
Lecture 10b: Rossby Waves and Surface Winds

Geoff Vallis; notes by Jim Thomas and Geoff Stanley

June 27

In this our third lecture we stay with the atmosphere and introduce some dynamics.
Our first goal is to understand why there are surface winds, and in particular why there
are surface westerlies (Fig. 1). A full explanation of this would require a discussion of
baroclinic instability and take up a couple of lectures in itself. We’ll skip all that and carry
out explicit derivations only for the barotropic vorticity equation, with the reader filling
in the gaps phenomenologically. We do note that there are westerly winds aloft in the
atmosphere because of the thermal wind relation, f∂u/∂z = ∂b/∂z , where b is buoyancy
which is like temperature. Thus, a temperature gradient between the equator and the pole
implies that the zonal wind increases with height. But this doesn’t of itself mean that the
surface winds are non-zero – we will need momentum fluxes for that. By the same token,
momentum fluxes are not needed to have westerly winds aloft.

We begin with a few basic equations.

1 Momentum Equation

The zonally-averaged momentum, in Cartesian geometry has the form

∂u

∂t
− (f + ζ)v =

∂

∂y
u′v′ +

∂τ

∂z
(1)

where f = f0 +βy In mid-latitudes we usually neglect the mean advection terms (ζv here)
which in midlatitudes are small. If we multiply by density and integrate vertically then, in
a steady state the terms on the left-hand side both vanish, whence

τs =

∫

z
ρu′v′ dz (2)

where τs is the surface stress, which is roughly proportional to the surface wind: τs ≈ rus
where r is a constant. Thus

us ≈
1

r

∫

z
ρu′v′ dz. (3)

In other words, the surface winds arise because of the eddy convergence of momentum in
the atmosphere. Where does this come from? It turns out that it arises from the sphericity
of the Earth which gives rise to differential rotation and Rossby waves, as we shall see.
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Figure 1: (a) Annual mean, zonally averaged zonal wind (heavy contours and shading) and
the zonally averaged temperature (lighter contours). (b) Annual mean, zonally averaged
zonal winds at the surface. The wind contours are at intervals of 5 m s−1 with shading for
eastward winds above 20 m s−1 and for all westward winds, and the temperature contours
are labelled. The ordinate of (a) and (c) is Z = −H log(p/pR), where pR is a constant, with
scale height H = 7.5 km .

2 Rossby Waves: A Brief Tutorial

The inviscid, adiabatic potential vorticity equation is

∂q

∂t
+ u · ∇q = 0, (4)

where q(x, y, z, t) is the potential vorticity and u (x, y, z, t) is the horizontal velocity. The
velocity is related to a streamfunction by u = −∂ψ/∂y, v = ∂ψ/∂x and the potential
vorticity is some function of the streamfunction, which might differ from system to system.
Two examples, one applying to a continuously stratified system and the second to a single
layer system, are

q = f + ζ +
∂

∂z

(
S(z)

∂ψ

∂z

)
, q = ζ + f − kd 2ψ. (5a,b)
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We deal mainly with the second. If the basic state is a zonal flow and purely a function of
y then

q = q(y, z) + q′(x, y, t), ψ = ψ(y, z) + ψ′(x, y, z, t) (6)

whence
∂q′

∂t
+ u · ∇q + u · ∇q′ + u ′ · ∇q + u ′ · ∇q′ = 0. (7)

Linearizing gives
∂q′

∂t
+ u

∂q′

∂x
+ v′

∂q

∂y
= 0. (8)

2.1 Rossby waves in a single layer

In the single-layer case we have q = βy +∇2ψ − kd 2ψ. If we linearize this around a zonal
flow then ψ = ψ + ψ′ and

ψ = −uy q = βy + uk2dy (9)

and
q′ = ∇2ψ′ − kd 2ψ′ (10)

and (8) becomes

(
∂

∂t
+ u

∂

∂x

)
(∇2ψ′ − ψ′kd 2) +

∂ψ′

∂x
(β + Uk2d) = 0 (11)

Substituting ψ′ = Re ψ̃ei(kx+ly−ωt) we obtain the dispersion relation,

ω =
k(UK2 − β)

K2 + kd 2
= Uk − kβ + Ukd

2

K2 + kd 2
. (12)

We will simplify by taking U = 0 whence

ω = − β

K2 + kd 2
. (13)

The corresponding components of phase speed and group velocity are

cxp ≡
ω

k
= − β

K2 + kd 2
, cyp ≡

ω

l
=
k

l

(
β

K2 + kd 2

)
(14a,b)

and

cxg ≡
∂ω

∂k
=
β(k2 − l2 − kd 2)
(
K2 + kd 2

)2 , cyg ≡
∂ω

∂l
=

2βkl
(
K2 + kd 2

)2 , (15a,b)

which K2 = k2 + l2.
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3 Momentum Transport in Rossby Waves

It turns out that Rossby waves will transport momentum from place to place, and this is
why we have surface winds! (Well, at least it is an explication of why we have surface winds.
Other explications that don’t involve Rossby waves can be given (Vallis, 2006), but they
are all really the same explanation.)

