Waves on deep water, |
Lecture 13

Main question: Are there stable wave patterns
that propagate with permanent form (or
nearly so) on deep water?

Main approximate model:

i0,A+0ad:A+BI-A+yIAF A=0

Nonlinear Schrodinger equation (NLS)



Waves on deep water (I,1)

This lecture (13):
A. Sketch derivation of NLS for waves on deep water

B. Earlier work:

Waves with 1-D surface patterns on deep water
- existence and stability

Next lecture (14):
C. More recent work:
o Stability of waves with 2-D surface patterns

o Effect of small damping



A. Sketch derivation of NLS

NLS describes the slow evolution of a train

(or packet) of dispersive waves:

e of small or moderate amplitude

e travelling in nearly the same direction
e with nearly the same frequency.

Linearized dispersion curve
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Sketch derivation of NLS

1. Simplest case:
 Gravity waves only (no surface tension)
 Deep water (kh — =)
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2. Small parameters (¢)
« Nearly monochromatic: k=(,0)+0(@), w=+/gk, +0(e),
e Small amplitude: k|n|=0()



Sketch derivation of NLS

1. Simplest case:
 Gravity waves only (no surface tension)
 Deep water (kh — =)

2. Small parameters (¢)
« Nearly monochromatic: k=(,0)+0(@), w=+/gk, +0(e),
e Small amplitude: k|n|=0()

3. Look for:  0=kyx-w(k)t,

N(x,y.t;€) = e[A(ex,ey,et,e’t)e’ + Ae™’]
+&°[stuff,] + & [stuff, ]+ O(e")



Sketch derivation of NLS

4. Insert formal expansions for

nx.y.e), Pxy.zre)

into full equations. Solve, order by order.
5. Algebra is fearsome. (Use maple or...)



Sketch derivation of NLS

4. Insert formal expansions for
nx.y.t,€), Px.y,z,t¢€)
into full equations. Solve, order by order.
5. Algebra is fearsome. (Use maple or...)
6. Find:
e AtO(e): w? =gk (linearized dispersion relation)
« At O(£?): expansion becomes disordered unless

0A 0A
+c =
det)  F d(ex)

0, (c,=group velocity)

(Wave envelope travels at group velocity)



Sketch derivation of NLS

7. Recall n=¢lA(ex,ey,et.e’t)e + A1+ O(e?)

Define: &=(ex)-c,(er), L=¢y, T=¢"1.

8. At O(&3), expansion becomes disordered (again)
unless A(&,C,t) satisfies

i0, A+ ad:A+ LI A+ylAF A=0

Nonlinear Schrodinger equation in 2-D

(a, B, y) are real numbers, defined by problem



B. History of NLS
i0,A+ad:A+ B A+yIAIF A=0

This equation (or something equivalent) was derived by:

Zakharov, 1968 water waves

Ostrovsky, 1967 optics (& generalizations)
Benjamin & Feir, 1967 water waves (nearby)
Benney & Newell, 1967 general

Whitham, 1967 his formulation was used by:
Lighthill, 1965 had the basic idea
Stokes, 1847 water waves

(no spatial dependence)
Zakharov & Ostrovsky, 2008 - historical review



Q: Waves of permanent form
on deep water?

1. Stokes (1847):. Consider a spatially uniform
train of plane waves

n(x,t;e) =e[Ae’)e”” + A e 1+ O(&”)

> id A+ylAF A=0, y=-4k]
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1. Stokes (1847):. Consider a spatially uniform
train of plane waves

n(x,t;e) =e[Ae’)e”” + A e 1+ O(&”)
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A(T) _ (Aoei(j))ei}/|A0|2‘v



Q: Waves of permanent form
on deep water?

