Hamiltonian formulation: water waves Lecture 3

Wm. R. Hamilton

V.E. Zakharov

Hamiltonian formulation: water waves

This lecture:

- A. Rapid review of Hamiltonian machinery (see also extra notes)
- B. Hamiltonian formulation of water waves
 - Zakharov, 1967, 1968
 - [Lagrangian formulation Luke, 1967]
- C. Some consequences of Hamiltonian structure

1. Example: nonlinear oscillator

$$\ddot{\theta} + \omega^2 \theta + \alpha \theta^3 = 0, \qquad \omega^2 > 0, \quad \dot{\theta} = \frac{d\theta}{dt}$$

1. Example: nonlinear oscillator

$$\ddot{\theta} + \omega^2 \theta + \alpha \theta^3 = 0, \qquad \omega^2 > 0, \quad \dot{\theta} = \frac{d\theta}{dt}$$

a) Find an energy integral

$$\dot{\theta} \cdot (eq'n) \Rightarrow E = \frac{1}{2}(\dot{\theta})^2 + \frac{\omega^2}{2}(\theta)^2 + \frac{\alpha}{4}(\theta)^4 = const.$$

1. Example: nonlinear oscillator

$$\ddot{\theta} + \omega^2 \theta + \alpha \theta^3 = 0, \qquad \omega^2 > 0, \quad \dot{\theta} = \frac{d\theta}{dt}$$

a) Find an energy integral

$$\dot{\theta} \cdot (eq'n) \Rightarrow E = \frac{1}{2}(\dot{\theta})^2 + \frac{\omega^2}{2}(\theta)^2 + \frac{\alpha}{4}(\theta)^4 = const.$$

b) Write eq'n as a first-order system Define $q = \theta(t), p = \dot{\theta}(t)$

equivalent:

$$\dot{q} = p,$$
$$\dot{p} = -\omega^2 q - \alpha q^3$$

1. Example: nonlinear oscillator

$$\ddot{\theta} + \omega^2 \theta + \alpha \theta^3 = 0, \qquad \omega^2 > 0, \quad \dot{\theta} = \frac{d\theta}{dt}$$

a) Find an energy integral

$$\dot{\theta} \cdot (eq'n) \Rightarrow E = \frac{1}{2}(\dot{\theta})^2 + \frac{\omega^2}{2}(\theta)^2 + \frac{\alpha}{4}(\theta)^4 = const.$$

b) Write eq'n as a first-order system Define $q = \theta(t), \quad p = \dot{\theta}(t)$ equivalent: $\dot{q} = p,$

Q

$$\dot{q} = p,$$

$$\dot{p} = -\omega^2 q - \alpha q^3$$

2. Definition: A system of 2*N* first-order ODEs is <u>Hamiltonian</u> if there exist *N* pairs of coordinates on the phase space,

$$\{p_j(t), q_j(t)\}, \quad j = 1, 2, ..., N,$$

and a real-valued Hamiltonian function,

 $H(\vec{p(t)}, \vec{q(t)}, t),$

such that the original equations are equivalent to

$$\dot{q}_{j} = \frac{dq_{j}}{dt} = \frac{\partial H}{\partial p_{j}}, \quad \dot{p}_{j} = -\frac{\partial H}{\partial q_{j}}, \quad j = 1, 2, \dots, N.$$

2. Definition: A system of 2*N* first-order ODEs is <u>Hamiltonian</u> if there exist *N* pairs of coordinates on the phase space,

$$\{p_j(t), q_j(t)\}, \quad j = 1, 2, ..., N,$$

and a real-valued Hamiltonian function,

 $H(\vec{p(t)}, \vec{q(t)}, t),$

such that the original equations are equivalent to

$$\dot{q}_{j} = \frac{dq_{j}}{dt} = \frac{\partial H}{\partial p_{j}}, \quad \dot{p}_{j} = -\frac{\partial H}{\partial q_{j}}, \quad j = 1, 2, ..., N.$$

In example, $N = 1$, choose $H = E = \frac{1}{2}p^{2} + \frac{\omega^{2}}{2}q^{2} + \frac{\alpha}{4}q^{4}.$