Let us suppose that some mechanism is present that excites Rossby waves in mid-
latitudes. This mechanism is in fact baroclinic instability, but we don’t really need to know
that. We expect that Rossby waves will be generated there, propagate away and break and
dissipate. To the extent that the waves are quasi-linear and do not interact, then just away
from the source region each wave has the form

ψ = ReCei(kx+ly−ωt) = ReCei(kx+ly−kct), (16)

where C is a constant, with dispersion relation

ω = ck = uk − βk

k2 + l2
≡ ωR, (17)

taking kd = 0 and provided that there is no meridional shear in the zonal flow. The
meridional component of the group velocity is given by

cyg =
∂ω

∂l
=

2βkl

(k2 + l2)2
. (18)

Now, the direction of the group velocity must be away from the source region; this is
a radiation condition, demanded by the requirement that Rossby waves transport energy
away from the disturbance. Thus, northwards of the source kl is positive and southwards
of the source kl is negative. That the product kl can be positive or negative arises because
for each k there are two possible values of l that satisfy the dispersion relation (17), namely

l = ±
(

β

u− c − k
2

)1/2
, (19)

assuming that the quantity in parentheses is positive.
The velocity variations associated with the Rossby waves are

u′ = −ReC ilei(kx+ly−ωt), v′ = ReC ikei(kx+ly−ωt), (20a,b)

and the associated momentum flux is

u′v′ = −1

2
C2kl. (21)

Thus, given that the sign of kl is determined by the group velocity, northwards of the
source the momentum flux associated with the Rossby waves is southward (i.e., u′v′ is
negative), and southwards of the source the momentum flux is northward (i.e., u′v′ is
positive). That is, the momentum flux associated with the Rossby waves is toward the
source region. Momentum converges in the region of the stirring, producing net eastward
flow there and westward flow to either side (Fig. 2).
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Figure 2: Generation of zonal flow on a β -plane or on a rotating sphere. Stirring in
mid-latitudes (by baroclinic eddies) generates Rossby waves that propagate away from the
disturbance. Momentum converges in the region of stirring, producing eastward flow there
and weaker westward flow on its flanks.

Another way of describing the same effect is to note that if kl is positive then lines of
constant phase (kx + ly = constant) are tilted north-west/south-east, as in Fig. 3 and the
momentum flux associated with such a disturbance is negative (u′v′ < 0). Similarly, if kl is
negative then the constant-phase lines are tilted north-east/south-west and the associated
momentum flux is positive (u′v′ > 0). The net result is a convergence of momentum flux
into the source region. In physical space this is reflected by having eddies that are shaped
like a boomerang, as in Fig. 3.

Pseudomomentum and wave–mean-flow interaction

The kinematic relation between vorticity flux and momentum flux for non-divergent two-
dimensional flow is

vζ =
1

2

∂

∂x

(
v2 − u2

)
− ∂

∂y
(uv). (22)

After zonal averaging this gives

v′ζ ′ = −∂u
′v′

∂y
, (23)

noting that v = 0 for two-dimensional incompressible (or geostrophic) flow.
Now, the barotropic zonal momentum equation is (for horizontally non-divergent flow)

∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
− fv = −∂φ

∂x
+ Fu −Du, (24)

where Fu and Du represent the effects of any forcing and dissipation. Zonal averaging, with
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Figure 3: The momentum transport in physical space, caused by the propagation of Rossby
waves away from a source in mid-latitudes. The ensuing boomerang-shaped eddies are
responsible for a convergence of momentum, as indicated in the idealization pictured.

v = 0, gives
∂u

∂t
= −∂u

′v′

∂y
+ F u −Du, (25)

or, using (23),
∂u

∂t
= v′ζ ′ + F u −Du. (26)

Thus, the zonally averaged wind is maintained by the zonally averaged vorticity flux. On
average there is little if any direct forcing of horizontal momentum and we may set F u = 0,
and if the dissipation is parameterized by a linear drag (26) becomes

∂u

∂t
= v′ζ ′ − ru, (27)

where the constant r is an inverse frictional time scale.
Now consider the maintenance of this vorticity flux. The barotropic vorticity equation

is
∂ζ

∂t
+ u · ∇ζ + vβ = Fζ −Dζ , (28)

where Fζ and Dζ are forcing and dissipation of vorticity. Linearize about a mean zonal flow
to give

∂ζ ′

∂t
+ u

∂ζ ′

∂x
+ γv′ = F ′ζ −D′ζ , (29)
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where

γ = β − ∂2u

∂y2
(30)

is the meridional gradient of absolute vorticity. Multiply (29) by ζ ′/γ and zonally average,
assuming that uyy is small compared to β or varies only slowly, to form the pseudomomen-
tum equation,

∂A
∂t

+ v′ζ ′ =
1

γ
(ζ ′F ′ζ − ζ ′D′ζ ), (31a)

A =
1

2γ
ζ ′2 (31b)

is a wave activity density, equal to the (negative of) the pseudomomentum for this prob-
lem. The parameter γ is positive if the average absolute vorticity increases monotonically
northwards, and this is usually the case in both Northern and Southern Hemispheres.

3.1 An aside on wave activity and stability

Suppose the flow is unforced and inviscid (common conditions that we impose in stability
problems). Then the wave activity equation above becomes

∂A
∂t

+ v′ζ ′ = 0. (32)

This condition holds even in the presence of shear. Integrating between quiescent latitudes
gives

d

dt

∫
Ady = 0. (33)

The quantity Â ≡
∫
Ady is wave activity, something that is quadratic in wave amplitude

and is conserved. A itself is a wave activity density. Energy is not normally a wave activity,
because it grows if the flow is unstable, whereas a wave activity does not.

Now suppose that γ is positive everywhere. In this case the conservation of Â prevents
ζ ′2 from growing! Thus, for a wave to grow, β − uyy must change sign somewhere in the
domain. We have derived the Rayleigh-Kuo criterion for barotropic instability. Note that
there is no mention of normal modes, although we have still (in this derivation) assumed
linearity.

