Triad (or 3-wave) resonances
Lecture 12

Second harmonic generation, a special case of a triad
resonance, converts red light to blue (R.W. Terhune)
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Triad (or 3-wave) resonances

Derive the 3-wave equations

— for a single resonant triad

— for multiple triads

Mathematical structure of a single triad
— ODEs

— PDEs

What happens in multiple triads?
Application to capillary-gravity waves



A. Derive the 3-wave equations

For dispersive waves of small amplitude,
resonant triad interactions are the “first”
nonlinear interactions to appear

(if they are possible).
Start with a physical system
(without dissipation)

N(u)=20

with N(0) = 0



N(u) =0 (nonlinear problem)

Step 1:
Linearize about u =0

u(%,1.6) = S[E A(k)e™ 00 L (ce)]+ O(2)
k

Find linearized dispersion relation:
(related to index of refraction in optics)

w(k)



N(u) =0 (nonlinear problem)

Step 2: Weakly nonlinear models
Q: Does w(k) admit 3 pairs .ok}
SO

k =k, =k, =0, w(k) = w(k,) = w(k,)=0?



N(u) =0 (nonlinear problem)

Step 2: Weakly nonlinear models
Q: Does w(k) admit 3 pairs .ok}
SO

k =k, =k, =0, w(k) = w(k,) = w(k,)=0?

(Use graphical procedure due to
Ziman (1960), Ball (1964), and others.)



N(u) =0 (nonlinear problem)

Step 2: Weakly nonlinear models
Q: Does w(k) admit 3 pairs  {k.ok)}
SO

k =k, =k, =0, w(k) = w(k,) = w(k,)=0?

If yes =» 3-wave equations (resonant triads)
If no =» 4-wave equations (resonant quartets)



3-wave equations, single triad

—

Suppose  k xk,+k, =0, (k)= wk,)*wlk,)=0.

Consider exactly one triad. Try

3
u(x,t:e) = e Y A, explik, - % —iw, } + (cc)]
m=1

+82[E§Bm(t)exp(i(l€m +k ) X—i(w, +)tr+(cc)l+ O



3-wave equations, single triad

—

Suppose  k xk,xk, =0, (k)= wlk,)=wk,)=0.

Consider exactly one triad. Try

3
u(x,t:e) = e Y A, explik, - % —iw, } + (cc)]
m=1

+e’[ ) ﬁBm(t)exp(i(Em +k ) X-i(w, +w )i} +(cc)+ O

m=1ln=-m

Bad! Find B_(¢) grows like .
\

S u(x,.t;e) = e{(bdd) + (et)(bdd) + O(e*)}



3-wave equations, single triad

—

Suppose  k xk,xk, =0, (k)= wlk,)=wk,)=0.
Exactly one triad. Use method of multiple scales:

3
u(X,t€) = 8[2 A (ex,et) exp{il_ém X —iw, t}+(cc)]+ O(&”)
m=1



3-wave equations, single triad

[ [

Suppose  k=zk,+k, =0,  o(k)=*wlk,)*ok,)=0.

3
u(X,1;6) = 5[2 A (ex,et)exp{ik X —iw t}+(cc)]+ O(E)
m=1

> J.(A)+¢ VA =i A A,

/ m,n,l=12)3 \

group velocity of mt" mode real-valued constant




3-wave equations, single triad

[ [

Suppose  k=zk,+k, =0,  o(k)=*wlk,)*ok,)=0.

3
u(X,1;6) = E[E A (ex,et)exp{ik X —iw t}+(cc)]+ O(E)
m=1

> 9(A)+¢ VA =i A A,

/ m,n,l=12)3 \

group velocity of mt" mode real-valued constant

(applications: capillary-gravity waves, internal waves;
¥, Materials in optics)



B. Consider a single triad

PDE version
— . % %
d(A)+cC, VA =id A A,
mn,l=123

ODE version

Al =idAA,, Al =i, A A, A.=id,AA.




Application of single triad, ODES

Al =idAA,, Al =i, A A, A.=id,AA.

Second harmonic generation: k+k =2k, w+w = 2w.



1)

Mathematical structure of
single triad of ODEs

Al =idAA,, Al =i, A A, A.=id,AA.

