Waves on deep water, Il
Lecture 14

Main question: Are there stable wave patterns
that propagate with permanent form (or nearly
s0) on deep water?

Main approximate model:

i0,A+0ad:A+BI-A+yIAF A=0

Nonlinear Schrodinger equation (NLS)
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1. The story so far

e A uniform train of periodic waves is unstable on
deep water, according to NLS and to experiments.
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Waves on deep water

1. The story so far

e A uniform train of periodic waves is unstable on
deep water, according to NLS and to experiments

 The 1-D NLS equation is completely integrable!
e For focussing NLS in 1-D on (-,0), arbitrary initial
data evolve into a finite number of envelope

solitons, plus a modulated wavetrain that
disperses (so its amplitude decays) as 7 > ®

 Envelope solitons are stable in 1-D NLS.

[For defocussing NLS, “dark solitons” are stable.]



Waves on deep water

Chapter 2:
Near recurrence of initial states

a) Lake, Yuen, Rungaldier & Ferguson, 1977
proposed (correctly) that with periodic
boundary conditions, focussing NLS should
exhibit near recurrence of initial states, just
as KdV does.



Waves on deep water

b) What is “near recurrence of initial states” ?

Example from linearized equations on deep
water, with periodic boundary conditions:

N
n(x,t) = Eam cos{mx-w t+¢ }, w. =gm.
m=1



Waves on deep water

b) What is “near recurrence of initial states™?

Example from linearized equations on deep
water, with periodic boundary conditions:

N
n(x,t) = Eam cos{mx-w t+¢ ¥, w =gm.
m=1

Frequencies are not rationally related: «, =o~m

=> 1(x,¢) is not periodic in time, but for finite N
the solution returns close to its initial state,
over and over again
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Q: Stable wave patterns on
deep water ?

A#1. NLS in 1-D with periodic b.c.:

e A uniform train of oscillatory plane waves is
unstable

e But a continuous wave train exhibits near
recurrence of initial states.



Q: Stable wave patterns on
deep water ?

A#1. NLS in 1-D with periodic b.c.:

e A uniform train of oscillatory plane waves is
unstable

e But a continuous wave train exhibits near
recurrence of initial states.

A#2. NLS in 1-D with localized initial data:

 Envelope solitons are stable

(Envelope solitons have played an important role
iIn communication through optical fibers)




Q: What about a 2-D free surface?
(so a 3-D fluid flow)

. > 5 .
1. 2-D NLS: lé)rA+é)§A+/J)é)§A+2U|A| A=0

e o=+1for envelope solitons
e o0=-1fordark solitons



Q: What about a 2-D free surface?
(so a 3-D fluid flow)

. 2DNLS: [0 A+dA+BIA+201AT A=0

e o=+1for envelope solitons
e o0=-1fordark solitons

2. Zakharov & Rubenchik, 1974

« o=+1: for either sign of 3, envelope solitons are
unstable to 2-D perturbations

« o=-1: for either sign of g, dark solitons are
unstable to 2-D perturbations

 The unstable perturbations have long transverse

wavelengths
(Problem in water waves, but not necessarily in optical fibers)




Recall experiment
by Hammack on
envelope soliton

(a) 6 m from
wavemaker

(b) 30 m from
wavemaker
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Hammack repeated the experiment, using
the same wavemaker, in a wider tank
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FIG. 4.18. Evolution of water wave packet in a wide tank, showing the transverse instability that
was absent in Fig. 4.16. (Courtesy of J. L. Hammack).



Q: Stable patterns that propagate
with (nearly) permanent form on
2-D surface in deep water?

A. The story continues - stay tuned



Intermission: wave collapse in 2-d

Zakharov & Synakh, 1976:
o Consider elliptic, focusing NLS in 2-D

i0,A+LZA+A+21AF A=0

(same signs for all coefficients = not gravity waves)



Intermission: wave collapse in 2-d

Zakharov & Synakh, 1976:
e Consider elliptic, focussing NLS in 2-D

i0,A+LZA+A+21AF A=0

(same signs for all coefficients =» not gravity waves)
o Conserved quantities (finite list):

I, = [[IAT]dEdE,
I, = [[[Ad.A" - A9 AMEL, I = [[[Ad.A" - A9, AMEdL,

I,=H =ff[IVA F—1AI'dEdE.