4 Wave–mean-flow interaction, acceleration and non-acceleration

In the absence of forcing and dissipation, (27) and (31a) imply an important relationship
between the change of the mean flow and the pseudomomentum, namely

∂u

∂t
+
∂A
∂t

= 0. (34)

We have now essentially derived a special case of the non-acceleration result. If the waves
are steady and inviscid, then from (31a) v′ζ ′ = 0. Then from (34) the mean flow does not
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poleequator

Figure 4: Mean flow generation by a meridionally confined stirring. Because of Rossby wave
propagation away from the source region, the distribution of pseudomomentum dissipation
is broader than that of pseudomomentum forcing, and the sum of the two leads to the zonal
wind distribution shown, with positive (eastward) values in the region of the stirring. See
also Fig. 6.

accelerate. We need to do a bit more work in the stratified case, but the essence of the
result is the same.

Now if for some reason A increases, perhaps because a wave enters an initially quiescent
region because of stirring elsewhere, then mean flow must decrease. However, because the
vorticity flux integrates to zero, the zonal flow cannot decrease everywhere. Thus, if the
zonal flow decreases in regions away from the stirring, it must increase in the region of
the stirring. In the presence of forcing and dissipation this mechanism can lead to the
production of a statistically steady jet in the region of the forcing, since (27) and (31a)
combine to give

∂u

∂t
+
∂A
∂t

= −ru+
1

γ
(ζ ′F ′ζ − ζ ′D′ζ ), (35)

and in a statistically steady state

ru =
1

γ
(ζ ′F ′ζ − ζ ′D′ζ ). (36)

The terms on the right-hand side represent the stirring and dissipation of vorticity, and
integrated over latitude their sum will vanish, or otherwise the pseudomomentum budget
cannot be in a steady state. However, let us suppose that forcing is confined to mid-latitudes.
In the forcing region, the first term on the right-hand side of (36) will be larger than the
second, and an eastward mean flow will be generated. Away from the direct influence of the
forcing, the dissipation term will dominate and westward mean flows will be generated, as
sketched in Fig. 4. Thus, on a β -plane or on the surface of a rotating sphere an eastward
mean zonal flow can be maintained by a vorticity stirring that imparts no net momentum to
the fluid. In general, stirring in the presence of a vorticity gradient will give rise to a mean
flow, and on a spherical planet the vorticity gradient is provided by differential rotation.
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Figure 5: The time and zonally averaged wind (solid line) obtained by an integration of
the barotropic vorticity equation on the sphere. The fluid is stirred in mid-latitudes by a
random wavemaker that is statistically zonally uniform, acting around zonal wavenumber
8, and that supplies no net momentum. Momentum converges in the stirring region leading
to an eastward jet with a westward flow to either side, and zero area-weighted spatially
integrated velocity. The dashed line shows the r.m.s. (eddy) velocity created by the stirring.

It is crucial to the generation of a mean flow that the dissipation has a broader latitudinal
distribution than the forcing: if all the dissipation occurred in the region of the forcing then
from (36) no mean flow would be generated. However, Rossby waves are generated in the
forcing region, and these propagate meridionally before dissipating thus broadening the
dissipation distribution and allowing the generation of a mean flow.

5 Rossby Waves in an Inhomogeneous Medium

Consider the horizontal problem with infinite deformation radius and linearized equation of
motion (

∂

∂t
+ u(y)

∂

∂x

)
q′ + v′

∂q

∂y
= 0, (37)

where q′ = ∇2ψ′, v′ = ∂ψ′/∂x and ∂q/∂y = β − uyy. If u and ∂q/∂y do not vary in space
then we may seek wavelike solutions in the usual way and obtain the dispersion relation

ω ≡ ck = uk − ∂q/∂y

k
k2 + l2 (38)

where k and l are the x - and y -wavenumbers.

154



– 4 0 4 8
x 10

- 1 5

s–3

stirring
dissipation
sum

0

30

60

90

La
tit

ud
e

Figure 6: The pseudomomentum stirring (solid line, F ′ζζ
′), dissipation (dashed line, D′ζζ

′)
and their sum (dot–dashed), for the same integration as Fig. 5. Because Rossby waves
propagate away from the stirred region before breaking, the distribution of dissipation is
broader than the forcing, resulting in an eastward jet where the stirring is centred, with
westward flow on either side.

If the parameters do vary in the y -direction then we seek a solution of the form ψ′ =
ψ̃(y) exp[ik(x− ct)] and obtain

∂2ψ̃

∂y2
+ l2(y)ψ̃ = 0, where l2(y) =

∂q/∂y

u− c − k
2 (39a,b)

If the parameter variation is sufficiently small, occurring on a spatial scale longer than the
wavelength of the waves, then we may expect that the disturbance will propagate locally
as a plane wave. The solution is then of WKB form namely

ψ̃(y) = A0l
−1/2 exp

(
i

∫
l dy

)
. (40)

where A0 is a constant. The phase of the wave in the y -direction, θ, is evidently given by
θ =

∫
l dy, so that the local wavenumber is given by dθ/dy = l. The group velocity is, as

before,

cxg = u+
(k2 − l2)∂q/∂y

(k2 + l2)2
, cyg =

2kl ∂q/∂y

(k2 + l2)2
. (41a,b)

The group velocity can now vary spatially, although it is only allowed to vary slowly.

5.1 Wave amplitude

As a Rossby wave propagates its amplitude is not necessarily constant because, in the
presence of a shear, the wave may exchange energy with the background state. It goes like
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l−1/2(y). This variation can be understood from somewhat more general considerations. As
we saw earlier in the simple one-layer case (and discussed more in the appendix) an inviscid,
adiabatic wave will conserve its wave activity meaning that

∂A
∂t

+∇ · F = 0, (42)

where A is the wave amplitude and F is the flux, and F = cgA. In the stratified case we
have

A =
q′2

2∂q/∂y
, F = −u′v′ j +

f0
N2

v′b′ k, (43)

with F is the Eliassen–Palm (EP) flux, and in the 2D case there is no buoyancy and the k
component is zero. If the waves are steady then ∇·F = 0, and in the two-dimensional case
under consideration this means that ∂u′v′/∂y = 0.

