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Introduction to water waves
Lecture 1

Q: What's so special about water waves?



a)
b)

Why study water waves?

Woods Hole Oceanographic Institute
For the Program on Nonlinear Waves:

Water waves provide a concrete physical example of a
dynamical system rich enough to exhibit many of the
mathematical concepts that have been developed in
recent years:

linear stability, nonlinear stability

solitons, complete integrability

chaos, sensitive dependence on initial data

singularities, blow-up in finite time

deterministic vs. probabilistic models

Water waves evolve on a “human” time-scale, so we
can observe many of these concepts in physical
experiments



Introduction to water waves

Q: What are “water waves”?

A (for my lectures): Waves in the water that you
see or feel at the beach or in a boat

(sometimes called “surface water waves”)



Properties of water waves

e Surface water waves have their maximum
displacement at the free surface

 Waves propagate, with little dissipation

— ask a baby in a bath-tub
— Snodgrass et al (1966)

 Approximately periodic: 0.1 s < T < 25s.

o Approximate maximum speed: c=+/gh

 Water waves are “dispersive”:

Long waves travel faster than short waves
(for gravity-induced waves)



Long waves travel faster than short
waves (for gravity-induced waves)

from Stoker’'s Water Waves (1957)



Ocean waves | am ignoring

* Sound waves (pressure waves) in water

Speed of sound in water (at 10° C): 1450 m/sec
Speed of 2004 tsunami: < 200 m/sec
Pressure waves create initial conditions for surface waves

e Internal waves

Due to variations in fluid density
Period of surface waves: seconds
Period of internal waves: hours

* |nertial waves (including Rossby waves)

Due to rotation of earth
Period of inertial waves = 12 hours



Derive the governing equations
(following Stokes, 1847)

l gravity / z = n(x,),1)

Z = -h(x,y)

<
T, xy

Find: 7(x,y,t) — position of free surface, and
u(x,y,z,t) — fluid velocity, for
-h(x,y) < z < n(x,y,t), fort>0
and for all {x,y} with n+h > 0



Derive the governing equations
(following Stokes, 1847)

1. Assumptions
e \Water is incompressible (® no sound waves)
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Neglect effects of viscosity (sometimes wrong)
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. Assumptions

Water is incompressible ( no sound waves)
Water has uniform density (» no internal waves)
Neglect rotation of earth (3 no inertial waves)
Gravity is a constant, downward force
Neglect effects of viscosity (sometimes wrong)
Effects of wind can be added or not



Derive the governing equations
(following Stokes, 1847)

. Assumptions

Water is incompressible ( no sound waves)
Water has uniform density (» no internal waves)
Neglect rotation of earth (3 no inertial waves)
Gravity is a constant, downward force
Neglect effects of viscosity (sometimes wrong)
Effects of wind can be added or not

[ one more coming... ]



Derive the governing equations

2. Coordinate system(s) .

* [x,y,z] denote fixed, laboratory coordinates T—> X,y
Denote the current location of a fixed fluid particle by

xX(1) ={x(1),y(1),z(1)}



Derive the governing equations

2. Coordinate system(s) .

* [x,y,z] denote fixed, laboratory coordinates T—> X,y
« Denote the current location of a fixed fluid particle by

x(1) ={x(1),y(1),z(1)}
— Velocity of this fluid particle is  u(x,7) = (u,y,w) =(

Dx Dy Dz)

Dt Dt Dt
(2) . . .

— so |pr) means “following the fluid particle”



Derive the governing equations

2. Coordinate system(s) .

* [x,y,z] denote fixed, laboratory coordinates T—> X,y
« Denote the current location of a fixed fluid particle by

xX(1) ={x(2),y(1),z(1)}
— Velocity of this fluid particle is  u(x,7) = (u,y,w) = (

Dx Dy Dz)
Dt Dt Dt

D
— (E) means “following the fluid particle”

— acceleration of the fluid particle (in z-direction) is
ow dw Dx dw Dy ow Dz

—( (1) = ot ax Dt dy Dt dJz Dt

Dw o"w ow ow ow
+tU—+V—+W—.

Dt it 0X dy oz




Derive the governing equations

3. Physics
(a) Mass conservation of fluid with constant density

n

Total mass flow rate from V \%V
= §p, (- ilds =0
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3. Physics
(a) Mass conservation of fluid with constant density

Total mass flow rate from V n\%v
= ¢p [(p)i-Alds =0
Divergence theorem =

- pfffV[V-ﬁ]dv =0



Derive the governing equations

3. Physics
(a) Mass conservation of fluid with constant density

Total mass flow rate from V n\%v
= ¢p [(p)i-Alds =0
Divergence theorem =

- pfffV[V-ﬁ]dv =0

Valid for all choices of V 2

V-u=0




Derive the governing equations

3. Physics
(b) Aside:

Define vorticity: @ = curl( i)
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Derive the governing equations

3. Physics
(b) Aside:
Define vorticity: @ = curl( i)

Suppose (for some reason) @ =0

—

= there is a velocity potential, ¢(x,7), with u=V¢@

Then V-i=0 < V’¢=0
The velocity of the fluid is found by solving LaPlace’ eq'n!
What could be simpler?



