
Waves on deep water, II
Lecture 14

Main question: Are there stable wave patterns
that propagate with permanent form (or nearly
so) on deep water?

Main approximate model:

   Nonlinear Schrödinger equation (NLS)
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1. The story so far
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deep water, according to NLS and to experiments.
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Waves on deep water

1. The story so far
• A uniform train of periodic waves is unstable on

deep water, according to NLS and to experiments
• The 1-D NLS equation is completely integrable!
• For focussing NLS in 1-D on (        ), arbitrary initial

data evolve into a finite number of envelope
solitons, plus a modulated wavetrain that
disperses (so its amplitude decays) as

•  Envelope solitons are stable in 1-D NLS.
[For defocussing NLS, “dark solitons” are stable.]
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Waves on deep water
Chapter 2:

Near recurrence of initial states
 

a) Lake, Yuen, Rungaldier & Ferguson, 1977
proposed (correctly) that with periodic
boundary conditions, focussing NLS should
exhibit near recurrence of initial states, just
as KdV does.



Waves on deep water
b) What is “near recurrence of initial states” ?
Example from linearized equations on deep

water, with periodic boundary conditions:
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Waves on deep water
b) What is “near recurrence of initial states”?
Example from linearized equations on deep

water, with periodic boundary conditions:

Frequencies are not rationally related:

 η(x,t) is not periodic in time, but for finite N
the solution returns close to its initial state,
over and over again
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Experimental
evidence of
recurrence in
deep water –
Lake et al, 1977

Initial frequency:
    ω = 3.6 Hz
    λ = 12 cm
[First physical observation
   of FPU recurrence?]



Q: Stable wave patterns on
deep water ?

A#1. NLS in 1-D with periodic b.c.:
• A uniform train of oscillatory plane waves is

unstable
• But a continuous wave train exhibits near

recurrence of initial states.



Q: Stable wave patterns on
deep water ?

A#1. NLS in 1-D with periodic b.c.:
• A uniform train of oscillatory plane waves is

unstable
• But a continuous wave train exhibits near

recurrence of initial states.

A#2. NLS in 1-D with localized initial data:
• Envelope solitons are stable

(Envelope solitons have played an important role
in communication through optical fibers)



Q: What about a 2-D free surface?
(so a 3-D fluid flow)

1. 2-D NLS:
• σ = +1 for envelope solitons
• σ = -1 for dark solitons
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Q: What about a 2-D free surface?
(so a 3-D fluid flow)

1. 2-D NLS:
• σ = +1 for envelope solitons
• σ = -1 for dark solitons

2. Zakharov & Rubenchik, 1974
• σ = +1:  for either sign of β, envelope solitons are

unstable to 2-D perturbations
• σ = -1:  for either sign of β, dark solitons are

unstable to 2-D perturbations
• The unstable perturbations have long transverse

wavelengths
(Problem in water waves, but not necessarily in optical fibers)
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Recall experiment
by Hammack on
envelope soliton

(a) 6 m from
wavemaker

(b) 30 m from
wavemaker



Hammack repeated the experiment, using
the same wavemaker, in a wider tank



Q: Stable patterns that propagate
with (nearly) permanent form on

2-D surface in deep water?

A. The story continues - stay tuned



Intermission: wave collapse in 2-d
Zakharov & Synakh, 1976:
• Consider elliptic, focusing NLS in 2-D

    (same signs for all coefficients  not gravity waves)
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Intermission: wave collapse in 2-d
Zakharov & Synakh, 1976:
• Consider elliptic, focussing NLS in 2-D

    (same signs for all coefficients  not gravity waves)
• Conserved quantities (finite list):
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Intermission: wave collapse in 2-d

• Consider

If we interpret:
       |A|2(ξ, ζ, τ)      as “mass density”, then

     is “total mass”, and

 J(τ)  is “moment of inertia”.
 J(τ) ≥ 0.
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Intermission: wave collapse in 2-d

• Consider

• Compute and

• Find:

  If Η < 0 , then J(τ) < 0 in finite time.   (Bad!)
 This happens while I1, I2, I3, H are conserved.
  [Wave collapse has been important in nonlinear optics.]
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Back to the main story
Q: Are there stable wave patterns that

propagate with permanent form (or nearly so)
on a 2-D free surface in deep water?