Thus, u′v′ = kl|ψ̃|2 = constant, and since k is constant the amplitude of a wave varies
like

|ψ̃| = A0√
l(y)

(44)

as in the WKB solution. The energy of the wave then varies like

Energy = (k2 + l2)
A2

0

l
. (45)

6 Rossby Wave Propagation in a Slowly Varying Medium

The linear equation of motion is, in terms of streamfunction,

(
∂

∂t
+ u(y, z)

∂

∂x

)[
∇2ψ′ +

f0
2

ρR

∂

∂z

(
ρR
N2

∂ψ′

∂z

)]
+
∂ψ′

∂x

∂q

∂y
= 0. (46)

We suppose that the parameters of the problem vary slowly in y and/or z but are uniform
in x and t. The frequency and zonal wavenumber are therefore constant. We seek solutions
of the form ψ′ = ψ̃(y, z)eik(x−ct) and find (if, for simplicity, N2 and ρR are constant)

∂2ψ̃

∂y2
+
f0

2

N2

∂2ψ̃

∂z2
+ n2(y, z)ψ̃ = 0 (47a)

where

n2(y, z) =
∂q/∂y

u− c − k
2. (47b)

The value of n2 must be positive in order that waves can propagate, and so waves cease to
propagate when they encounter either

1. A turning line, where n2 = 0, or

2. A critical line, where u = c and n2 becomes infinite.
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The bounds may usefully be expressed as a condition on the zonal flow:

0 < u− c < ∂q/∂y

k2
. (48)

If the length scale over which the parameters of the problem vary is much longer than
the wavelengths themselves we can expect the solution to look locally like a plane wave and
a WKB analysis can be employed. In the purely horizontal problem we assume a solution
of the form ψ′ = ψ̃(y)eik(x−ct) and find

∂2ψ̃

∂y2
+ l2(y)ψ̃ = 0, l2(y) =

∂q/∂y

u− c − k
2. (49)

The solution is of the form

ψ̃(y) = Al−1/2 exp
(
± i

∫
l dy
)
. (50)

Thus, l(y) is the local y -wavenumber, and the amplitude of the solution varies like l−1/2.
At a critical line the amplitude of the wave will go to zero although the energy may become
very large, and since the wavelength is small the waves may break. At a turning line the
amplitude and energy will both be large, but since the wavelength is long the waves will not
necessarily break. A similar analysis may be employed for vertically propagating Rossby
waves.

6.1 Two examples

(i) Waves with a turning latitude

A turning line arises where l = 0. The line arises if the potential vorticity gradient diminishes
to such an extent that l2 < 0 and the waves then cease to propagate in the y -direction. This
may happen even in unsheared flow as a wave propagates polewards and the magnitude of
beta diminishes.

As a wave packet approaches a turning latitude then l goes to zero so the amplitude, and
the energy, of the wave approach infinity. This may happen as a wave propagates polewards
and β diminishes. However, the wave will never reach the turning latitude because the
meridional component of the group velocity is zero, as can be seen from the expressions for
the group velocity, (41). As a wave approaches the turning latitude cxg → (β − uyy)/k2 and
cyg → 0, so the group velocity is purely zonal and indeed as l→ 0

cxg − u
cyg

=
k

2l
→∞. (51)

Because the meridional wavenumber is small the wavelength is large, so we do not expect
the waves to break. Rather, we intuitively expect that a wave packet will turn — hence the
eponym ‘turning latitude’ — and be reflected.

To illustrate this, consider waves propagating in a background state that has a beta
effect that diminishes polewards but no horizontal shear. To be concrete suppose that
β = 5 at y = 0, diminishing linearly to β = 0 at y = 0, and that u − c = 1 everywhere.
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Figure 7: Parameters for the first example considered in section 6.1, with all variables
nondimensional. The zonal flow is uniform with u = 1 and c = 0 (so that uyy = 0) and β
diminishes linearly as y increases polewards as shown. With zonal wavenumber k = 1 there
is a turning latitude at y = 0.8, and the wave properties are illustrated in Fig. 8.
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Figure 8: Left: The group velocity evaluated using (41) for the parameters illustrated in
Fig. 7, which give a turning latitude at y = 0.8. For x < 0.5 we choose positive values of n,
and a northward group velocity, whereas for x > 0.5 we choose negative values of n. Right
panel: Values of refractive index squared (n2), the energy and the amplitude of a wave. n2

is negative for y > 0.8. See text for more description.
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Figure 9: Parameters for the second example considered in section 6.1, with all variables
nondimensional. The zonal flow has a broad eastward jet and β is constant. There is a
critical line at y = 0.2, and with zonal wavenumber k = 5 the wave properties are illustrated
in Fig. 10.

There is no critical line but depending on the x -wavenumber there may be a turning line,
and if we choose k = 1 then the turning line occurs when β = 1 and so at y = 0.8. Note that
the turning latitude depends on the value of the x -wavenumber — if the zonal wavenumber
is larger then waves will turn further south. The parameters are illustrated in Fig. 7.

For a given zonal wavenumber (k = 1 in this example) the value of l2 is computed using
(39b), and the components of the group velocity using (41), and these are illustrated in
Fig. 8. Note that we may choose either a positive or a negative value of l, corresponding to
northward or southward oriented waves, and we illustrate both in the figure. The value of
l2 becomes zero at y = 0.8, and this corresponds to a turning latitude. The values of the
wave amplitude and energy are computed using (44) and (45) (with an arbitrary amplitude
at y = 0) and these both become infinite at the turning latitude.

