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Introduction to water waves
Lecture 1

Q: What’s so special about water waves?



Why study water waves?
a) Woods Hole Oceanographic Institute
b) For the Program on Nonlinear Waves:

Water waves provide a concrete physical example of a
dynamical system rich enough to exhibit many of the
mathematical concepts that have been developed in
recent years:
linear stability, nonlinear stability
solitons, complete integrability
chaos, sensitive dependence on initial data
singularities, blow-up in finite time
deterministic vs. probabilistic models

c) Water waves evolve on a “human” time-scale, so we
can observe many of these concepts in physical
experiments



Introduction to water waves

Q: What are “water waves”?
A (for my lectures): Waves in the water that you

see or feel at the beach or in a boat
   (sometimes called “surface water waves”)



Properties of water waves
• Surface water waves have their maximum

displacement at the free surface
• Waves propagate, with little dissipation

  – ask a baby in a bath-tub
   – Snodgrass et al (1966)

• Approximately periodic:  0.1 s < T < 25 s.

• Approximate maximum speed:
• Water waves are “dispersive”:

 Long waves travel faster than short waves
     (for gravity-induced waves) ! 

c = gh



Long waves travel faster than short
waves (for gravity-induced waves)

      from Stoker’s Water Waves (1957)



Ocean waves I am ignoring
• Sound waves (pressure waves) in water

Speed of sound in water (at 10° C):  1450 m/sec
Speed of 2004 tsunami:        < 200 m/sec
Pressure waves create initial conditions for surface waves

• Internal waves
Due to variations in fluid density
Period of surface waves:   seconds
Period of internal waves:   hours

• Inertial waves (including Rossby waves)
Due to rotation of earth
Period of inertial waves ≥  12 hours



Derive the governing equations
(following Stokes, 1847)

  

Find:  η(x,y,t) – position of free surface, and
 u(x,y,z,t) – fluid velocity, for
-h(x,y) < z < η(x,y,t),  for t > 0

and for all {x,y} with η+h > 0

gravity

z = -h(x,y)

z = η(x,y,t)

x,y
  

! 

! 
u =
! 
u (x,y,z,t)

! 

z
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Derive the governing equations
(following Stokes, 1847)

1. Assumptions
• Water is incompressible ( no sound waves)

• Water has uniform density ( no internal waves)

• Neglect rotation of earth ( no inertial waves)

• Gravity is a constant, downward force
• Neglect effects of viscosity (sometimes wrong)

• Effects of wind can be added or not
• [ one more coming… ]



Derive the governing equations
2. Coordinate system(s)
• [x,y,z] denote fixed, laboratory coordinates
• Denote the current location of a fixed fluid particle by

  

! 

! 
x (t) = {x(t),y(t),z(t)}

! 

z

! 

x,y



Derive the governing equations
2. Coordinate system(s)
• [x,y,z] denote fixed, laboratory coordinates
• Denote the current location of a fixed fluid particle by

– Velocity of this fluid particle is

– so  means “following the fluid particle”
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! 
x (t) = {x(t),y(t),z(t)}
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Derive the governing equations
2. Coordinate system(s)
• [x,y,z] denote fixed, laboratory coordinates
• Denote the current location of a fixed fluid particle by

– Velocity of this fluid particle is

–       means “following the fluid particle”

– acceleration of the fluid particle (in z-direction) is

  

! 

! 
x (t) = {x(t),y(t),z(t)}

! 
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Derive the governing equations
3. Physics
   (a) Mass conservation of fluid with constant density

     Total mass flow rate from V

=        = 0
! 

ˆ n 

! 

V

  

! 

[(")
! 
u # ˆ n ]ds

$V
%%



Derive the governing equations
3. Physics
   (a) Mass conservation of fluid with constant density

     Total mass flow rate from V

=        = 0

  Divergence theorem 

=       = 0

! 

ˆ n 

! 

V

  

! 

[(")
! 
u # ˆ n ]ds

$V
%%

  

! 