More complication:
Lake, Yuen, Rungaldier & Ferguson (1977)

Recall “near recurrence of initial states”



Lake, Yuen, Rungaldier & Ferguson

  Frequency downshifting – also seen in optics



Frequency downshifting –
different from recurrence

• Frequency downshifting does not occur in
simulations based on NLS,  in 1-D or 2-D

• It does not occur in simulations based on
Dysthe’s (1979) generalization of NLS

• It has been observed & studied in optics
(Mollenauer, 1986; Gordon, 1986)

• My opinion: No satisfactory model of  the
process has been found



Q: Stable patterns that propagate
with (nearly) permanent form on 2-D

surface in deep water?

1990s – Joe Hammack built a new tank
to study 2-D wave patterns (so 3-D
fluid flows) on deep water



Experimental evidence of apparently
stable wave patterns in deep water

   -

(www.math.psu.edu/dmh/FRG)

      3 Hz            frequency      4 Hz
   17.3 cm        wavelength         9.8 cm



How to reconcile the experimental
observations with Benjamin-Feir

instability?

Options
• Modulational instability afflicts 1-D plane

waves, but not 2-D periodic patterns

• The Penn State tank is too short to observe
the (relatively slow) growth of the instability

• Other (please specify)



More experimental results
 (www.math.psu.edu/dmh/FRG)

    3 Hz  2 Hz
    old water       new water



Main results
• The modulational (or Benjamin-Feir) instability is

valid for waves in deep water without dissipation



Main results
• The modulational (or Benjamin-Feir) instability is

valid for waves in deep water without dissipation

• But any amount of damping (of the right kind)
stabilizes the instability (according to NLS & exp’s)

• This dichotomy (with vs. without damping) applies
to both 1-D plane waves and to 2-D periodic
surface patterns

• Segur, Henderson, Carter, Hammack, Li, Pheiff,
Socha, 2005

• Controversial



Stability vs. existence
in full water-wave equations

Recall:
• Craig & Nicholls (2000) prove that the full

equations of (inviscid) water waves, with
gravity and surface tension, admit solutions
with 2-D, periodic surface patterns of
permanent form on deep water.

• Iooss & Plotnikov (2008) prove the existence
of such patterns for (some) pure gravity
waves on deep water.

Neither paper considers stability.



Reconsider stability of plane
waves in 1-D
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Reconsider stability of plane
waves in 1-D, with damping
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   Hamiltonian equation, but

   Conjugate variables:  A, A*

NLS in 1-D, cont’d
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, cont’d

• Uniform (in ξ) wave train:

• Perturb:

• …algebra..
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a

! 

Hasegawa&Kodama

(1995)
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         ,  cont’d
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         ,  cont’d

• There is a growing mode if
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         ,  cont’d

• There is a growing mode if
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         ,  cont’d

• There is a growing mode if

• For any δ > 0, growth stops eventually
No mode grows forever
Total growth is bounded
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What is “linearized stability”?
(Lyapunov)

A uniform wave train solution is linearly stable if for
every  ε  > 0 there is a  Δ(ε) > 0 such that if a
perturbation (u,v) satisfies

    at X = 0,

then necessarily

for all X > 0.! 
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1-D NLS with damping,
conclusion

There is a universal bound, B: the total growth of
any Fourier mode cannot exceed B

To demonstrate stability, choose  Δ(ε)  so that

Nonlinear stability is similar, but more complicated
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Experimental verification of theory

(old) 1-D tank at Penn State



Experimental wave records
X1

X8



Amplitudes of seeded sidebands
(damping factored out of data)

___ damped NLS theory
- - - Benjamin-Feir growth rate
   experimental data



Q: Are there stable wave patterns that
propagate with permanent form (or nearly

so) on deep water?

A: YES, in the presence of (weak) damping
     Apparently NO, with no damping



Q: Stable wave patterns that propagate with
nearly permanent form on deep water?

A: YES, in the presence of (weak) damping
     Apparently NO, with no damping

Q: Is this the final chapter of this story?

A: Almost certainly not.
• Downshifting is still unexplained.  Its physical importance is

largely unexplored.
• More surprises?



Amplitudes of unseeded sidebands
(damping factored out of data)

__damped NLS theory
   experimental data



Numerical simulations of full water
wave equations, plus damping

Wu, Liu & Yue
2006


