
Boundary Layers: Homogeneous Ocean Circulation

Lecture 7 by Angel Ruiz-Angulo

The first explanation for the western intensification of the wind-driven ocean circulation was
provided by Henry Stommel (1948). The following chapter considers that work and subsequent
developments in the context of boundary layer theory.

1 The homogeneous model

Midlatitude ocean circulation can be approached by using boundary layer theory. We begin by
idealizing the ocean basin as a box with irregular bottom and filled up with homogeneous water.
At the top of the box, the ocean surface, the wind flows only on the zonal direction, x, but varies
on the meridional direction, y. This imposed wind stress results in the surface Ekman layer, which
drives subsurface ocean waters via vertical Ekman pumping. Figure 1 shows the idealized ocean
basin for this model.
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Figure 1: Proposed model for wind driven flows, allowing the bottom to have some variations on
the topography

The Ekman pumping results in a vertical velocity, we, which is proportional to the curl of the
wind stress (See lecture 1)

wtop = we = k̂ · ∇ ×
(
~τ

ρf

)
, at z = H + hb (1)
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The contribution from the bottom Ekman pumping is given by

wbottom =
δ

2
ζ + ~u · ∇hb =

δ

2
[vx − uy] + uhbx + vhby, at z = hb (2)

In addition to the component due to the interior relative vorticity, ζ, the magnitude of wbottom is
affected by the interaction of the velocity with the topography. Note that the first term on the
RHS corresponds to the classical flat bottom solution.

Assume that the interior (the fluid away from the bottom and top Ekman layers) is a homo-
geneous geostrophic flow over a non-uniform bottom. We now introduce the beta approximation.
On a spherical planet, the Coriolis parameter is f = 2Ωsinθ . By expanding around a reference
latitude, θ0, and keeping the first order term we find the parameters for a Cartesian framework
called β−plane:

f = 2 Ω sinθ0︸ ︷︷ ︸
reference Coriolis parameter

+
2 Ω cosθ0

R︸ ︷︷ ︸
β parameter

y + .... (3)

Thus,
f = f0 + β0y

In general, β is expressed as:

β =
∂f

∂y
=

2Ωcosθ
R

We assume β0 y << f0, which is called he β−plane approximation. Physically we are working on
a cartesian plane tangent to the sphere at the reference latitude θ0.

1.1 Equations of motion

By taking the curl of the N-S equations we can writhe the governing equations for the model in
terms of vorticity (

∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
ζ + βv = f

∂w

∂z
+A

(
∂2

∂x2
+

∂2

∂y2

)
ζ (4)

If u and v are independent of z (thermal wind and constant density) then w must be a linear
combination of z. The upper and lower limits of the vertical velocity are given by the top Ekman
layer (Eq. 1) and the bottom Ekman layer (Eq. 2), therefore:

∂w

∂z
=
wtop − wbottom

H

Applying this approximation and integrating vertically Eq. 4 then becomes(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
ζ + βv +

f0~u

H
=
f0we

H
− f0δ

2H
ζ +A

(
∂2

∂x2
+

∂2

∂y2

)
ζ (5)

Since the interior remains in geostrophic balance horizontally we can introduce the geostrophic
stream function:

ψ =
p

ρf0
where u = −∂ψ

∂y
and v =

∂ψ

∂x
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The global variables are scaled with:
Velocity: U
Length: L
Potential, ψ: UL
Time: (β0L)−1

Let us choose U such that it balances the input of vorticity by the wind with the advection of
planetary vorticity

U =
τ0

ρH0Lβ0

Similarly, the Ekman pumping scales as,

We =
τ0
ρf0L

Finally, scaling Eq. 5 results in:

∂

∂t
∇2ψ + δ2IJ(ψ,∇2ψ + ψx + ηJ(ψ, hb) = we − δs∇2ψ + δ3m∇4ψ (6)

δI =
(U/β0)1/2

L
, η =

f0∆hb

H0β0L
, δs =

f0δ

2H0βL
, δm =

(A/β)1/3

L

Where, δI is the inertial scale , η is the relative strength of the bottom topography to β−effect, δs
is the Stommel boundary layer scale and δm corresponds to the Munk’s boundary layer scale.

2 The singular perturbation problem

Assume that all the boundary layers are small compared to the length of the basin, L, i.e. δi/L <<
1, δs/L << 1 and δm/L << 1. Considering that the bottom is flat in the interior and ignoring
the inertial and friction terms, the governing equation is:

ψx = we(x, y) (7)

This is the Sverdrup relation. The solution to this equation cannot satisfy no-normal flow at both
boundaries.There are two solutions based on the boundary conditions, either ψ(x = 0) = 0 at the
western boundary or ψ(x = xe) = 0 at the eastern boundary, where x = xe corresponds to the
eastern boundary. Hence, the two possible interior solutions are:

1) Satisfying ψ(x = 0) = 0, no normal flow on the western boundary:

ψ =
∫ x

0
we(x′, y)dx′ (8)

Using a similar wind stress distribution as Stommel Stommel (1948), the solution to Eq. 8 in
the basin is shown in Figure 2. The solutions are:

ψ1 = −xsin(πy), u1 = −∂ψ1

∂y
= xπcos(πy) and v1 = −sin(πy)
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x, ranging from x = 0 (west) to x = x
e
 (east)

no
rm

al
iz

ed
 y

 

 

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Figure 2: Streamlines and the velocity field inside the basin model corresponding to the solution
of the Eq. 8.

