
Boundary Layers: Homogeneous Ocean Circulation

Lecture 8 by Henrik van Lengerich

1 Vorticity Balance

Vorticity is conserved along streamlines and this allows us to extract information from the governing
equations without the use of the solution.

1.1 Balance along x - direction

We perform an integral from x = 0 to x = xe about the vorticity equation (Eq. ??), this is also
known as the dissipation balance. We neglect uy because it is small compared to vx in the boundary
layer and we ignore all inertial and viscous terms in the interior, as well as use the no slip condition
on v at x = 0, to obtain ∫ xe

0
[ψx = we − δs∇2ψ + δ3M∇4ψ]dx. (1)

ψ is conserved so the left hand side of Eq. 1 is zero. The stream function multiplied by the
boundary layer thickness is negligible close to the right hand side. This gives, for we = we(y),

0 = xewe + δsψx(0)− δ3mψxxx(0). (2)

The first derivative of ψ is zero at the left boundary due to the no slip condition. This gives

0 = xewe + δ3mψxxx(0), (3)

which means that the vorticity inserted by the Ekman pumping must be dissipated by the
sublayer. We verify that (1.20) is a solution to Eq. 3

xewe = xeweδ
3
m(
δm
δs

)3/2
1

δ3s(δm/δs)9/2
. (4)

We can also look at the streamlines that go through the Stommel layer. Performing an integral
around the vorticity from the Stommel layer at 0+ to the right edge at xe of the Stommel solution
(φ) similar to Eq. 1, gives

0 = xewe(0+) + δsφx(0+). (5)

We can verify that the solution previously obtained matches this condition

0 = xewe(0+)− δsxewe(0+)/δS . (6)

This means that for the total solution of the stream function obtained the vorticity of the
streamlines that pass through the Stommel layer are balanced by bottom friction.
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1.2 Vorticity Balance along y - direction

We perform an integral of the vorticity equation (Eq. ??) for an area R of the boundary layer from
two arbitrary latitudes y1 to y2.∫

R
δ2I∇ · −→u ζdA+

∫
R
vdA+

∫
R
∇ · −→u hbdA = −δs

∫
R
ζdA+

∫
R
δ3m∇2ζdA. (7)

Because the velocity in the x-direction does not vary much with y, the local vorticity can be
approximated as

ζ ≈ vx. (8)

We assume that the bottom is flat, so that the term with hb is zero, then Eq. 7 becomes

1
2
δ2I [v

2(0, y1)− v2(0, y2)] +
∫ y2

y1

ψl(0, y)dy = δs

∫ y2

y1

v(0, y)dy − δ3m
∫ y2

y1

ζx(0, y)dy. (9)

Using the no-slip condition at x = 0, this simplifies to∫ y2

y1

ψI(0, y)dy = −δ3m
∫ y2

y1

ζx(0, y)dy. (10)

The term on the left is the vorticity added due to the wind and the term on the right is
the dissipation of vorticity due to viscosity in the viscous sublayer. Because we have not fixed the
bounds on y, the vorticity added on any latitude is dissipated in the boundary layer at that latitude.
It should be noted that this interpretation is only valid under the assumption that vx � uy as stated
at the onset.

2 Inertial Boundary Layers

Previously we have assumed the δI term was small, but this is pretty unrealistic considering the
Reynolds number of ocean flows. We focus on a parameter region where inertial effects become
important, that is 1 � δI � δm � δs. To retain the inertial terms of highest order we re-scale the
x variable such that

ξ = x/δI . (11)

To order 1/δI the vorticity equation (Eq. ??) governs the inertial boundary layer, and is given
by

ψξψξξy − ψyψξξξ + ψξ = 0. (12)

Note that the left hand side is the same as the substantial derivative, so we write

D

Dt
(ψξξ + y) = 0 (13)

ψξξ + y = Q(ψ). (14)
(15)

This means that the vorticity is conserved along streamlines.
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2.1 Example

Assume that the velocity u is constant and ψ is independent of x far from the boundary. Then
ψξξ=0 and we can solve Eq. 14 far from the boundary to get

y = Q(ψ). (16)

Using the definition of the stream function we find that

ψ = −uy (17)

far from the boundary. Here the integration constant is arbitrary and set to zero.
Now we apply Eq. 17 for ψ in the boundary region to obtain

Q(ψ) = −ψ/u (18)
ψξξ + y = −ψ/u (19)

ψ = A(y)eψ/
√
−u +B(y)e−ψ/

√
−u + uy. (20)

We eliminate the A(y) term because we need ψ to be bounded in x in order to match it to an
inner solution where ξ goes to infinity. We use the no penetration condition on u, but allow the
fluid to slip along the x = 0 edge. Again, setting the integration constant to zero gives

ψ = uy(1− e−ξ/
√
−u). (21)

We know that the interior flow needs to be westward, so this expression cannot close the
circulation; it also does not satisfy the no slip condition at x = 0.

2.2 Inertial Sub-layer Thickness

Looking at the balance of vorticity of an inertial sub-layer solution it can be seen that the vorticity
input by the wind needs to be balanced by the viscous sub-layer; however, most streamlines do
not go through the viscous sub-layer, therefore there is an accumulation of vorticity. We define a
re-scaled Reynolds number as Re = UL/A∗δI = δ3I/δ

3
m, then numerical simulations by Fox-Kemper

Fox-Kemper (2003) show that for Re = 1.95 the solution is stable, but at Re = 4.29 there is an
inertial runaway.

3 Enhanced Sub-layer

Fox-Kemper and Pedlosky’s Fox-Kemper and Pedlosky (2004) solution to the inertial runaway is
to modify the momentum mixing viscosity such that it captures two dissipation mechanisms. The
first is the effect of unresolved eddies in the interior and the boundary layers. The second is the
interaction of the fluid with the boundary. These effects were incorporated into the Munk layer as

δ3m =
δ3I
Rei

+ (
δ3I
Reb

−
δ3I
Rei

)(e−x/δd + e−(1−x)/δd) (22)

such that the effect is continuous as x is varied. The first term in the summation represents the
unresolved eddies, the second term is the interaction with the boundary (which is at x=1). The
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two Reynolds numbers and the thickness of the region where the boundary viscosity is enhanced
are given by

Rei = (
δI
δm

)3interior (23)

Reb = (
δI
δm

)3boundary (24)

δd =
δI√
ReI

. (25)

The effect of this enhanced dissipation mechanism can be seen in Figure 1. As the boundary
layer Reynolds number is decreased the vorticity decreases due to dissipation in the boundary
layer. The same is true of the interior Reynolds number. The energy of the system also decreases
as either of the Reynolds numbers are decreased. Shown in the lower right hand corner of Figure
1 is a situation with a large internal vorticity (larger than what was unstable in section 2.2), but
this vorticity is dissipated to the boundary region.

Rei = 8Rei = 3

Re
b =

 0
.1

Re
b =

 3

Figure 1: Streamlines for various Rei and Reb. Shaded regions are of negative vorticity. Figure
taken from Fox-Kemper (2003).
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