1. Stokes (1847):. Consider a spatially uniform
train of plane waves

n(x,t;e) = [A(e’)e’ + Ae”"’ 1+ O(&”)
> id A+ylAP A=0, y=-4k]

A(T) _ (Aoei¢)eiy|A0|2‘v

n(x,t;6) =2¢el A, lcos{k,x —w(k,)t — (2ek, | A, )’} + O(g”)
f

Stokes’ nonlinear correction to frequency



Q: Do waves of permanent
form exist on deep water?

* Stokes (1847) found a nonlinear correction for water
waves of permanent form, with finite amplitude.

He did not prove that waves of permanent form exist.



Q: Do waves of permanent
form exist on deep water?

* Stokes (1847) found a nonlinear correction for water
waves of permanent form, with finite amplitude.

He did not prove that waves of permanent form exist.

* Nekrassov (1921) and Levi-Civita (1925) proved
that such waves exist on deep water.

« Struik (1926) extended their result to water of any
(constant) depth.

 Amick & Toland (1981a,b) obtained optimal results
about existence of waves of permanent form in 2-D.



Q: Why don’t we see uniform
wave trains on deep water?

. ¢S

Loch Ness Lake Superior



Are plane waves stable on deep water?

[S—— i

Photos from

Benjamin, 1967
(L=23m,h=7.6m,
60 m between photos)

Benjamin & Feir:

“On the disintegration
of wavetrains in deep
water, Part 17, 1967




Stability of plane waves on deep water

Zakharov (1968):
* NLS i0,A+0d;A+BIA+yIAF A=0

* For gravity waves on deep water, a <0, >0, y<0

o “StOkeS’ Wave”, A(g,;,‘b') =| AO |eiV|Ao| T

represents a uniform train of plane waves with
finite amplitude in deep water

 Linearize NLS about a Stokes’ wave, and
determine its linear stability in NLS



Linear stability of a Stokes’ wave

NLS: i0,A+0d;A+BIA+yIAF A=0

Linearize about a Stokes’ wave:

AEL,T) =" A l+u u(EE,T) + in- v(EE,T)]+ O(u?)



Linear stability of a Stokes’ wave

NLS: i0,A+0d;A+BIA+yIAF A=0

Linearize about a Stokes’ wave:

AEL,T) =" A l+u u(EE,T) + in- v(EE,T)]+ O(u?)

> dv =adiu+ Bdu+2y1 Al u,
—d_U = (x&;v + /3(951/.



Linear stability of a Stokes’ wave

NLS: i0,A+0d;A+BIA+yIAF A=0

Linearize about a Stokes’ wave:

AEL,T) =" A l+u u(EE,T) + in- v(EE,T)]+ O(u?)

> dv =adiu+ Bdu+2y1 Al u,
—d_U = (x&;v + [3’&5\/.

Linear PDEs, constant coefficients
Seek u=U-e™ """ 4 (cc.), v=V- ™" 4 (cc).



Linear stability of a Stokes’ wave

Algebraic equation determines linear stabillity:
Q% + (om” + BI*)om” + BI> =2y 1A, ) =0

Re(L2) >0 =>
linear instability



Linear stability of a Stokes’ wave

Algebraic equation determines linear stabillity:
Q% + (om” + BI*)om” + BI> =2y 1A, ) =0

Re(L2) >0 =>
linear instability

Unstable
regions



Linear stability of a Stokes’ wave

Result: In deep water, a uniform train of plane
waves of finite amplitude is unstable!

The most unstable mode has a growth rate:
Ormax = M 1Al

(Nonlinear instability in the sense that the growth rate
depends on [4,|. As | A, 1—0, Q —0)



Stability of a uniform wave train,
according to NLS

i0,A+0d;A+BIA+yIAF A=0

For other applications:
e af<0,ay>0 = unstable
e af<0,ay<0 = unstable

e af>0,ay>0 = unstable
e af>0,ay<0 = stable



Instability of a
uniform train
of water waves

-Benjamin & Feir

2.3 m,
1.2s
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Instability of a
uniform train

of EM waves o |
in optical fiber

-Tai, Hasegawa
& Tomita (1986)

L=1.3*10°%m,
T=4*10"1s
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Fig.15.1 Experimental observation of modulational instability (Tai et al.
1986a). Input power level low (a); 5.5 W (b); 6.1 W (c); 7.1 W (d). For details
see text.