Intermission: wave collapse in 2-d

i0, A+ A+ A+21AF A=0

« Consider J(v)= [[[(E* +*)IAFldEdE

If we interpret:
lA17%(E, £, )  as “mass density”, then

I = [[IAF1dEdE  is “total mass”, and

J(7) is “moment of inertia”.
J(1) 2 0.



Intermission: wave collapse in 2-d

i0,A+LZA+;A+21AF A=0

» Consider J(r)= [[[(&*+%) I AFldEdE

dJ d*J
e Compute — and —
Comp dt dt’
e Find: d—2J=8H=8ff[|VA|2-|A|4]d§d§.
dt’

= If H< 0, then J(7) <0 in finite time. (Bad!)
This happens while [,, I,, I;, H are conserved.

[Wave collapse has been important in nonlinear optics.]



Back to the main story

Q: Are there stable wave patterns that
propagate with permanent form (or nearly so)
on a 2-D free surface in deep water?

More complication:
Lake, Yuen, Rungaldier & Ferguson (1977)
Recall “near recurrence of initial states”



Lake, Yuen, Rungaldier & Ferguson

Time <]

Time «—| A%

\/\\_r’/\J \/\/\ - (b)

100 10-1

Wave amplitude

Wave amplitude H

(a)

10

nsity (V3/Hz)

10

Power spectral d

10

1 2345 10 50 2345 10 50
Frequency, f (Hz) Frequency, /(Hz)

Wave amplitude

10°
(c)
107! = l
i)
> 107
- I
1
I
S0 i
g Il
7
§ 1074 = H
oL Jg} |
111 111 1 11
1 234510 50

Frequency, /(Hz)
F1cure 6. Evolution of a nonlinear finite amplitude wave train: wave forms and power spectral
densities vs. propagation distance. (a) Initial stage of side-band growth, = 5 ft, carrier wave
with small amplitude modulation. (b) 2 = 10 ft, strong amplitude modulation, energy spread
over many frequency components. (¢) @ = 25 ft, reduced amplitude modulation, return of
energy to frequency components of original c: side bands and harmonics. f, =
5 Hz, (ka)y = § = 0:23, (ka);, = 0-29.

Frequency downshifting — also seen in optics

rrier wave, its




Frequency downshifting —
different from recurrence

 Frequency downshifting does not occur in
simulations based on NLS, in 1-D or 2-D

e |t does not occur in simulations based on
Dysthe’s (1979) generalization of NLS

e |t has been observed & studied in optics
(Mollenauer, 1986; Gordon, 1986)

* My opinion: No satisfactory model of the
process has been found



Q: Stable patterns that propagate
with (nearly) permanent form on 2-D
surface in deep water?

1990s — Joe Hammack built a new tank
to study 2-D wave patterns (so 3-D
fluid flows) on deep water



Experimental evidence of apparently
stable wave patte_rns iIn deep water

(www.math.psu.edu/dmh/FRG)

---------------------

.......

3 Hz frequency 4 Hz
17.3 cm wavelength 9.8 cm



How to reconcile the experimental
observations with Benjamin-Feir
instability?

Options
e Modulational instability afflicts 1-D plane

waves, but not 2-D periodic patterns

e The Penn State tank is too short to observe
the (relatively slow) growth of the instability

e Other (please specify)



More experimental results
(www.math.psu.edu/dmh/FRG)

|||||||||||||||||||||||

old water new water



Main results

 The modulational (or Benjamin-Feir) instability is
valid for waves in deep water without dissipation



Main results

The modulational (or Benjamin-Feir) instability is
valid for waves in deep water without dissipation

But any amount of damping (of the right kind)
stabilizes the instability (according to NLS & exp’s)

This dichotomy (with vs. without damping) applies
to both 1-D plane waves and to 2-D periodic
surface patterns

Segur, Henderson, Carter, Hammack, Li, Pheiff,
Socha, 2005

Controversial



Stability vs. existence
in full water-wave equations

Recall:

* Craig & Nicholls (2000) prove that the full
equations of (inviscid) water waves, with
gravity and surface tension, admit solutions
with 2-D, periodic surface patterns of
permanent form on deep water.

* looss & Plotnikov (2008) prove the existence
of such patterns for (some) pure gravity
waves on deep water.

Neither paper considers stability.