2. Definition: A system of 2*N* first-order ODEs is <u>Hamiltonian</u> if there exist *N* pairs of coordinates on the phase space,

$$\{p_j(t), q_j(t)\}, \quad j = 1, 2, ..., N,$$

and a real-valued Hamiltonian function,

 $H(\vec{p(t)}, \vec{q(t)}, t),$

such that the original equations are equivalent to

$$\dot{q}_{j} = \frac{dq_{j}}{dt} = \frac{\partial H}{\partial p_{j}}, \quad \dot{p}_{j} = -\frac{\partial H}{\partial q_{j}}, \quad j = 1, 2, ..., N.$$

In example, N = 1, choose $H = E = \frac{1}{2}p^2 + \frac{\omega^2}{2}q^2 + \frac{\alpha}{4}q^4$.

$$\dot{q} = p = \frac{\partial H}{\partial p}$$

2. Definition: A system of 2*N* first-order ODEs is <u>Hamiltonian</u> if there exist *N* pairs of coordinates on the phase space,

$$\{p_j(t), q_j(t)\}, \quad j = 1, 2, ..., N,$$

and a real-valued Hamiltonian function,

ATT

 $H(\vec{p(t)}, \vec{q(t)}, t),$

such that the original equations are equivalent to

$$\dot{q}_{j} = \frac{dq_{j}}{dt} = \frac{\partial H}{\partial p_{j}}, \quad \dot{p}_{j} = -\frac{\partial H}{\partial q_{j}}, \quad j = 1, 2, ..., N.$$

In example, N = 1, choose $H = E = \frac{1}{2}p^2 + \frac{\omega^2}{2}q^2 + \frac{\alpha}{4}q^4$.

$$\dot{q} = p = \frac{\partial H}{\partial p}$$
 \checkmark $\dot{p} = -\omega^2 q - \alpha q^3 = -\frac{\partial H}{\partial q}$ \checkmark

- 3. Comments
- a) Not every system of 2*N* first-order ODEs is Hamiltonian.
- b) An essential property of a Hamiltonian system:
 the flow preserves volume in phase space.
 (The volume of a "ball" of initial data is preserved.)
- c) H is often the physical energy, but not necessarily.
- *d) H* is often a constant of the motion, but not necessarily.

- 4. Plausibility argument for volume-preserving flows.
- Start with *M* first-order ODEs

$$\frac{dx_j}{dt} = v_j(\vec{x},t), \quad j = 1,2,...,M.$$

- 4. Plausibility argument for volume-preserving flows.
- Start with *M* first-order ODEs

$$\frac{dx_j}{dt} = v_j(\vec{x}, t), \quad j = 1, 2, ..., M.$$

- Imagine a "fluid" that fills the *M*-dimensional phase space.
- → { $x_1(t), x_2(t), ..., x_M(t)$ } are the coordinates of a fluid particle,
- → { $v_1(t)$, $v_2(t)$, ..., $v_M(t)$ } are the components of fluid velocity.

- 4. Plausibility argument for volume-preserving flows. (See p. 69 of Arnold's "Classical Mechanics" for a real proof)
- Start with *M* first-order ODEs

$$\frac{dx_j}{dt} = v_j(\vec{x}, t), \quad j = 1, 2, ..., M.$$

- Imagine a "fluid" that fills the *M*-dimensional phase space.
- → { $x_1(t), x_2(t), ..., x_M(t)$ } are the coordinates of a fluid particle,
- → { $v_1(t), v_2(t), ..., v_M(t)$ } are the components of fluid velocity.
- The fluid is "incompressible", so volume is preserved if

$$\nabla \cdot \vec{v} = \sum_{j=1}^{M} \frac{\partial v_j}{\partial x_j} = 0$$

- 4. Plausibility argument for volume-preserving flows.
- <u>Claim</u>: Any Hamiltonian system of ODEs with a smooth Hamiltonian is volume-preserving,

because $\nabla \cdot \vec{v} = 0$

- 4. Plausibility argument for volume-preserving flows.
- <u>Claim</u>: Any Hamiltonian system of ODEs with a smooth Hamiltonian is volume-preserving, because $\nabla \cdot \vec{v} = 0$

• **Proof:**
$$\frac{dq_j}{dt} = \frac{\partial H}{\partial p_j}, \quad \frac{dp_j}{dt} = -\frac{\partial H}{\partial q_j}, \quad j = 1, 2, ..., N.$$

