
Waves on deep water, I
Lecture 13

Main question: Are there stable wave patterns
that propagate with permanent form (or
nearly so) on deep water?

Main approximate model:

Nonlinear Schrödinger equation (NLS)
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Waves on deep water (I,II)

This lecture (13):
A. Sketch derivation of NLS for waves on deep water
B. Earlier work:

Waves with 1-D surface patterns on deep water
- existence and stability

Next lecture (14):
C. More recent work:
• Stability of waves with 2-D surface patterns
• Effect of small damping



A. Sketch derivation of NLS
NLS describes the slow evolution of a train
(or packet) of dispersive waves:
• of small or moderate amplitude
• travelling in nearly the same direction
• with nearly the same frequency.

Linearized dispersion curve
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Sketch derivation of NLS
1. Simplest case:
• Gravity waves only  (no surface tension)
• Deep water (           )
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Sketch derivation of NLS
1. Simplest case:
• Gravity waves only  (no surface tension)
• Deep water (           )

2. Small parameters (ε)
• Nearly monochromatic:
• Small amplitude:
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Sketch derivation of NLS
1. Simplest case:
• Gravity waves only  (no surface tension)
• Deep water (           )

2. Small parameters (ε)
• Nearly monochromatic:
• Small amplitude:

3. Look for:

! 

kh"#

  

! 

! 

k = (k
0
,0) + O("), # = gk

0
+ O("),

! 

k
0
" =O(#)

! 

" = k
0
x #$(k

0
)t,

! 

"(x,y,t;#) = #[A(#x,#y,#t,#2t)ei$ + A
*
e
%i$
]

+#2[stuff
2
]+ #3[stuff

3
]+O(#4 )



Sketch derivation of NLS
4. Insert formal expansions for

η(x,y,t;ε),  φ(x,y,z,t;ε)
     into full equations.  Solve, order by order.
5. Algebra is fearsome. (Use maple or…)



Sketch derivation of NLS
4. Insert formal expansions for

      η(x,y,t;ε), φ(x,y,z,t;ε)
     into full equations.  Solve, order by order.
5. Algebra is fearsome. (Use maple or…)
6. Find:
• At O(ε):  ω2 = gk   (linearized dispersion relation)
• At O(ε2): expansion becomes disordered unless

(cg = group velocity)

(Wave envelope travels at group velocity)
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Sketch derivation of NLS
7. Recall

Define:

8. At O(ε3), expansion becomes disordered (again)
   unless  A(ξ,ζ,τ)  satisfies

Nonlinear Schrödinger equation in 2-D

(α, β, γ) are real numbers, defined by problem

! 

" = (#x) $ cg (#t), % = #y, & = #2t.

! 

i"#A +$"%
2
A + &"'

2
A + ( | A |2 A = 0

! 

" = #[A(#x,#y,#t,#2t)ei$ + A
*
e
%i$
]+O(#2)



B. History of NLS

This equation (or something equivalent) was derived by:
• Zakharov, 1968 water waves
• Ostrovsky, 1967 optics (& generalizations)
• Benjamin & Feir, 1967 water waves (nearby)
• Benney & Newell, 1967 general
• Whitham, 1967 his formulation was used by:
• Lighthill, 1965 had the basic idea
• Stokes, 1847 water waves

(no spatial dependence)
• Zakharov & Ostrovsky, 2008   – historical review
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Q: Waves of permanent form
on deep water?

1. Stokes (1847):  Consider a spatially uniform
train of plane waves


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Q: Waves of permanent form
on deep water?

1. Stokes (1847):  Consider a spatially uniform
train of plane waves


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Q: Waves of permanent form
on deep water?

1. Stokes (1847):  Consider a spatially uniform
train of plane waves


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Q: Do waves of permanent
form exist on deep water?

* Stokes (1847) found a nonlinear correction for water
waves of permanent form, with finite amplitude.

He did not prove that waves of permanent form exist.



Q: Do waves of permanent
form exist on deep water?

* Stokes (1847) found a nonlinear correction for water
waves of permanent form, with finite amplitude.

He did not prove that waves of permanent form exist.
• Nekrassov (1921) and Levi-Civita (1925) proved

that such waves exist on deep water.
• Struik (1926) extended their result to water of any

(constant) depth.
• Amick & Toland (1981a,b) obtained optimal results

about existence of waves of permanent form in 2-D.



