse with a maximum in the middle and a pulse with a minimum in the middle.
Similarly, L1−

21 are equidistant bound states of two opposite odd parity states (with opposite
slopes on their centerline).

Lo Jacono et al [10] also study the various tertiary branches analogous to the rung states
in standard homoclinic snaking but this time connecting the branches of two-pulse states.
Related results based on SH23 are described in [9].

2.3 Rotating convection

For a different application, we look at the classical problem of rotating Rayleigh-Bénard
convection in two dimensions [13]. For this problem, the governing equations are

Raθx − Ta vz +∇4ψ = σ−1 [∇2ψt + J(ψ,∇2ψ)] (12)

ψx +∇2θ = θt + J(ψ, θ) (13)

Taψz +∇2v = σ−1 [vt + J(ψ, θ)], (14)

where the three-dimensional velocity field in the rotating frame is u = (−ψz, v, ψx) with
poloidal streamfunction ψ, and J(f, g) ≡ fxgz − fzgx. Here v(x, z, t) is the zonal velocity,
θ is the departure of the temperature from the pure conduction profile T = 1 − z, σ ≡
ν/κ is the Prandtl number and Ra ≡ gα∆T l3/νκ is the Rayleigh number, where ∆T is
the temperature difference across a fluid layer of height l. The importance of rotation
is measured by the Taylor number Ta = 2Ωl2/ν (inverse Ekman number), where Ω is
the (constant) rotation rate about the vertical axis. Following [13], we use the stress-free
boundary conditions at z = 0, 1,

ψ = ψzz = θ = vz = 0. (15)

With these boundary conditions

dV̄

dt
= 0, where V̄ ≡

∫
D
v(x, z, t)dxdz , (16)

where D refers to the domain [−Γ/2,Γ/2]× [0, 1]. Thus the total zonal momentum V̄ is a
conserved quantity. See [1] for further details. The vertically averaged zonal momentum,
V (x) ≡

∫ 1
0 v(x, z)dz, satisfies

σ
dV

dx
= −

∫ 1

0
ψzvdz , (17)

implying that in steady states a horizontal zonal shear is balanced by the Reynolds stress
on the right side of the equation. In the following we introduce the quantity ∆V ≡ V (x =
L/2)−V (x = −L/2) that measures the zonal velocity difference across a convecton of length
L. This is always anticyclonic, i.e., ∆V < 0 (see Fig. 12 and 13).

Figure 11 shows the bifurcation diagrams for the average poloidal kinetic energy E ≡
1/(2Γ)

∫
D(ψ2

x + ψ2
y)dxdy as a function of Ra in the subcritical and supercritical regimes.
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Figure 11: The average poloidal kinetic energy as a function of Ra showing slanted snaking.
(a) The subcritical case with Ta = 20, σ = 0.1. (b) The supercritical case with Ta = 40,
σ = 0.6. The label Pn refers the periodic solutions with n wavelengths within the domain
Γ = 10λc; P10 bifurcates subcritically in (a) and supercritically in (b). From [1].

The behavior of the snaking region is notably different from that of the Swift–Hohenberg
equation that we have seen before: Fig. 11(a) (subcritical) shows that the snaking exists
beyond the bistability region, and Fig. 11(b) shows that the presence of snaking even in
the supercritical case. In both cases, the two intertwined branches form slanted snaking [1].
The dramatic change in the snaking scenario is a result of the finite period Γ of the domain
together with the conservation of zonal momentum, cf. [5, 11]. In the limit that Γ → ∞
or if the free-slip boundary condition is replaced with no-slip boundary conditions, the flux
conservation will be lost and snaking is expected to become vertical as in the standard
snaking scenario (cf. the Swift-Hohenberg equation).

Figures 12 and 13 present the solution profiles corresponding to Figs. 11(a,b), respec-
tively. These results show that cyclonic shear in the convecton-free zones compensates the
anticyclonic shear produced by the convectons and is a consequence of periodic boundary
conditions with finite period Γ. The solutions in both cases grow in the same manner as one
proceeds up the snaking branches despite the fact that in Fig. 11(b) no distinct nucleation
events take place, i.e., no saddle-nodes are present. This type of snaking has been called
“smooth snaking” [6].

