
Triad (or 3-wave) resonances
Lecture 12

Second harmonic generation, a special case of a triad
resonance, converts red light to blue (R.W. Terhune)



Triad (or 3-wave) resonances

A. Derive the 3-wave equations
– for a single resonant triad
– for multiple triads

B. Mathematical structure of a single triad
– ODEs
– PDEs

C. What happens in multiple triads?
D. Application to capillary-gravity waves



A. Derive the 3-wave equations
For dispersive waves of small amplitude,

resonant triad interactions are the “first”
nonlinear interactions to appear
(if they are possible).

Start with a physical system
(without dissipation)

 N(u) = 0

     with  N(0) = 0



N(u) = 0   (nonlinear problem)

Step 1:
Linearize about u = 0

Find linearized dispersion relation:
(related to index of refraction in optics)
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N(u) = 0   (nonlinear problem)

Step 2: Weakly nonlinear models
Q: Does ω(k) admit 3 pairs
so
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N(u) = 0   (nonlinear problem)

Step 2: Weakly nonlinear models
Q: Does ω(k) admit 3 pairs
so

(Use graphical procedure due to
  Ziman (1960), Ball (1964), and others.)
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N(u) = 0   (nonlinear problem)

Step 2: Weakly nonlinear models
Q: Does ω(k) admit 3 pairs
so

If yes  3-wave equations (resonant triads)
If no   4-wave equations (resonant quartets)
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3-wave equations, single triad

Suppose

Consider exactly one triad.  Try 
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3-wave equations, single triad

Suppose

Consider exactly one triad.  Try 

Bad!  Find Bmn(t) grows like t.



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3-wave equations, single triad

Suppose

Exactly one triad.  Use method of multiple scales: 
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3-wave equations, single triad
Suppose

 



group velocity of mth mode  real-valued constant
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3-wave equations, single triad
Suppose

 



group velocity of mth mode  real-valued constant
(applications: capillary-gravity waves, internal waves;
                           χ2 materials in optics)   
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B. Consider a single triad

PDE version

ODE version
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Application of single triad, ODES

 

 
 

Second harmonic generation: k+k = 2k, ω+ω = 2ω.
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Mathematical structure of
single triad of ODEs

 1) System is Hamiltonian

Conjugate variables:
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Mathematical structure of
single triad of ODEs

 1) System is Hamiltonian

Conjugate variables:

Hamiltonian:

Verify directly:
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2)  Constants of the motion:
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2)  Constants of the motion:

3) Define Poisson bracket
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2)  Constants of the motion:

3) Define Poisson bracket

4)  Show directly:
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2)  Constants of the motion:

4)

5)  So what?
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2)  Constants of the motion:

4)

5)  So what?
If a Hamiltonian system of 6 real ODEs (or 3 complex ODEs)

has (6/2 = 3) constants in involution, then the system is
completely integrable.

The 3 constants (“action variables”) define a 3-dimensional
surface in the 6-D phase space.  Every solution of ODEs
consists of straight-line motion on this surface.
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2)  Constants of the motion:

4)

6) So what?
In the usual situation, δ1, δ2, δ3 do not all have the same sign.
Then the motion is necessarily bounded for all time, the 3-D

surface is a torus, and the motion is either periodic or
quasi-periodic in time. The entire solution can be written
in terms of elliptic functions.
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2)  Constants of the motion:

4)

7) So what?
In the unusual situation, δ1, δ2, δ3  all have the same sign.
Coppi, Rosenbluth & Sudan (1969) showed that  (A1, A2, A3)

can all blow up together, in finite time.  This is the
explosive instability.  (See lecture 19.)
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2)  Constants of the motion:

4)

7) So what?
In the unusual situation, δ1, δ2, δ3  all have the same sign.
Coppi, Rosenbluth & Sudan (1969) showed that  (A1, A2, A3)

can all blow up together, in finite time.  This is the
explosive instability.  (See lecture 19.)

8)  For a single triad of ODEs, we know everything.
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Mathematical structure of a
single triad of PDEs

group velocity of mth mode real-valued constant
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Mathematical structure of a
single triad of PDEs

• Zakharov & Manakov (1976) showed that the
system of PDEs is completely integrable!
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Mathematical structure of a
single triad of PDEs

• Zakharov & Manakov (1976) showed that the
system of PDEs is completely integrable!

• Kaup (1978) “solved” the initial-value problem in
1-D on                    , with restrictions

• Kaup, Reiman &Bers (1980) solved the initial-value
problem in 3-D in all space, with restrictions

• Few physical applications of this theory are developed
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C.The opposite extreme:
Zakharov’s integral equation

considers all possible interactions
(resonant and non-resonant)

Note: This equation acts on the fast time-scale
numerical integration is slow and expensive.
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D. What’s missing from a single
triad of ODEs?

In real life, the dynamics of a single triad of
ODEs can require modification because of:

• Spatial variation of wave envelopes
(requires PDEs instead)

• Multiple triad interactions
(requires more interacting wave modes)

• Dissipation (makes the ODEs non-
Hamiltonian)



Multiple triads: an example
Consider a single triad of ODEs, energy conserved:

Fact: If one mode has almost all the energy initially,
only A3 can share that energy with the other modes

Proof:
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One example of multiple triads
Consider a single triad of ODEs, energy conserved:

Fact: If one mode has almost all the energy initially,
only A3 can share that energy with the other modes

Fact (Hasselmann): The wave mode in a triad with
the “different” interaction coefficient has the highest
frequency in the triad.
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One example of multiple triads

Conjecture (Simmons, 1967): For capillary-gravity
waves, each wave mode can participate in a
continuum of triad interactions.

The magnitude of the interaction coefficients does
not vary much across this continuum, so expect
that energy put into a single wave mode will
generate broad-banded response

No selection mechanism
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multiple triads
Experimental
Tests:
Perlin & Hammack,1990
Perlin, Henderson,
Hammack, 1991



multiple triads
Experimental
Tests:
Perlin & Hammack,1990
Perlin, Henderson,
Hammack, 1991

Q: What is the
selection mechanism?
What causes it?



multiple triads
Q: What is the
selection mechanism?
What causes it?

A:  60 = 25 + 35
  35 = 25 + 10
  25 = 10 + 15

Only in last triad is
25 the highest frequency



Einstein:
A good mathematical
 model of a physical
 problem should be as
 simple as possible,
 and no simpler.

  60 = 25 + 35
  35 = 25 + 10
  25 = 10 + 15
  + dissipation



Thank you for your attention