System is Hamiltonian
A(T) | 5 A" (1)
Conjugate variables: {qj('”):\/m“g”( ) pj(T)=W}




1)

Mathematical structure of
single triad of ODEs

Al =idAA,, Al =i, A A, A.=id,AA.

*

System is Hamiltonian

A,(™) A (1)
Conjugate variables: 1q,(v) = \/ﬁ”gﬂ(‘?’) p;(7)= \/F}

= i[AAA, + A AA]]
=i 515253 [sign(6,0,0,)4,9.95 + P.P2D:]

Hamiltonian:

oH , oH

. . . ’,=—, =, .=1,2,3
Verify directly: q ) P; i J




Al =idAA,, Al =i, A A, A.=id,AA.

2) Constants of the motion:

AP 1A, P AP AP
2 FATAE ] = 1 3 : J. = 2~ 3 .
iH = AAA + A A, = R



Al =idAA,, Al =i, A A, A.=id,AA.

2) Constants of the motion:
w %k AP 1A P IAzlz_IAgI2

- J=— ], = .
iH = AA A+ ALALA, 0 ==l e

3) Define Poisson bracket

oF oG oF 0G
{F.G} = E( )
. op,, 99, &qm op,,

ié(aF JG  JF aG)
~ "0A"w 0A, A, A m




Al =idAA,, Al =i, A A, A.=id,AA.

2) Constants of the motion:

£ % AP 1A P AP AP
— }= 1 —_— 3 R } — 2 — 3 .
lH AAA +AAA3, 1 61 53 2 62 63

3) Define Poisson bracket

oF oG oF 0G
{F.G} = E( )
. op,, 99, &qm op,,

=25(aF JG  IF aG)
~ "0A"w 0A, A, A m

4) Show directly: {-iH,J,}=0={-iH,J,}={J,,J,}



Al =idAA,, Al =i, A A, A.=id,AA.

2) Constants of the motion:

: w %k AP 1A P AP 1A P
H=AAA +AAAL, g =h Al el AT
O 05 0, 05

4) {-iH,J}=0={-iHJ,}={J,,J,}

5) So what?



Al =idAA,, Al =i, A A, A.=id,AA.

2) Constants of the motion:

: w %k AP 1A P AP 1A P
H=AAA +AAAL, g =h Al el AT
O 05 0, 05

4) {~iH,JY}=0={-iHJ,}={JJ}

5) So what?

If a Hamiltonian system of 6 real ODEs (or 3 complex ODES)
has (6/2 = 3) constants in involution, then the system is
completely integrable.

The 3 constants (“action variables”) define a 3-dimensional
surface in the 6-D phase space. Every solution of ODEs
consists of straight-line motion on this surface.




Al =idAA,, Al =i, A A, A.=id,AA.

2) Constants of the motion:

: w %k AP 1A P AP 1A P
H=AAA +AAAL, g =h Al el AT
O 05 0, 05

4) {~iH,JY}=0={-iHJ,}={JJ}

6) So what?

In the usual situation, ¢,, 6,, 6; do not all have the same sign.

Then the motion is necessarily bounded for all time, the 3-D
surface is a torus, and the motion is either periodic or

qguasi-periodic in time. The entire solution can be written
in terms of elliptic functions.



Al =idAA,, Al =i, A A, A.=id,AA.

2) Constants of the motion:

: w %k AP 1A P AP 1A P
H=AAA +AAAL, g =h Al el AT
O 05 0, 05

4) {~iH,JY}=0={-iHJ,}={JJ}

/) So what?

In the unusual situation, 4,, 6,, 65 all have the same sign.

Coppi, Rosenbluth & Sudan (1969) showed that (A4, A,, A;)
can all blow up together, in finite time. This is the
explosive instability. (See lecture 19.)



Al =idAA,, Al =i, A A, A.=id,AA.

2) Constants of the motion:

: w %k AP 1A P AP 1A P
H=AAA +AAAL, g =h Al el AT
O 05 0, 05

4) {~iH,JY}=0={-iHJ,}={JJ}

/) So what?
In the unusual situation, 4,, 8,, 65 all have the same sign.

Coppi, Rosenbluth & Sudan (1969) showed that (A4, A,, A;)
can all blow up together, in finite time. This is the
explosive instability. (See lecture 19.)

8) =» For a single triad of ODEs, we know everything.