Slanted snaking is a consequence of the expulsion of shear from the convecton – negative
shear implies that the structure rotates more slowly than the frame. Conservation of zonal
momentum now implies that the flow outside the convecton must rotate faster, i.e., that the
resulting convecton is embedded in a shear layer that it generates for itself. To understand
this process in a little more detail we write Ra = Rac + ε2r, where r = O(1), ε � 1, and
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introduce slow scales X = εx and T2 = ε2t. We look for solutions in the form [4]

ψ =
ε

2

(
a(X,T2)e

ikx + c.c.
)

sin(πz) + h.o.t., (18)

θ =
εk

2p

(
ia(X,T2)e

ikx + c.c.
)

sin(πz) + h.o.t., (19)

v = εV (X,T2) +
εTπ

2p

(
a(X,T2)e

ikx + c.c.
)

cos(πz) + h.o.t. (20)

The large scale zonal velocity V is necessary to capture the shear that builds up across a
convecton and enters at O(ε); its inclusion is a consequence of the phase-like quality of the
variable v, i.e., the invariance of Eqs. (12)–(14) with the boundary conditions (15) with
respect to v → v + c, where c is a constant. At third order we obtain the equations [4]

p(3k2σ − k2 + 2π2)

σk2
aT2 = ra+ 12paXX −

3pk2

8
(1− ξ2)|a|2a− Tπ2

σk2
aVX , (21)

VT2 = σVXX +
Tπ2

4p

(
|a|2
)
X
, (22)

where ξ ≡ Tπ2√
3pk2σ

> 0. In rescaled form these equations become

ηAT2 = rA+AXX −
1− ξ2

2
|A|2A− ξAVX , (23)

VT2 = VXX + ξ
(
|A|2

)
X
, (24)

where η ≡ 3k2σ−k2+2π2

12k2
. The quantity η vanishes at the Takens-Bogdanov point RaH = Rac

where RaH is the critical Rayleigh number for the onset of a Hopf mode with the same
wavenumber k. In the present work we are interested in the case in which the conduction
state loses stability at a steady state bifurcation, i.e., a Hopf bifurcation is absent. In this
case η > 0.

In the stationary case with PBC on the large scale X Eq. (24) implies that

VX = ξ
(〈
|A|2

〉
− |A|2

)
, (25)

where 〈·〉 represents a spatial average over the domain. Thus VX > 0 if |A|2 <
〈
|A|2

〉
, i.e.,

outside the convecton, while VX < 0 if |A|2 >
〈
|A|2

〉
, i.e., inside the convecton, exactly as

found in Figs. 12 and 13. Moreover, using Eq. (25) to eliminate VX from Eq. (23) we obtain
the nonlocal equation [4]

rA+AXX −
1

2
(1− 3ξ2)|A|2A− ξ2

〈
|A|2

〉
A = 0. (26)

If follows that there are four possible scenarios for the primary–secondary bifurcations with
PBC: (1) both bifurcations are subcritical (ξ2 > 1), (2) the primary bifurcation is super-
critical while the secondary bifurcation is subcritical (3/7 < ξ2 < 1), (3) both bifurcations
are supercritical (1/3 < ξ2 < 3/7), and (4) the primary bifurcation is supercritical but no
secondary bifurcation is present (ξ2 < 1/3) [1, 7]. When the domain period Γ is sufficiently
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Figure 12: Solution profiles at successive saddle-nodes on (a) L−10, (b) L+
10 in Fig. 11(a)

(subcritical case). Upper panels show the contours of the streamfunction ψ(x, z), and the
lower panels show V (x). From [1].
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lower panels show V (x). From [1].
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Supercritical case: Γ = 10λc , σ = 0.6

Ra/Rac

T

Beaume et al., J. Fluid Mech., submitted (2012)Edgar Knobloch (UC Berkeley) Localized patterns June 2012 55 / 58

Ta

Figure 14: The existence region of convectons in the (Ra, Ta) plane when σ = 0.6, with the
onset of periodic convection marked as a vertical line. From [1].

large the secondary bifurcations that form convectons occur at small enough amplitude that
the transitions are captured wall by the abobe asymptotic analysis.

The range of existence of localised states in Ra depends on both the Taylor number
Ta and the Prandtl number. For sufficiently large values of Ta, or for values of Ta that
are too small, there are no localized states, as shown in Fig. 14. For small values of Ta,
there are no localized states because the rotation is too weak for shear expulsion to take
place. For Ta & 60, the wavelength of the localized states decreases significantly, due to
the requirements of the Taylor-Proudman theorem and for Ta & 110 the convectons are
sheared out and the average poloidal kinetic energy of the states decreases to zero. Further
details and discussion of the effect of changing Ta can be found in [1].
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