Reconsider stability of plane
waves in 1-D

i(0,A+c,0.A)+elad;A+yIAI A 1=0

[§=t_iax=8i]

Cq Cq

idyA+ad;A+ylAF A =0



Reconsider stability of plane
waves in 1-D, with damping
i(d,A+c,0.A)+elad;A+yIAT A+ibA]=0

[E=t-—,X=¢—] 5=0

Cq Cq

idyA+ad;A+ylAF A+idA=0

[AE,X) = e #(E,X)]

iy A+ 00 A+y e |AF 4=0



NLS in 1-D, cont’d

idyA+adiA+y e | AF 4=0

dH
Hamiltonian equation, but o =0

H=i[lolg. 4P -ge-m | A4 1'dE

Conjugate variables: A, A*



lO"X)4 + 050'%2/4 + Y 6_26X |;4 |2 A = 0 . contd

e Uniform (in &) wave train:

, 1_6—2(5)(
A = Ayexpliy| A, P (=)
e Perturb:
1—8_26X

A4(1,X) =exp{iy | 4, I ( VI A, |+ u(u+iv)]}+ O(u’)

e ...algebra..
2 A
du

ot [om*(am® =2y - e | 4, )] 11=0
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Fig.15.1 Experimental observation of modulational instability ATai et al.
1986a). Input power level low (a); 5.5 W (b); 6.1 W (c); 7.1 W (¢4. For details
see text.

If we eliminate o; from (15.1.11) and (15.1.12) And construct the
differential equation for the normalized side band gfplitude 5, = p1/po
(po is given by (15.1.9)), we get

2— 92
—p—92<ﬁ0e"zrz——4—>_-——0. (15.2.1)
If we introduce a quantity R which designates the ratio of Q? to po,

R = Q?/p,, R may be expressed in terms of engineering parameters as

Q2

2
R =1.1x lO“f—S(—)?D) , (15.2.2)
Po p

ASNA dx*

+ [om*(om” =2y e~ | 4, )] =0

Hasegawa &Kodama
(1995)
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2/\
du

e + [ocmz(omfz2 —2y-e‘25X | 4, Iz)] -u=0, contd

* There is a growing mode if

[oam®(om® =2y- e 1 A, )] <0



d*u
dXx*

+ [om’(oam® =2y | 4, )]- =0, contd

* There is a growing mode if

[am®(om® =2y e 1A, )] <0



2/\
du

ot [am®(am® =2y e | 4, )] =0, cont'd

* There is a growing mode if
[am®(om® =2y e 1A, )] <0

 Forany 6 > 0, growth stops eventually
=>No mode grows forever =

= Total growth is bounded \><



What is “linearized stability™?
(Lyapunov)

A uniform wave train solution is linearly stable if for
every ¢ >0thereisa A(e) >0 such thatif a

perturbation (u,v) satisfies
[[4°(5.0) +v* (E.0)1dE < A(e) at X =0,

then necessarily

f[uz(g,X) + v (E,X)|dE<e  forall X>0.



1-D NLS with damping,
conclusion

2/\
du

et [am®(am® =2y e | 4, )] 11=0

= There is a universal bound, B: the total growth of
any Fourier mode cannot exceed B

- To demonstrate stability, choose A(e) so that

|
A(S)<E'8

Nonlinear stability is similar, but more complicated



Experimental verification of theory
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Experimental wave records




Amplitudes of seeded sidebands
(damping factored out of data)

2 (5,2
-
] ff — - "l'
= 13 r 13 -~
~ # = -
- 0] - — O -
i ]
=

1

. ' - - e - - = ™
- - ey (LIS
© LS

(0 IO 2iK) 3N SR SNY 6N

(0 TN ZOND 3N ik S0 o) -
A

X (e )

damped NLS theory

- - - Benjamin-Feir growth rate
* » ¢ experimental data




Q: Are there stable wave patterns that
propagate with permanent form (or nearly
s0) on deep water?

----------------------

A: YES, in the presence df (weak) damping
Apparently NO, with no damping



Q: Stable wave patterns that propagate with
nearly permanent form on deep water?

A: YES, in the presence of (weak) damping
Apparently NO, with no damping

Q: Is this the final chapter of this story?

A: Almost certainly not.

e Downshifting is still unexplained. Its physical importance is
largely unexplored.

e More surprises?



Amplitudes of unseeded sidebands
(damping factored out of data)
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Numerical simulations of full water
wave equations, plus damping

A note on stabilizing the Bengjamin-Fear anstability 5
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