(ii) Waves with a critical latitude

A critical line occurs when u = c, corresponding to the upper bound of c, and from (39)
we see that at a critical line the meridional wavenumber approaches infinity. From (41) we
see that both the x - and y -components of the group velocity are zero — a wave packet
approaching a critical line just stops. Specifically, as l becomes large

cxg − u→ 0, cyg → 0,
cxg − u
cyg

→ − l
k
→ −∞. (52)

From (44) the amplitude of the wave packet also approaches zero, but its energy ap-
proaches infinity. Since the wavelength is very small we expect the waves to break and
deposit their momentum, and this situation commonly arises when Rossby waves excited
in midlatitudes propagate equatorward and encounter a critical latitude in the subtropics.

To illustrate this let us construct background state that has an eastward jet in midlati-
tudes becoming westward at low latitudes, with β constant chosen to be large enough so that
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Figure 10: Left: The group velocity evaluated using (41) for the parameters illustrated in
Fig. 7, which give a critical line at y = 0.2. For x < 0.5 we choose positive values of n,
and a northward group velocity, whereas for x > 0.5 we choose negative values of n. Right
panel: Values of refractive index squared, the energy and the amplitude of a wave. The
value of n2 becomes infinite at the critical line. See text for more description.

β − uyy is positive everywhere. (Specifically, we choose β = 1 and u = −0.03 sin(8πy/5 +
π/2) − 0.5), but the precise form is not important.) If c = 0 then there is a critical line
when u passes through zero, which in this example occurs at x = 0.2. (The value of u − c
is small at y = 1, but no critical line is actually reached.) These parameters are illustrated
in Fig. 9. We also choose k = 5, which results in a positive value for l2 everywhere.

As in the previous example, we compute the value of l2 using (39b) and the components
of the group velocity using (41), and these are illustrated in Fig. 10, with northward propa-
gating waves shown for x < 0.5 and southward propagating waves for x > 0.5. The value of
l2 increases considerably at the northern and southern edges of the domain, and is actually
infinite at the critical line at y = 0.2. Using (44) the amplitude of the wave diminishes
as the critical line approaches, but the energy increases rapidly, suggesting that the linear
approximation will break down. The waves will actually stall before reaching the critical
layer, because both the x and the y components of the group velocity become very small.
Also, because the wavelength is so small we may expect the waves to break and deposit
their momentum, but a full treatment of waves in the vicinity of a critical layer requires a
nonlinear analysis.

The situation illustrated in this example is of particular relevance to the maintenance
of the zonal wind structure in the troposphere. Waves are generated in midlatitude and
propagate equatorward and on encountering a critical layer in the subtropics they break,
deposit westward momentum and retard the flow, as the reader who braves the next section
will discover explicitly.
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7 Rossby Wave Absorption near a Critical Layer

We noted in the last section that as a wave approaches a critical latitude the meridional
wavenumber l becomes very large, but the group velocity itself becomes small. These ob-
servations suggest that the effects of friction might become very large and that the wave
would deposit its momentum, thereby accelerating or decelerating the mean flow, and if we
are willing to make one or two approximations we can construct an explicit analytic model
of this phenomena. Specifically, we will need to choose a simple form for the friction and
assume that the background properties vary slowly, so that we can use a WKB approxima-
tion. Note that we have to include some form of dissipation, otherwise the Eliassen–Palm
flux divergence is zero and there is no momentum deposition by the waves.

7.1 A model problem

Consider horizontally propagating Rossby waves obeying the linear barotropic vorticity
equation on the beta-plane (vertically propagating waves may be considered using similar
techniques). The equation of motion is

(
∂

∂t
+ u

∂

∂x

)
∇2ψ + β∗

∂ψ

∂x
= −r∇2ψ, (53)

where β∗ = β − uyy. The parameter r is a drag coefficient that acts directly on the relative
vorticity. It is not a particularly realistic form of dissipation but its simplicity will serve our
purpose well. We shall assume that r is small compared to the Doppler-shifted frequency
of the waves and seek solutions of the form

ψ′(x, y, t) = ψ̃(y)ei(k(x−ct)). (54)

Substituting into (53) we find, after a couple of lines of algebra, that ψ̃ satisfies, analogously
to (39),

∂2ψ̃

∂y2
+ l2(y)ψ̃ = 0, where l2(y) =

β∗

u− c− ir/k
− k2. (55a,b)

Evidently, as with the inviscid case, if the zonal wind has a lateral shear then l is a function
of y. However, l now has an imaginary component so that the wave decays away from its
source region. We can already see that if u = c the decay will be particularly strong.

7.2 WKB solution

Let us suppose that the zonal wavenumber is small compared to the meridional wavenumber
l, which will certainly be the case approaching a critical layer. If r � k(u − c) then the
meridional wavenumber is given by

l2(y) ≈
[
β∗(u− c+ ir/k)

(u− c)2 + r2/k2

]
≈ β∗

u− c

[
1 +

ir

k(u− c)

]
(56)

whence

l(y) ≈
(

β∗

u− c

)1/2 [
1 +

ir

2k(u− c)

]
. (57)
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The streamfunction itself is then given by, in the WKB approximation,

ψ̃ = Al−1/2 exp

(
±i

∫ y

l dy′
)
. (58)

But now the wave will decay as it moves away from its source and deposit momentum into
the mean flow, as we now calculate.

The momentum flux, Fk, associated with the wave with x -wavenumber of k is given by

Fk(y) = u′v′ = −ik

(
ψ
∂ψ∗

∂y
− ψ∗∂ψ

∂y

)
, (59)

and using (57) and (58) in (59) we obtain

Fk(y) = F0 exp

(
±i

∫ y

0
(l − l∗) dy′

)
= F0 exp

(∫ y

0

±rβ∗1/2
k(u− c)3/2 dy′

)
. (60)

In deriving this expression we use that fact that the amplitude of ψ̃ (i.e., l−1/2) varies only
slowly with y so that when calculating ∂ψ̃/∂y its derivative may be ignored. In (60) F0 is
the value of the flux at y = 0 and the sign of the exponent must be chosen so that the group
velocity is directed away from the wave source region. Clearly, if r = 0 then the momentum
flux is constant.