- 4. Plausibility argument for volume-preserving flows.
- <u>Claim</u>: Any Hamiltonian system of ODEs with a smooth Hamiltonian is volume-preserving, because $\nabla \cdot \vec{v} = 0$

• **Proof:**
$$\frac{dq_j}{dt} = \frac{\partial H}{\partial p_j}, \quad \frac{dp_j}{dt} = -\frac{\partial H}{\partial q_j}, \quad j = 1, 2, ..., N.$$

$$\nabla \cdot \vec{v} = \sum_{j=1}^{N} \frac{\partial}{\partial q_{j}} \left(\frac{dq_{j}}{dt}\right) + \sum_{j=1}^{N} \frac{\partial}{\partial p_{j}} \left(\frac{dp_{j}}{dt}\right)$$
$$= \sum_{j=1}^{N} \frac{\partial}{\partial q_{j}} \left(\frac{\partial H}{\partial p_{j}}\right) + \sum_{j=1}^{N} \frac{\partial}{\partial p_{j}} \left(-\frac{\partial H}{\partial q_{j}}\right)$$
$$= 0.$$

5. Hamiltonian PDEs

Example: nonlinear wave equation, periodic b.c.

$$\partial_t^2 \theta = c^2 \partial_x^2 \theta - \omega^2 \theta - \alpha \theta^3$$

5. Hamiltonian PDEs

Example: nonlinear wave equation, periodic b.c.

$$\partial_t^2 \theta = c^2 \partial_x^2 \theta - \omega^2 \theta - \alpha \theta^3$$

a) Find energy integral

$$E = \int \left[\frac{1}{2}(\partial_t \theta)^2 + \frac{c^2}{2}(\partial_x \theta)^2 + \frac{\omega^2}{2}\theta^2 + \frac{\alpha}{4}\theta^4\right]dx, \qquad \frac{dE}{dt} = 0.$$

5. Hamiltonian PDEs

Example: nonlinear wave equation, periodic b.c.

$$\partial_t^2 \theta = c^2 \partial_x^2 \theta - \omega^2 \theta - \alpha \theta^3$$

a) Find energy integral

$$E = \int \left[\frac{1}{2}(\partial_t \theta)^2 + \frac{c^2}{2}(\partial_x \theta)^2 + \frac{\omega^2}{2}\theta^2 + \frac{\alpha}{4}\theta^4\right]dx, \qquad \frac{dE}{dt} = 0.$$

b) Choose "conjugate variables"

$$p(x,t) = \partial_t \theta(x,t), \quad q(x,t) = \theta(x,t).$$

"index" (*j*) becomes continuous (*x*)

5. Hamiltonian PDEs

Example: nonlinear wave equation, periodic b.c.

$$\partial_t^2 \theta = c^2 \partial_x^2 \theta - \omega^2 \theta - \alpha \theta^3$$

a) Find energy integral

$$E = \int \left[\frac{1}{2}(\partial_t \theta)^2 + \frac{c^2}{2}(\partial_x \theta)^2 + \frac{\omega^2}{2}\theta^2 + \frac{\alpha}{4}\theta^4\right]dx, \qquad \frac{dE}{dt} = 0.$$

b) Choose "conjugate variables"

$$p(x,t) = \partial_t \theta(x,t), \quad q(x,t) = \theta(x,t).$$

"index" (*j*) becomes continuous (*x*)

c) Guess:
$$H(p,q,t) = \int \left[\frac{1}{2}p^2 + \frac{c^2}{2}(\partial_x q)^2 + \frac{\omega^2}{2}q^2 + \frac{\alpha}{4}q^4\right]dx$$

Q: What happens to $(\frac{\partial H}{\partial p_j})$ in the PDE setting?

Q: What happens to $\left(\frac{\partial H}{\partial p_i}\right)$ in the PDE setting?