2) The other potential solution is no normal flow on the eastern boundary, ψ(x = xe) = 0.

ψ = −
∫ xe

x
we(x′, y)dx′ (9)

Using the same wind stress as before, the following geostrophic potential satisfies the boundary
conditions for Eq. 9. The corresponding solution in the basin model domain is shown in Figure
3.

ψ2 = (xe − x)sin(πy), u2 = −∂ψ1

∂y
= −(xe − x)πcos(πy) and v2 = −sin(πy)

2.1 An Integral constraint

By taking a steady and closed streamline from the interior of the basin and integrating over the
closed contour, C, the Eq. 6 results in

∮
C

∂~u

∂t
· d~s+

�������������:0∮
C
~u

[
δ2I ζ + y + ηhb

]
· n̂ds =

∮
C
~τ · d~s− δs

∮
C
~u · d~s+ δ3m

∮
C
∇ζ · n̂ds (10)

The left hand side of the Eq. 10 is equal to zero for a steady closed streamline, the temporal term
vanishes and since there is no flux across any steady closed streamline, the second term vanishes
as well, therefore

0 =
∮

C
~τ · d~s− δs

∮
C
~u · d~s+ δ3m

∮
C
∇ζ · n̂ds (11)

From Eq. 11 it is possible to observe that the circulation (net input of vorticity) on each
streamline should be balanced by either diffusion in the interior or friction at the bottom. The
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Figure 3: Streamlines and velocity field inside the basin model corresponding to the solution of the
Eq. 9, i.e., ψ(x = xe) = 0.

Munk layer δm includes, in principle, the unresolved eddies within AH . The explicit flux from
eddies, if known, is included in the flux vorticity integral by an additional flux term, i.e.

0 =
∮

C
~τ · d~s− δs

∮
C
~u · d~s+ δ3m

∮
C
∇ζ · n̂ds− δ2I

∮
C
~u′ζ ′ · n̂ds (12)

Since the basin model is itself a streamline, this last term should be zero for the streamline
coincident with the boundary (no normal flow through the boundaries).

2.2 The Energy constraint

Intuitively, by looking at wind stress distribution shown in Figure 4, the natural (comfortable)
solution to the Sverdrup expression, Eq. 7, corresponds to the one that satisfies no flow at the
eastern boundary, Eq. 9. Additionally, this solution compares well with the observations. In order
to prove the validity of this intuitive choice we look at the energetics of the fluid flow for a steady
circulation in a rectangular ocean basin on the β−plane. The system of equations needed to solve
the energetics is governed by the simplified vorticity equation (Eq. 4) and the following boundary
conditions for the given domain D. It is

ψ

∣∣∣∣
∂D

= 0, and ∇ψ
∣∣∣∣
∂D

= 0 if δm 6= 0

where,
D = [0 ≤ x ≤ xe] × [0 ≤ y ≤ 1].

The energy equation is obtained by multiplying Equation 4 by ψ, integrating over the whole basin,
D, and applying the boundary conditions. Finally, the result is:

〈we ψ〉 = −δs 〈|∇ψ|2〉 − δ3m 〈|∇2ψ|2〉 (13)
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where,

〈 f 〉 ≡
∫ ∫

D
f dxdy

The equilibrium has been reached, the forcing term, 〈weψ〉 is balanced by the dissipation terms.
The condition to satisfy this balance is that we and ψ must be negatively correlated, and this favors
the circulation of Figure 3

3 The linear boundary layer problem

We now explore another simplification of the governing equation (Eq. 6) where the amplitudes of
the relative motion are small, i.e.

δI << δs and δI << δm.

The resulting equation is a the linear boundary layer problem:

ψx = we − δs∇2ψ + δ3m∇4ψ (14)

The proposed interior solution for this problem is ψI .

ψI(x, y) = −
∫ xe

x
we(x′, y)dx′ + Ψ(y). (15)

Note that the limits of integration make no distinction between the eastern and western boundaries,
so no intensification is expected in the interior (temporary ignorance!!).

3.1 The Stommel Model

For the interior of the linear boundary layer we need to manipulate Equation 14. By assuming
small variations in the flow along the boundary layer and large variations across the boundary layer
flow, we can now keep only the x derivatives. Furthermore, scaling by x = δξ results in δwe << 1,
which can be neglected. We now integrate once over η so that

φ︸︷︷︸
a

= −
(
δs
δ

)
∂φ

∂ξ︸ ︷︷ ︸
b

+
(
δ3m
δ3

)
∂3φ

∂ξ3︸ ︷︷ ︸
c

. (16)

Assuming that δs >> δm and δ ∼ δs allows us to ignore the term c. Since this is the highest-order
derivative in the equation this becomes a singular perturbation problem. Stommel’s model for the
boundary layer problem is recovered (Stommel (1948)).