The integrand in (60) is the attenuation rate of the wave and it has a straightforward
physical interpretation. Using the real part of (57) in (41b), and assuming |l| � |k|, the
meridional component of the group velocity is given by

cyg =
2kl β∗

(k2 + l2)2
≈ 2k β∗

l3
=

2k(u− c)3/2
β∗1/2

. (61a,b)

Thus, we have

Wave attenuation rate =
rβ∗1/2

k(u− c)3/2 =
2×Dissipation rate = 2r

Meridional group velocity, cyg
. (62)

As the group velocity diminishes the dissipation has more time to act and so the wave is
preferentially attenuated, a result that we discuss more in the next subsection.

How does this attenuation affect the mean flow? The mean flow is subject to many
waves and so obeys the equation

∂u

∂t
= −

∑

k

∂Fk
∂y

+ viscous terms. (63)

Because the amplitude varies only slowly compared to the phase, the amplitude of ∂Fk/∂y
varies mainly with the attenuation rate (62) and is largest near a critical layer. Consider
a Rossby wave propagating away from some source region with a given frequency and x -
wavenumber. Because k is negative a Rossby wave always carries westward (or negative)
momentum with it. That is, Fk is always negative and increases (becomes more positive)
as the wave is attenuated; that is to say, if r 6= 0 then ∂Fk/∂y is positive and from (63)
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the mean flow is accelerated westward as the wave dissipates. This acceleration will be
particularly strong if the wave approaches a critical layer where u = c. Indeed, such a
situation arises when Rossby waves, generated in mid-latitudes, propagate equatorward.
As the waves enter the subtropics u− c becomes smaller and the waves dissipate, producing
a westward force on the mean flow, even though a true critical layer may never be reached.
Globally, momentum is conserved because there is an equal and opposite (and therefore
eastward) wave force at the wave source producing an eddy-driven jet, as discussed in the
previous lecture.

7.3 Interpretation using wave activity

We can derive and interpret the above results by thinking about the propagation of wave
activity. For barotropic Rossby waves, multiply (53) by ζ/β∗ and zonally average to obtain
the wave activity equation,

∂A
∂t

+
∂F
∂y

= −αA, (64)

where A = ζ ′2/2β∗ is the wave activity density, ∂F/∂y = v′ζ ′ is its flux divergence, and
α = 2r. Referring as needed to the discussion in sections A.2 and A.3, the flux obeys the
group velocity property so that

∂A
∂t

+
∂

∂y
(cgA) = −αA. (65)

Let us suppose that the wave is in a statistical steady state and that the spatial variation
of the group velocity occurs on a longer spatial scale than the variations in wave activity
density, consistent with the WKB approximation. We then have

cyg
∂A
∂y

= −αA. (66)

which integrates to give

A(y) = A0 exp

(
−
∫ y α

cyg
dy′
)
. (67)

That is, the attenuation rate of the wave activity is the dissipation rate of wave activity
divided by the group velocity, as in (60) and (62) (note that α = 2r).

Appendix A: Various properties of Rossby Waves

In this appendix we derive various properties of Rossby waves useful in wave–mean-flow
interaction theory, assuming a good knowledge of stratified quasi-geostrophic theory. We
use the Boussinesq approximation throughout. This material was not presented in the
lectures at Walsh.
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A.1 The Eliassen–Palm Flux

The eddy flux of potential vorticity may be expressed in terms of vorticity and buoyancy
fluxes as

v′q′ = v′ζ ′ + f0 v
′ ∂
∂z

(
b′

N2

)
. (68)

The second term on the right-hand side can be written as

f0 v
′ ∂
∂z

(
b′

N2

)
= f0

∂

∂z

(
v′b′

N2

)
− f0

∂v′

∂z

b′

N2

= f0
∂

∂z

(
v′b′

N2

)
− f0

∂

∂x

(
∂ψ′

∂z

)
b′

N2

= f0
∂

∂z

(
v′b′

N2

)
− f0

2

2N2

∂

∂x

(
∂ψ′

∂z

)2
,

(69)

using b′ = f0 ∂ψ
′/∂z .

Similarly, the flux of relative vorticity can be written

v′ζ ′ = − ∂

∂y
(u′v′) +

1

2

∂

∂x
(v′2 − u′2) (70)

Using (69) and (70), (68) becomes

v′q′ = − ∂

∂y
(u′v′) +

∂

∂z

(
f0
N2

v′b′
)

+
1

2

∂

∂x

(
(v′2 − u′2)− b′2

N2
.

)
(71)

Thus the meridional potential vorticity flux, in the quasi-geostrophic approximation, can
be written as the divergence of a vector: v′q′ = ∇ · E where

E ≡ 1

2

(
(v′2 − u′2)− b′2

N2

)
i− (u′v′) j +

(
f0
N2

v′b′
)

k. (72)

A particularly useful form of this arises after zonally averaging, for then (71) becomes

v′q′ = − ∂

∂y
u′v′ +

∂

∂z

(
f0
N2

v′b′
)
. (73)

The vector defined by

F ≡ −u′v′ j +
f0
N2

v′b′ k (74)

is called the (quasi-geostrophic) Eliassen–Palm (EP) flux (Eliassen & Palm (1961)), and
its divergence, given by (73), gives the poleward flux of potential vorticity:

v′q′ = ∇xF , (75)

where ∇x ≡ (∂/∂y, ∂/∂z)· is the divergence in the meridional plane. Unless the meaning
is unclear, the subscript x on the meridional divergence will be dropped.
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A.2 The Eliassen–Palm relation

On dividing by ∂q/∂y and using (75), the enstrophy equation becomes

∂A
∂t

+∇ · F = D, (76a)

where

A =
q′2

2∂q/∂y
, D =

D′q′

∂q/∂y
. (76b)

Equation (76a) is known as the Eliassen–Palm relation, and it is a conservation law for
the wave activity density A. The conservation law is exact (in the linear approximation) if
the mean flow is constant in time. It will be a good approximation if ∂q/∂y varies slowly
compared to the variation of q′2.