Derive the governing equations

3. Physics
(b) Aside:

Define vorticity: @ = curl( i)

Suppose (for some reason) @ =0

= there is a velocity potential, ¢(%,7), with u=V¢

Then V-i=0 < V’¢=0
The velocity of the fluid is found by solving LaPlace’ eq'n!
What could be simpler?

Q: Is there any reason to believe @ =0 ?



Derive the governing equations

3. Physics
(c) Back to reality

Navier-Stokes equations:

p@+Vp+pgz uVvV=i

7 VRN X

density acceleration pressure gravity viscous forces



Derive the governing equations

3. Physics
(c) Back to reality

Navier-Stokes equations:

D—ﬁ+V +p 2—%
th prpPE8I=U

Neglect viscous forces = Euler’'s equations

Du 1 n
—u+—Vp+gz=O
Dt p
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Navier-Stokes equations:
“Z +Vp+ pgz=uVi
P, H VP pgT =

Neglect viscous forces = Euler’'s equations

Du 1 n
—u+—Vp+gZ=0
Dt p
Take curl = %=§t(ﬁ+ﬁ~vo§=(f)-Vﬁ
!




Derive the governing equations

3. Physics
(c) Back to reality

Navier-Stokes equations:
“Z +Vp+ pgz=uVi
P, H VP pgT =

Neglect viscous forces = Euler’'s equations

Du 1 n
—u+—Vp+gZ=0
Dt p
Take curl = %=§t(ﬁ+ﬁ~vo§=(f)-Vﬁ
!

If o=0 atr=0,then =0 foralls.



Derive the governing equations

3. Physics
(d) Last assumption: irrotational flow

=0 atr=0.
> u=V¢p, V¢=0 everywhere in fluid.
This gives the simplest mathematical model, and the one

studied the most. Dropping the assumption gives a more
general model. (For internal waves, this is not valid.)



Derive the governing equations
3. Physics

(e) Bernoulli's Law:

Di o -
Show Z_gi+v@lat)-ix

Dt
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For an irrotational flow,
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—= i+ Vi) = V{59 + 51V )



Derive the governing equations
3. Physics

(e) Bernoulli's Law:

Show ——du+V( |u|2)><

For an irrotational flow,

Du . .
—= i+ Vi) = V{59 + 51V )

Euler > V{d,p+L11V¢ P+l g2 =0
14

> 0o+ 11V P+L 4 gz =F (1)
Jo




Derive the governing equations
3. Physics

(e) Bernoulli's Law:

Show ——du+V( |u|2)><

For an irrotational flow,

Du . .
—= i+ Vi) = V{59 + 51V )

Euler > V{d,p+L11V¢ P+l g2 =0
14

> 5t¢+%|V¢|2+§+gZ=N =0 in fluid




Derive the governing equations

3. Physics
(f) What happens on the bottom boundary of fluid?
— No flow through the (solid) bottom boundary:
> on z=-h(x,y),

u-V{z+ h(x,y)}=0 or

J.9+Vp-Vh=0 or
J ¢ =0



Derive the governing equations

3. Physics
(9) What happens at the free surface?
— With no surface tension and no wind

P =Py (=0) on z=n(xyi)
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3. Physics
(9) What happens at the free surface?
— With no surface tension and no wind

P =Py (=0) on z=nxyt)

— With surface tension, usual model:

ol
p pair Rl R2

f "\

const mean curvature



Derive the governing equations

3. Physics
(9) What happens at the free surface?
— With no surface tension and no wind

P =Py (=0) on z=nxyt)

— With surface tension, usual model:

1 1
p=palr+0(_+_)
f R Rx

const mean curvature

v )| on  z = n(x,y,1).
1+ 1V P

2 (p=0-0|V-(




Derive the governing equations

3. Physics

(9) What happens at the free surface?
— 2 boundary conditions on z = n(x,y,1):

* Kinematic: a particle on the surface remains there

D
7y @),y (@),0) - 23 =0

-> (9;77+V¢V77=az¢




Derive the governing equations

3. Physics

(9) What happens at the free surface?

— 2 boundary conditions on z = n(x,y,1):

* Kinematic: a particle on the surface remains there

D )= n0x(),y().03 =0
Dt

-> (9;77+V¢V77=§z¢

* Dynamic: Use surface pressure in Bernoulli's Law

a¢+1lv¢|2+gn_—v v

\/1+ V1] >

(+ wind?)



Equations of motion

for an irrotational flow, with no forcing from
wind:

In+Ve-Vn=9.9, on z = n(x,y,1)

5.9+~ |V¢|2+gn——V Vo on z = N(x.v,1)
2 \/1+ M i
V=0 -h(x,y) <z < nxp,0),
I.9+V¢-Vh=0, onz = -h(x,y).



Extra lecture -optional

Monday afternoon (when?):

Start with the nonlinear equations of water
waves, linearize them, and explore some
fundamental concepts that emerge from the
linearized equations.