Q: Are there stable wave patterns of
permanent form on deep water?

 A#1 (Zakharov & others, about 1967)
A uniform wave train is not stable



Q: Are there stable wave patterns of
permanent form on deep water?

* A#1 (Zakharov & others, about 1967)
A uniform wave train is not stable

o A#2 (Zakharov & Shabat, 1972)
Consider NLS in 1-D

id,A=d;A+201AF A

o=+1 ‘“focussing”
(gravity waves on deep water)
o= -1 “defocussing”



Focussing NLS, in 1-D
i0,A=0d;A+21A" A

Look for travelling waves of “permanent form”.
Special case:
AET)=2a- ¢ " sec h{2a(E + E,)}

How does the free surface look?

N(x,t;e) =e[Ae” + Ae”’ 1+ O(”)
N = (ea)sec h{(2ea)(x —c gt)}cos{kx —[w(k) + 2ea)* ]t}

wave packet with special shape



i0,A=0:A+21AF A
n(x,t;€) = 2(2ea)sec h{(2ea)(x — ¢ 1) ;cos{kx — [w(k) + (2ea)’ )t}
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i0,A=d;A+21AI A
n(x,t;€) = 2(2ea)sec h{(2ea)(x — ¢ 1) ;cos{kx — [w(k) + (2ea)’ )t}

-
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-
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Nice, but so what?



i, A=d:A+201AF A

Zakharov & Shabat (1972):
e NLS in 1-D is completely integrable,
for either sign of o! Just like KdV.
e Conservation laws
i0,(1AF)=0.(A9.A- Ad.A),
i0, (A9, A= Ad.A") =9.(..),
i0.(10.AF +0 1 A1) =0, (...),



i, A=d:A+201AF A

Zakharov & Shabat (1972):
e Scattering problem: J.v, = —iv, + Av,,
0.V, = —OA'V, +iAv,,
 Time-dependence:
0.y, =[2iX +io | APy, +[2AA +id. Alv,,
0.v, =[-20A"A+i00. A" v, = [2iX + io | APy,

o Compatibility:

agar(vl) = arag(vl) = 10 A= &gA +201AF A

vV, vV,




i, A=d:A+201AF A

Zakharov & Shabat (1972):
For o = +1 (focussing NLS):
« Any smooth initial data, A(E,0), with [1A1dE <<

evolves under focussing NLS into a N “envelope
solitons”, which persist forever, plus an oscillatory
wavetrain that decays in amplitude as 7 —

 Envelope solitons are stable, within NLS in 1-D.
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FIcure 3. Measured surface displacoment, showing evolution of envelope soliton at two down-
stream locations; h = 1m, kh = 4-0, w = 1Hz, T' = 1-0 x 10~%; ——, measured history of surface

- H a I I l I I l a Ck displacemen t; ———, theoretical envelope shape;

k¢ = kasech (z),
z = [ag/w] (v/8A)} (Ot —x);

(a) 6 m downstream of wave maker, ka = 0-132. (b) 30 m downstream of wave malker, ka = 0-116.



Stability of
envelope
solitons -

3 experiments
by Yuen & Lake
(1975)
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Tentative conclusions

e According to NLS in 1-D or 2-D, a
uniform train of plane waves is unstable
iIn deep water.

e According to focussing NLS in 1-D with
initial data in L,, envelope solitons are
stable in deep water.

 Experimental evidence seems to
support these conclusions



Tentative conclusions

e According to NLS in 1-D or 2-D, a
uniform train of plane waves is unstable
iIn deep water.

e According to focussing NLS in 1-D with
initial data in L,, envelope solitons are
stable in deep water.

 Experimental evidence seems to
support these conclusions

e But wait for Lecture 14