Define variational derivative:

Start with $H(p,q,t) = \int [...]dx$

Review of Hamiltonian systems Q: What happens to $\left(\frac{\partial H}{\partial p_{j}}\right)$ in the PDE setting? Define <u>variational derivative</u>: Start with $H(p,q,t) = \int [...]dx$

$$H(p + \delta p, q, t) - H(p, q, t) = \int [(**)\delta p + O((\delta p)^{2}]dx$$

this defines variational derivative: $\frac{\delta H}{\delta p}$

Review of Hamiltonian systems Q: What happens to $\left(\frac{\partial H}{\partial p_i}\right)$ in the PDE setting? Define variational derivative: Start with $H(p,q,t) = \int [...]dx$ $H(p + \delta p, q, t) - H(p, q, t) = \int [(**)\delta p + O((\delta p)^2] dx$ this defines variational derivative: $\frac{\delta H}{\delta t}$ $H(p,q+\delta q,t) - H(p,q,t) = \int [(\frac{\delta H}{\delta a})\delta q + O((\delta q)^2]dx$

Review of Hamiltonian systems Q: What happens to $\left(\frac{\partial H}{\partial p_i}\right)$ in the PDE setting? Define variational derivative: Start with $H(p,q,t) = \int [...]dx$ $H(p + \delta p, q, t) - H(p, q, t) = \int [(**)\delta p + O((\delta p)^2] dx$ this defines variational derivative: $\frac{\delta H}{\delta t}$ δp $H(p,q+\delta q,t) - H(p,q,t) = \int \left[(\frac{\delta H}{\delta q}) \delta q + O((\delta q)^2) dx \right] dx$ Example: $H(p,q,t) = \int [\frac{1}{2}p^2 + \frac{c^2}{2}(\partial_x q)^2 + \frac{\omega^2}{2}q^2 + \frac{\alpha}{4}q^4]dx$ Q: What is $\frac{\delta H}{\delta n}$? Why?

Q: What happens to $(\frac{\partial H}{\partial q_j})$ in the PDE setting?

Continue example:
$$H(p,q,t) = \int [\frac{1}{2}p^2 + \frac{c^2}{2}(\partial_x q)^2 + \frac{\omega^2}{2}q^2 + \frac{\alpha}{4}q^4]dx$$

Review of Hamiltonian systems Q: What happens to $(\frac{\partial H}{\partial q_j})$ in the PDE setting? Continue example: $H(p,q,t) = \int [\frac{1}{2}p^2 + \frac{c^2}{2}(\partial_x q)^2 + \frac{\omega^2}{2}q^2 + \frac{\alpha}{4}q^4]dx$

$$H(p,q+\delta q,t) - H(p,q,t) = \int [c^{2}(\partial_{x}q)(\partial_{x}\delta q) + \omega^{2}q\delta q + \alpha q^{3}\delta q + O((\delta q)^{2})]dx$$

new twist: integrate by parts, with $\delta q = 0$ on boundaries

Review of Hamiltonian systems Q: What happens to $(\frac{\partial H}{\partial q_j})$ in the PDE setting? Continue example: $H(p,q,t) = \int [\frac{1}{2}p^2 + \frac{c^2}{2}(\partial_x q)^2 + \frac{\omega^2}{2}q^2 + \frac{\alpha}{4}q^4]dx$

$$H(p,q+\delta q,t) - H(p,q,t) = \int [c^{2}(\partial_{x}q)(\partial_{x}\delta q) + \omega^{2}q\delta q + \alpha q^{3}\delta q + O((\delta q)^{2})]dx$$

new twist: integrate by parts, with $\delta q = 0$ on boundaries

$$\Rightarrow H(p,q+\delta q,t) - H(p,q,t) = \int [(-c^2 \partial_x^2 q + \omega^2 q + \alpha q^3) \delta q + O((\delta q)^2)] dx$$

Review of Hamiltonian systems Q: What happens to $(\frac{\partial H}{\partial q_j})$ in the PDE setting? Continue example: $H(p,q,t) = \int [\frac{1}{2}p^2 + \frac{c^2}{2}(\partial_x q)^2 + \frac{\omega^2}{2}q^2 + \frac{\alpha}{4}q^4]dx$

$$H(p,q+\delta q,t) - H(p,q,t) = \int [c^{2}(\partial_{x}q)(\partial_{x}\delta q) + \omega^{2}q\delta q + \alpha q^{3}\delta q + O((\delta q)^{2})]dx$$

new twist: integrate by parts, with $\delta q = 0$ on boundaries

$$\Rightarrow H(p,q+\delta q,t) - H(p,q,t) = \int [(-c^2 \partial_x^2 q + \omega^2 q + \alpha q^3) \delta q + O((\delta q)^2)] dx$$