Q: Why don’t we see uniform
wave trains on deep water?

Loch Ness Lake Superior



Are plane waves stable on deep water?
Photos from
Benjamin, 1967
(L = 2.3 m, h = 7.6 m,
 60 m between photos)

Benjamin & Feir:
“On the disintegration
of wavetrains in deep
water, Part 1”, 1967



Stability of plane waves on deep water
Zakharov (1968):
• NLS

• For gravity waves on deep water, α < 0, β > 0, γ < 0

• “Stokes’ wave”,
represents a uniform train of plane waves with
finite amplitude in deep water

• Linearize NLS about a Stokes’ wave, and
determine its linear stability in NLS
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Linear stability of a Stokes’ wave
NLS:
Linearize about a Stokes’ wave:
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Linear stability of a Stokes’ wave
NLS:
Linearize about a Stokes’ wave:


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Linear stability of a Stokes’ wave
NLS:
Linearize about a Stokes’ wave:



Linear PDEs, constant coefficients
Seek
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Linear stability of a Stokes’ wave

Algebraic equation determines linear stability:

Re(Ω) > 0 
linear instability! 
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Linear stability of a Stokes’ wave

Algebraic equation determines linear stability:

Re(Ω) > 0 
linear instability

Unstable
regions
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Linear stability of a Stokes’ wave
Result: In deep water, a uniform train of plane

waves of finite amplitude is unstable!

The most unstable mode has a growth rate:
Ωmax = |γ| |Α0|2.

(Nonlinear instability in the sense that the growth rate
depends on |A0|.  As      )
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Stability of a uniform wave train,
according to NLS

For other applications:
• αβ < 0, αγ > 0   unstable
• αβ < 0, αγ < 0   unstable
• αβ > 0, αγ > 0   unstable
• αβ > 0, αγ < 0   stable
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Instability of a
uniform train
of water waves

-Benjamin & Feir
L = 2.3 m,
T = 1.2 s



Instability of a
uniform train
of EM waves
in optical fiber
-Tai, Hasegawa
& Tomita (1986)

L = 1.3*10-6 m,
T = 4*10-15 s



Q: Are there stable wave patterns of
permanent form on deep water?

• A#1 (Zakharov & others, about 1967)
A uniform wave train is not stable



Q: Are there stable wave patterns of
permanent form on deep water?

• A#1 (Zakharov & others, about 1967)
A uniform wave train is not stable

• A#2 (Zakharov & Shabat, 1972)
Consider NLS in 1-D

 σ = +1    “focussing”
    (gravity waves on deep water)
 σ = -1      “defocussing”
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Focussing NLS, in 1-D

Look for travelling waves of “permanent form”.
Special case:

How does the free surface look?

wave packet with special shape
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Nice, but so what?
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Zakharov & Shabat (1972):
• NLS in 1-D is completely integrable,

for either sign of σ !  Just like KdV.
• Conservation laws
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Zakharov & Shabat (1972):
• Scattering problem:

• Time-dependence:

• Compatibility:
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Zakharov & Shabat (1972):
For σ = +1 (focussing NLS):
• Any smooth initial data, A(ξ,0), with
   evolves under focussing NLS into a N “envelope

solitons”, which persist forever, plus an oscillatory
wavetrain that decays in amplitude as

• Envelope solitons are stable, within NLS  in 1-D.
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Stability of
envelope
solitons -
experimental
evidence
a) 6 m from
wavemaker
b) 30 m from
Wavemaker

k = 4 m-1

- Hammack



Stability of
envelope
solitons -
3 experiments
by Yuen & Lake
(1975)



Tentative conclusions

• According to NLS in 1-D or 2-D, a
uniform train of plane waves is unstable
in deep water.

• According to focussing NLS in 1-D with
initial data in L1, envelope solitons are
stable in deep water.

• Experimental evidence seems to
support these conclusions



Tentative conclusions

• According to NLS in 1-D or 2-D, a
uniform train of plane waves is unstable
in deep water.

• According to focussing NLS in 1-D with
initial data in L1, envelope solitons are
stable in deep water.

• Experimental evidence seems to
support these conclusions

• But wait for Lecture 14