Mathematical structure of a
single triad of PDEs

d(A)+¢ VA =id A A,
Somn =123\

group velocity of mth mode real-valued constant




Mathematical structure of a
single triad of PDEs

d(A)+¢ VA =id A A,
mn,l=123

e Zakharov & Manakov (1976) showed that the
system of PDEs is completely integrable!




Mathematical structure of a
single triad of PDEs

d(A)+¢ VA =id A A,
mn,l=123

Zakharov & Manakov (1976) showed that the
system of PDEs is completely integrable!

Kaup (1978) “solved” the initial-value problem in
1-D on - < x < o0, with restrictions

Kaup, Reiman &Bers (1980) solved the initial-value
problem in 3-D in all space, with restrictions

Few physical applications of this theory are developed



C.The opposite extreme:
Zakharov's integral equation
considers all possible interactions
(resonant and non-resonant)

9, A(k) + iw(k)A(k)
=i [[ [V (k.k;.k,)0(k + K, + 1}’ VA" (k) A" (k,) + perm.]dk,dk,
k)0

[V E R,

Note: This equation acts on the fast time-scale
=>»numerical integration is slow and expensive.

—

o(k + k —k DA (k )A(k )A(k )]dk dk dk



D. What's missing from a single
triad of ODEs?

In real life, the dynamics of a single triad of
ODEs can require modification because of:

e Spatial variation of wave envelopes
(requires PDEs instead)

e Multiple triad interactions
(requires more interacting wave modes)

e Dissipation (makes the ODEs non-
Hamiltonian)



Multiple triads: an example

Consider a single triad of ODEs, energy conserved:

Al =idAA,, A =i0,AA, A, =idAA.
6>0, 6,>0, 0,<0.

Fact: If one mode has almost all the energy initially,
only A; can share that energy with the other modes

Proof:
AP TA P

0, 0

J=IA1I2_IA3I2

, J
I 5, 5. 2

b/



One example of multiple triads

Consider a single triad of ODEs, energy conserved:
Al =idAA,, A =i0,AA, A, =idAA.
6>0, 6,>0, 0,<0.

Fact: If one mode has almost all the energy initially,
only A; can share that energy with the other modes

Fact (Hasselmann): The wave mode in a triad with
the “different” interaction coefficient has the highest
frequency in the triad.



One example of multiple triads

A =idAA,, A, =iS,A A, A,=iS,AA.
6,>0, 6,>0, 0,<0.

Conjecture (Simmons, 1967): For capillary-gravity
waves, each wave mode can participate in a
continuum of triad interactions.

The magnitude of the interaction coefficients does
not vary much across this continuum, so expect
that energy put into a single wave mode will
generate broad-banded response

= No selection mechanism



multiple triads

Experimental

Tests:

Perlin & Hammack,1990
Perlin, Henderson,
Hammack, 1991
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Figure 4(a). Temporal wave profiles and corresponding periodograms for the
25-Hz wavetrain of fig. 3(b).
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Figure 4(b). Temporal wave profiles and corresponding periodograms for the
25-Hz wavetrain of fig. 3(c).
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multiple triads Bt |

. XL, 10.16 %00 11¢

Experimental 1ae8 461 |00
Tests: AN A DY LYY L or
Perlin & Hammack,1990 % ‘ -
Perlin, Henderson, 9L, 10.16 000 10
Hammack, 1991 /\ W 1 "‘i "

- L. 1o*

Q: What is the - 20 {10

selection mechanism? x=14L,} : 10

. 10.16

What causes it? [ I'“‘ 0]-611 -T :::

i 10 100

J(Hz)



multiple triads

10°

x=7L $0.00 4 10¢

Q: What is the | U 461 |00
selection mechanism? AN A DY, L or
What causes it? <% ‘ -
x=9L, 10.16 000 4100

A: 60 = 25 + 35 /\ "'“ ""i 10
35=25+10 Al bl 1or
25=10+15 - 25.00 {10

x= 4L, | 100

Only in last triad is O we {10
25 the highest frequency '[A-a——-——llol&" L = 1oy



Einstein:

x=7L, ¢
A good mathematical

model of a physical

problem should be as
simple as possible, 9L,
and no simpler.

60 = 25 + 35 |
35 =25 + 10 x= 1AL, |
25 =10 + 15

+ dissipation




Thank you for your attention