End of lightning tour of Hamiltonian systems

B. Inviscid water waves

Recall:

$$\partial_t \eta + \nabla \phi \cdot \nabla \eta = \partial_z \phi,$$

on $z = \eta(x, y, t)$

$$\partial_t \phi + \frac{1}{2} |\nabla \phi|^2 + g\eta = \frac{\sigma}{\rho} \nabla \cdot \{ \frac{\nabla \eta}{\sqrt{1 + |\nabla \eta|^2}} \},$$

on $z = \eta(x, y, t)$

$$\nabla^2 \phi = 0 \qquad -h(x, y) < z < \eta(x, y, t)$$

$$\partial_n \phi = 0 \qquad \text{on } z = -h(x, y)$$

B. Inviscid water waves

Recall:

$$\partial_t \eta + \nabla \phi \cdot \nabla \eta = \partial_z \phi,$$

on $z = \eta(x, y, t)$

$$\partial_t \phi + \frac{1}{2} |\nabla \phi|^2 + g\eta = \frac{\sigma}{\rho} \nabla \cdot \{ \frac{\nabla \eta}{\sqrt{1 + |\nabla \eta|^2}} \},$$

on $z = \eta(x, y, t)$

$$\nabla^2 \phi = 0 \qquad -h(x, y) < z < \eta(x, y, t)$$

$$\partial_n \phi = 0 \qquad \text{on } z = -h(x, y)$$

Q: Where does t-evolution occur? A. (Zakharov): on $z = \eta(x,y,t)$

B. Inviscid water waves

Recall:

$$\partial_t \eta + \nabla \phi \cdot \nabla \eta = \partial_z \phi, \qquad \text{on } z = \eta(x, y, t)$$

$$\partial_t \phi + \frac{1}{2} |\nabla \phi|^2 + g\eta = \frac{\sigma}{\rho} \nabla \cdot \{ \frac{\nabla \eta}{\sqrt{1 + |\nabla \eta|^2}} \}, \qquad \text{on } z = \eta(x, y, t)$$

$$\nabla^2 \phi = 0 \qquad -h(x, y) < z < \eta(x, y, t)$$

$$\partial_n \phi = 0 \qquad \text{on } z = -h(x, y)$$

- Q: Where does t-evolution occur?
- A. (Zakharov): on $z = \eta(x,y,t)$
- ➔ Propose conjugate variables:

$$\eta(x,y,t), \quad \psi(x,y,t) = \phi(x,y,z,t) \mid_{z=\eta}$$

Water waves as Hamiltonian system

$$\eta(x,y,t), \quad \psi(x,y,t) = \phi(x,y,z,t) \mid_{z=\eta}$$

Water waves as Hamiltonian system

$$\eta(x,y,t), \quad \psi(x,y,t) = \phi(x,y,z,t) \mid_{z=\eta}$$

Plausibility check: periodic b.c. $\nabla^2 \phi = 0$ Suppose at some fixed t, $\{\eta(x,y,t), \psi = \phi(x,y,t)|_{z=\eta}\}$ are given. Then $\phi(x,y,z,t)$ is determined uniquely in domain.

[We need a procedure to find $\phi(x,y,z,t)$ from $\{\eta, \psi\}$].

Result: At any fixed time, $\{\eta, \psi\}$ determine the entire solution.

Water waves as Hamiltonian system

Proposed conjugate variables:

$$\eta(x,y,t), \quad \psi(x,y,t) = \phi(x,y,z,t) \mid_{z=\eta}$$

- Q: What is $H(\eta, \psi)$?
- A: Physical energy (from HW #1):

$$H = \iint_{R} \left[\frac{1}{2} \int_{-h}^{\eta} |\nabla \phi|^{2} dz + \frac{1}{2} g \eta^{2} + \frac{\sigma}{\rho} (\sqrt{1 + |\nabla \eta|^{2}} - 1) \right] dx dy$$

$$\int_{-h}^{\pi} \int_{-h}^{\pi} \left[\sqrt{1 + |\nabla \eta|^{2}} - 1 \right] dx dy$$
kinetic energy potential energy

Claim (Zakharov, 1968):

Let R be a fixed region in x-y plane. Let h(x,y) be continuous and differentiable on R. Define

$$H(\eta,\psi) = \iint_{R} \left[\frac{1}{2} \int_{-h}^{\eta} |\nabla \phi|^{2} dz + \frac{1}{2} g \eta^{2} + \frac{\sigma}{\rho} (\sqrt{1 + |\nabla \eta|^{2}} - 1)\right] dx dy$$

We need to show that

$$\partial_t \eta = \frac{\delta H}{\delta \psi}, \quad \partial_t \psi = -\frac{\delta H}{\delta \eta}$$

are equivalent to the two boundary conditions on $z = \eta(x,y,t)$.