If we integrate (76b) over a meridional area A bounded by walls where the eddy activity
vanishes, and if D = 0, we obtain

d

dt

∫

A
AdA = 0. (77)

The integral is a wave activity — a quantity that is quadratic in the amplitude of the
perturbation and that is conserved in the absence of forcing and dissipation. In this case A
is the negative of the pseudomomentum, for reasons we will encounter later. (‘Wave action’
is a particular form of wave activity; it is the energy divided by the frequency and it is
a conserved property in many wave problems.) Note that neither the perturbation energy
nor the perturbation enstrophy are wave activities of the linearized equations, because there
can be an exchange of energy or enstrophy between mean and perturbation — indeed, this
is how a perturbation grows in baroclinic or barotropic instability! This is already evident
from an enstrophy equation. Or, in general, take the linearized PV equation with D′ = 0
and multiply by q′ to give the enstrophy equation

1

2

∂q′2

∂t
+

1

2
u · ∇q′2 + u ′q′ · ∇q = 0, (78)

where here the overbar is an average (although it need not be a zonal average). Integrating
this over a volume V gives

dẐ ′

dt
≡ d

dt

∫

V

1

2
q′2 dV = −

∫

V
u ′q′ · ∇q dV. (79)

The right-hand side does not, in general, vanish and so Ẑ ′ is not in general conserved.

A.3 The group velocity property for Rossby waves

The vector F describes how the wave activity propagates. In the case in which the distur-
bance is composed of plane or almost plane waves that satisfy a dispersion relation, then
F = cgA, where cg is the group velocity and (76a) becomes

∂A
∂t

+∇ · (Acg) = 0. (80)
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This is a useful property, because if we can diagnose cg from observations we can use (76a)
to determine how wave activity density propagates. Let us demonstrate this explicitly for
the pseudomomentum in Rossby waves, that is for (76a).

The Boussinesq quasi-geostrophic equation on the β -plane, linearized around a uniform
zonal flow and with constant static stability, is

∂q′

∂t
+ u

∂q′

∂x
+ v′

∂q

∂y
= 0, (81)

where q′ = [∇2 + (f0
2/N2)∂2/∂z2]ψ′ and, if u is constant, ∂q/∂y = β. Thus, we have

(
∂

∂t
+ u

∂

∂x

)[
∇2ψ′ +

∂

∂z

(
f0

2

N2

∂ψ′

∂z

)]
+ β

∂ψ′

∂x
= 0. (82)

Seeking solutions of the form

ψ′ = Re ψ̃ei(kx+ly+mz−ωt), (83)

we find the dispersion relation,

ω = uk − βk

κ2
. (84)

where κ2 = (k2 + l2 +m2f0
2/N2), and the group velocity components:

cyg =
2βkl

κ4
, czg =

2βkmf0
2/N2

κ4
. (85)

Also, if u′ = Re ũ exp[i(kx+ ly +mz − ωt)], and similarly for the other fields, then

ũ = −Re ilψ̃, ṽ = Re ikψ̃,

b̃ = Re imf0 ψ̃, q̃ = −Reκ2ψ̃,
(86)

The wave activity density is then

A =
1

2

q′2

β
=
κ4

4β
|ψ̃2|, (87)

where the additional factor of 2 in the denominator arises from the averaging. Using (86)
the EP flux, (74), is

Fy = −u′v′ =
1

2
kl|ψ̃2|, Fz =

f0
N2

v′b′ =
f0

2

2N2
km|ψ̃2|. (88)

Using (85), (87) and (88) we obtain

F = (Fy,Fz) = cgA. (89)

If the properties of the medium are slowly varying, so that a (spatially varying) group
velocity can still be defined, then this is a useful expression to estimate how the wave
activity propagates in the atmosphere and in numerical simulations.
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A.4 Energy flux in Rossby waves

Start with
∂

∂t

(
∇2 − k2d

)
ψ + β

∂ψ

∂x
= 0. (90)

To obtain an energy equation multiply (90) by −ψ and obtain

1

2

∂

∂t

(
(∇ψ)2 + k2dψ

2
)
−∇ ·

(
ψ∇∂ψ

∂t
+ i

β

2
ψ2

)
= 0, (91)

where i is the unit vector in the x direction. The first group of terms are the energy itself, or
more strictly the energy density. (An energy density is an energy per unit mass or per unit
volume, depending on the context.) The term (∇ψ)2/2 = (u2 + v2)/2 is the kinetic energy
and k2dψ

2/2 is the potential energy, proportional to the displacement of the free surface,
squared. The second term is the energy flux, so that we may write

∂E

∂t
+∇ · F = 0. (92)

where E = (∇ψ)2/2 + kd
2ψ2 and F = −

(
ψ∇∂ψ/∂t + iβψ2

)
. We haven’t yet used the

fact that the disturbance has a dispersion relation, and if we do so we may expect that the
energy moves at the group velocity. Let us now demonstrate this explicitly.