" [# $
! 
u ]

V
%%% dv



Derive the governing equations
3. Physics
   (a) Mass conservation of fluid with constant density

     Total mass flow rate from V

=        = 0

  Divergence theorem 

=       = 0

Valid for all choices of V 

! 

ˆ n 

! 

V
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" #
! 
u = 0
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[(")
! 
u # ˆ n ]ds

$V
%%
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 there is a velocity potential,     ,   with
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3. Physics
   (b) Aside:

Define vorticity:        = curl(    )

Suppose (for some reason)

 there is a velocity potential,     ,   with

Then
 The velocity of the fluid is found by solving LaPlace’ eq’n!

What could be simpler?
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Derive the governing equations
3. Physics
   (b) Aside:

Define vorticity:        = curl(    )

Suppose (for some reason)

 there is a velocity potential,     ,   with

Then
 The velocity of the fluid is found by solving LaPlace’ eq’n!

What could be simpler?

Q: Is there any reason to believe    ?
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Derive the governing equations
3. Physics
   (c) Back to reality

  Navier-Stokes equations:

        density    acceleration    pressure    gravity    viscous forces
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3. Physics
   (c) Back to reality
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Derive the governing equations
3. Physics
   (c) Back to reality

  Navier-Stokes equations:

  Neglect viscous forces  Euler’s equations

  Take curl      
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Derive the governing equations
3. Physics
   (c) Back to reality

  Navier-Stokes equations:

  Neglect viscous forces  Euler’s equations

  Take curl      

If       at t = 0, then       for all t.
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Derive the governing equations
3. Physics
   (d) Last assumption:   irrotational flow

at t = 0.

 everywhere in fluid.

This gives the simplest mathematical model, and the one
studied the most.  Dropping the assumption gives a more
general model.  (For internal waves, this is not valid.)
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Derive the governing equations
3. Physics
   (e) Bernoulli’s Law:
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3. Physics
   (e) Bernoulli’s Law:

Show  x

  For an irrotational flow,
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Derive the governing equations
3. Physics
   (e) Bernoulli’s Law:

Show  x

  For an irrotational flow,

Euler 


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Derive the governing equations
3. Physics
   (e) Bernoulli’s Law:

Show  x

  For an irrotational flow,

Euler 

                = 0   in fluid
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Derive the governing equations
3. Physics
   (f) What happens on the bottom boundary of fluid?

– No flow through the (solid) bottom boundary:
    on  z = -h(x,y),

or

or
  

! 
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u " #{z + h(x,y)} = 0
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z
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3. Physics
   (g) What happens at the free surface?

– With no surface tension and no wind

p = pair (= 0)     on    z = η(x,y,t)



Derive the governing equations
3. Physics
   (g) What happens at the free surface?

– With no surface tension and no wind

p = pair (= 0)     on    z = η(x,y,t)

– With surface tension, usual model:

 const   mean curvature

! 

p = pair +" (
1

R
1

+
1

R
2

)



Derive the governing equations
3. Physics
   (g) What happens at the free surface?

– With no surface tension and no wind

p = pair (= 0)     on    z = η(x,y,t)

– With surface tension, usual model:

 const   mean curvature

        on    z = η(x,y,t).! 
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Derive the governing equations
3. Physics
   (g) What happens at the free surface?

– 2 boundary conditions on  z = η(x,y,t):
     * Kinematic: a particle on the surface remains there

     
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Derive the governing equations
3. Physics
   (g) What happens at the free surface?

– 2 boundary conditions on  z = η(x,y,t):
     * Kinematic: a particle on the surface remains there

     
  * Dynamic: Use surface pressure in Bernoulli’s Law

   (+ wind?)
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Equations of motion
for an irrotational flow, with no forcing from
wind:

on z = η(x,y,t)

          on z = η(x,y,t),

         -h(x,y) < z < η(x,y,t),

on z = -h(x,y).
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Extra lecture -optional
Monday afternoon (when?):

Start with the nonlinear equations of water
waves, linearize them, and explore some
fundamental concepts that emerge from the
linearized equations.