∂φ

∂ξ
+ φ = 0. (17)

It has the following solution,
φ = A(y)e−ξ.

No normal flow condition is necessary at one of the boundaries; as before, we can apply this
condition on either the eastern boundary or the western boundary. For the western boundary,
x = 0,

A = −ψI(0, y).
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Let us define a new boundary layer coordinate, ξ′, for the eastern boundary

ξ′ =
(xe − x)

δs
then,

∂φ

∂ξ′
− φ = 0.

Then, our new boundary layer equation is:

∂φ

∂ξ′
− φ = 0.

The corresponding solution is:
φ = A(y)eξ

′
.

This solution has exponential growth of the BL on the eastern boundary, which is physically not
possible since the BL should be finite and should be absorbed smoothly by the interior. Therefore,
we keep the first solution, which actually corresponds to the western intensification (our temporary
ignorance has been removed!). Looking at the general solution for the interior, Ψ(y) = 0 on the
boundary. Finally, combining our equations for the linear BL (Eqns. 14 and 15) with the valid
solution results in

ψ(x, y) = ψI(x, y)− ψI(0, y)e−(x/δs)

with,

ψI(x, y) = −
∫ xe

x
we(x′, y)dx′.
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Figure 4: Streamlines corresponding to wind driven circulation in the ocean basin based on Stom-
mel’s model. The dimensions of the basin is L (west to east) by b (south to north), the size
of the boundary layer respect to the basin length is δs/L = 0.05. Henry Stommel proposed
τ = −Fcos(πy/b) ( Stommel (1948) )
.

The western intensification represented in Figure 4 is controlled by the boundary layer and the
β−effect.
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So far, Stommel’s model neglects the no slip condition on the western boundary. Figure 5
shows the meridional velocity v. Note that the velocity is northward close to the boundary layer
and then turns southward as Sverdrup flow for most of the ocean basin extent.
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Figure 5: Meridional velocity in the middle of the basin as predicted by Stommel’s model (nor-
malized by we(y = b/2)). Note that the only boundary condition satisfied is zero flow through the
western boundary, i.e., v(x = 0) 6= 0. As before δs/L = 0.05

3.2 The no slip condition and the sublayer

Stommel’s model assumption that δm/δ ∼ 0 leaves no room to satisfy a no slip condition, as a
natural consequence the vorticity balance of the whole basin depends on the lateral diffusion term.

In order to satisfy the no slip boundary condition, we now rewrite the Equation 16 with a
slightly different scaling, x = δsξ.

φ︸︷︷︸
a

= − ∂φ

∂ξ︸︷︷︸
b

+
(
δ3m
δ3s

)
∂3φ

∂ξ3︸ ︷︷ ︸
c

. (18)

It is necessary now to keep both of the terms; b and c that we are adding to Stommel’s model as
an additional sublayer. Defining ξ = l η as the sublayer scale and balancing the terms b and c we
find

l =
(
δm
δs

)3/2

.

The thickness of the sublayer inside the Stommel boundary layer is given by,

δsub = δs l =
δ
3/2
m

δ
1/2
s

=
[
A

L2

H0√
2vf

]1/2
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After scaling Eq. 18 and integrating it once over η, we find the correction function for the sublayer:

χηη − χ = 0, where, χ(η) = C(y) e−η.

The solution should be bounded, therefore the term proportional to exp(+η) automatically goes to
zero. Hence, we could rewrite Stommel’s solution with the additional sublayer correction function

ψ(x, y) = ψI(x, y) +A(y)e−(x/δs) + C(y)e−(x/δsub).

Applying the boundary conditions of no slip, ψx(0, y) = 0, and no flow at the western boundary,
ψ(0, y) = 0 allows us to find the function C(y) since A(y) is already known

C = −δsub

δs
A and, A = −ψI(0, y).

Finally, the total solution for the ocean basin including no slip at the western boundary is given
by,

ψ(x, y) = ψI(x, y)− ψI(0, y)
[
e−(x/δs) −

(
δsub

δs

)
e−(x/δsub)

]
. (19)

Figure 6 shows the resulting profile for the meridional velocity. Note that the magnitude of v,
approaches to zero near the western boundary.
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Figure 6: Meridional velocity in the middle of the basin adding no slip condition at the western
boundary, i.e., v(x = 0) = 0. δs/L = 0.05 and δsub = 0.0045

9



References

H. Stommel. The westward intensification of wind-driven ocean currents. Trans. Amer. Geophys.
Union, 29:202–206, 1948.

10


	The homogeneous model
	Equations of motion

	The singular perturbation problem
	An Integral constraint
	The Energy constraint

	The linear boundary layer problem
	The Stommel Model
	The no slip condition and the sublayer