We assume a solution of the form

ψ = A(x) cos(k · x− ωt) = A(x) cos (kx+ ly − ωt) (93)

where A(x) is assumed to vary slowly compared to the nearly plane wave. (Note that k
is the wave vector, to be distinguished from k, the unit vector in the z -direction.) The
kinetic energy in a wave is given by

KE =
A2

2

(
ψ2
x + ψ2

y

)
(94)

so that, averaged over a wave period,

KE =
A2

2
(k2 + l2)

ω

2π

∫ 2π/ω

0
sin2(k · x− ωt) dt. (95)

The time-averaging produces a factor of one half, and applying a similar procedure to the
potential energy we obtain

KE =
A2

4
(k2 + l2), PE =

A2

4
k2d, (96)

so that the average total energy is

E =
A2

4
(K2 + kd

2), (97)

where K2 = k2 + l2.
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The flux, F, is given by

F = −
(
ψ∇∂ψ

∂t
+ i

β

2
ψ2

)
= −A2 cos2(k · x− ωt)

(
kω − i

β

2

)
, (98)

so that evidently the energy flux has a component in the direction of the wavevector, k,
and a component in the x -direction. Averaging over a wave period straightforwardly gives
us additional factors of one half:

F = −A
2

2

(
kω + i

β

2

)
. (99)

We now use the dispersion relation ω = −βk/(K2 + kd
2) to eliminate the frequency, giving

F =
A2β

2

(
k

k

K2 + kd 2
− i

1

2

)
, (100)

and writing this in component form we obtain

F =
A2β

4

[
i

(
k2 − l2 − kd 2

K2 + kd 2

)
+ j

(
2kl

K2 + k2d

)]
(101)

Comparison of (101) with (15) and (97) reveals that

F = cgE (102)

so that the energy propagation equation, (92), when averaged over a wave, becomes

∂E

∂t
+∇ · cgE = 0. (103)

This is an important result, and more general than our derivation implies. One immediate
implication is that if there is a disturbance that generates waves, the group velocity is
directed away from the disturbance.

Most of the time in waves, energy is not conserved because it can be extracted from the
flow.

Appendix B: The WKB Approximation for Linear Waves

We are concerned with finding solutions to an equation of the form

d2ξ

dz2
+m2(z)ξ = 0, (104)

where m2(z) is positive for wavelike solutions. If m is constant the solution has the harmonic
form

ξ = ReA0eimz (105)

where A0 is a complex constant. If m varies only ‘slowly’ with z — meaning that the
variations occur on a scale much longer than 1/m — one might reasonably expect that the
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harmonic solution above would provide a reasonable first approximation; that is, we expect
the solution to locally look like a plane wave with local wavenumber m(z). However, we
might also expect that the solution would not be exactly of the form exp(im(z)z), because
the phase of ξ is θ(z) = mz, so that dθ/dz = m + zdm/dz 6= m. Thus, in (105) m is not
the wavenumber unless m is constant. Nevertheless, this argument suggests that we seek
solutions of a similar form to (105), and we find such solutions by way of a perturbation
expansion below. We note that the condition that variations in m, or in the wavelength
m−1, occur only slowly may be expressed as

m

|∂m/∂z | � m−1 or

∣∣∣∣
∂m

∂z

∣∣∣∣� m2. (106)

This condition will generally be satisfied if variations in the background state, or in the
medium, occur on a scale much longer than the wavelength.

B.1 Solution by perturbation expansion

To explicitly recognize the rapid variation of m we rescale the coordinate z with a small
parameter ε; that is, we let ẑ = εz where ẑ varies by O(1) over the scale on which m varies.
Eq. (104) becomes

ε2
d2ξ

dẑ2
+m2(ẑ)ξ = 0, (107)

and we may now suppose that all variables are O(1). If m were constant the solution would
be of the form ξ = A exp(mẑ/ε) and this suggests that we look for a solution to (107) of
the form

ξ(z) = eg(ẑ)/ε, (108)

where g(ẑ) is some as yet unknown function. We then have, with primes denoting deriva-
tives,

ξ′ =
1

ε
g′eg/ε, ξ′′ =

(
1

ε2
g′2 +

1

ε
g′′
)

eg/ε. (109a,b)

Using these expressions in (107) yields

εg′′ + g′2 +m2 = 0, (110)

and if we let g =
∫
hdẑ we obtain

ε
dh

dẑ
+ h2 +m2 = 0. (111)

To obtain a solution of this equation we expand h in powers of the small parameter ε,

h(ẑ; ε) = h0(ẑ) + εh1(ẑ) + ε2h2(ẑ) + · · · . (112)

Substituting this in (111) and setting successive powers of ε to zero gives, at first and second
order,

h20 +m2 = 0, 2h0h1 +
dh0
dẑ

= 0. (113a,b)
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The solutions of these equations are

h0 = ±im, h1(ẑ) = −1

2

d

dẑ
ln
m(ẑ)

m0
. (114a,b)

where m0 is a constant. Now, ignoring higher-order terms, (108) may be written in terms
of h0 and h1 as

ξ(ẑ) = exp

(∫
h0 dẑ/ε

)
exp

(∫
h1 dẑ

)
, (115)

and, using (114) and with z in place of ẑ, we obtain

ξ(z) = A0m
−1/2 exp

(
±i

∫
m dz

)
. (116)

where A0 is a constant, and this is the WKB solution to (104). In general

ξ(z) = B0m
−1/2 exp

(
i

∫
mdz

)
+ C0m

−1/2 exp

(
−i

∫
m dz

)
. (117)

or

ξ(z) = D0m
−1/2 cos

(∫
m dz

)
+ E0m

−1/2 sin

(∫
mdz

)
. (118)

A property of (116) is that the derivative of the phase is just m; that is, m is indeed
the local wavenumber. Note that a crucial aspect of the derivation is that m varies slowly,
so that there is a small parameter, ε, in the problem. Having said this, it is often the case
that WKB theory can provide qualitative guidance even when there is little scale separation
between the variation of the background state and the wavelength. Asymptotics often works
when it seemingly shouldn’t.
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