<u>Step 1</u>: Rewrite 2 eq'ns on $z = \eta$ in terms of $\{\eta, \psi\}$ and <u>normal</u> velocity on $z = \eta$.

• Define $F(x,y,z,t) = z - \eta(x,y,t)$, so F = 0 on $z = \eta$.

<u>Step 1</u>: Rewrite 2 eq'ns on $z = \eta$ in terms of $\{\eta, \psi\}$ and <u>normal</u> velocity on $z = \eta$.

- Define $F(x,y,z,t) = z \eta(x,y,t)$, so F = 0 on $z = \eta$.
- unit normal vector on $z = \eta$:

$$n = \frac{\nabla F}{|\nabla F|} = \frac{\{-\partial_x \eta, -\partial_y \eta, 1\}}{\sqrt{1+|\nabla \eta|^2}}.$$

<u>Step 1</u>: Rewrite 2 eq'ns on $z = \eta$ in terms of $\{\eta, \psi\}$ and <u>normal</u> velocity on $z = \eta$.

- Define $F(x,y,z,t) = z \eta(x,y,t)$, so F = 0 on $z = \eta$.
- unit normal vector on $z = \eta$:

$$n = \frac{\nabla F}{|\nabla F|} = \frac{\{-\partial_x \eta, -\partial_y \eta, 1\}}{\sqrt{1 + |\nabla \eta|^2}}$$

• Normal component of velocity on $z = \eta$:

$$\partial_{n}\phi = \nabla\phi \cdot \hat{n} = \frac{-\nabla\phi \cdot \nabla\eta + \partial_{z}\phi}{\sqrt{1 + |\nabla\eta|^{2}}}$$

<u>Step 1</u>: Rewrite 2 eq'ns on $z = \eta$ in terms of $\{\eta, \psi\}$ and <u>normal</u> velocity on $z = \eta$.

- Define $F(x,y,z,t) = z \eta(x,y,t)$, so F = 0 on $z = \eta$.
- unit normal vector on $z = \eta$:

$$n = \frac{\nabla F}{|\nabla F|} = \frac{\{-\partial_x \eta, -\partial_y \eta, 1\}}{\sqrt{1+|\nabla \eta|^2}}$$

• Normal component of velocity on $z = \eta$:

$$\partial_{n}\phi = \nabla\phi \cdot \hat{n} = \frac{-\nabla\phi \cdot \nabla\eta + \partial_{z}\phi}{\sqrt{1 + |\nabla\eta|^{2}}}$$

• Eq'n #1 on $z = \eta$:

$$\partial_t \eta + \nabla \phi \cdot \nabla \eta = \partial_z \phi \qquad \iff \quad \partial_t \eta = \sqrt{1 + |\nabla \eta|^2} \partial_n \phi.$$

<u>Step 2</u>: Rewrite 2^{nd} eq'n on $z = \eta$:

•
$$\partial_t \phi + \frac{1}{2} |\nabla \phi|^2 + g\eta - \frac{\sigma}{\rho} \nabla \cdot \{\frac{\nabla \eta}{\sqrt{1 + |\nabla \eta|^2}}\} = 0$$

<u>Step 2</u>: Rewrite 2^{nd} eq'n on $z = \eta$:

•
$$\partial_t \phi + \frac{1}{2} |\nabla \phi|^2 + g\eta - \frac{\sigma}{\rho} \nabla \cdot \{\frac{\nabla \eta}{\sqrt{1 + |\nabla \eta|^2}}\} = 0$$

• But
$$\psi(x,y,t) = \phi(x,y,z,t) |_{z=\eta(x,y,t)}$$

$$\rightarrow \qquad \partial_t \psi = \partial_t \phi |_{z=\eta} + \partial_z \phi |_{z=\eta} \partial_t \eta \qquad \text{(chain rule)}$$

<u>Step 2</u>: Rewrite 2^{nd} eq'n on $z = \eta$:

•
$$\partial_t \phi + \frac{1}{2} |\nabla \phi|^2 + g\eta - \frac{\sigma}{\rho} \nabla \cdot \{\frac{\nabla \eta}{\sqrt{1 + |\nabla \eta|^2}}\} = 0$$

• But
$$\psi(x,y,t) = \phi(x,y,z,t) |_{z=\eta(x,y,t)}$$

$$\Rightarrow \qquad \partial_t \psi = \partial_t \phi |_{z=\eta} + \partial_z \phi |_{z=\eta} \partial_t \eta \qquad \text{(chain rule)}$$
$$= \partial_t \phi |_{z=\eta} + \partial_z \phi |_{z=\eta} \left\{ \partial_z \phi - \nabla \phi \cdot \nabla \eta \right\} |_{z=\eta}$$

<u>Step 2</u>: Rewrite 2^{nd} eq'n on $z = \eta$:

•
$$\partial_t \phi + \frac{1}{2} |\nabla \phi|^2 + g\eta - \frac{\sigma}{\rho} \nabla \cdot \{\frac{\nabla \eta}{\sqrt{1 + |\nabla \eta|^2}}\} = 0$$

• But
$$\psi(x,y,t) = \phi(x,y,z,t) |_{z=\eta(x,y,t)}$$

$$\Rightarrow \qquad \partial_t \psi = \partial_t \phi |_{z=\eta} + \partial_z \phi |_{z=\eta} \partial_t \eta \qquad \text{(chain rule)}$$
$$= \partial_t \phi |_{z=\eta} + \partial_z \phi |_{z=\eta} \left\{ \partial_z \phi - \nabla \phi \cdot \nabla \eta \right\} |_{z=\eta}$$

• Eq'n #2 on $z = \eta$:

$$\partial_t \psi + \frac{1}{2} [(\partial_x \phi)^2 + (\partial_y \phi)^2 - (\partial_z \phi)^2] + (\partial_z \phi) \nabla \phi \cdot \nabla \eta + g\eta - \frac{\sigma}{\rho} \nabla \cdot \{\frac{\nabla \eta}{\sqrt{1 + |\nabla \eta|^2}}\} = 0$$

The test:

$$H = \iint_{R} \left[\frac{1}{2} \int_{-h}^{\eta} |\nabla \phi|^{2} dz + \frac{1}{2} g \eta^{2} + \frac{\sigma}{\rho} (\sqrt{1 + |\nabla \eta|^{2}} - 1)\right] dx dy$$

$$H_{kin}$$

$$H_{kin}$$

Q:
$$\partial_t \eta = \frac{\delta H}{\delta \psi}$$
? $\partial_t \psi = -\frac{\delta H}{\delta \eta}$?
(check this) (see Zakharov's paper)

The test:

$$H = \iint_{R} \left[\frac{1}{2} \int_{-h}^{\eta} |\nabla \phi|^{2} dz + \frac{1}{2} g \eta^{2} + \frac{\sigma}{\rho} (\sqrt{1 + |\nabla \eta|^{2}} - 1)\right] dx dy$$

$$H_{kin}$$

$$H_{kin}$$

Q:
$$\partial_t \eta = \frac{\delta H}{\delta \psi}$$
? $\partial_t \psi = -\frac{\delta H}{\delta \eta}$?
(check this) (see Zakharov's paper)

1) $\frac{\delta H_{pot}}{\delta \psi} = 0$ (easy) 2) $\frac{\delta H_{kin}}{\delta \psi}$ (not so

(not so easy)

<u>The test</u> (continued)

Recall divergence theorem:

Let S be a piecewise smooth, closed, oriented, 2-D surface with outward normal \hat{n} . Let \vec{F} be a continuously differentiable vector field defined on S and its interior, V.

Then
$$\iint_{S} [\vec{F} \cdot \hat{n}] ds = \iiint_{V} [\nabla \cdot \vec{F}] dv$$

<u>The test</u> (continued)

Recall divergence theorem:

Let S be a piecewise smooth, closed, oriented, 2-D surface with outward normal \hat{n} . Let \vec{F} be a continuously differentiable vector field defined on S and its interior, V.

Then
$$\iint_{S} [\vec{F} \cdot \hat{n}] ds = \iiint_{V} [\nabla \cdot \vec{F}] dv$$

• Choose $\vec{F} = \frac{1}{2}\phi\nabla\phi$, where $\nabla^2\phi = 0$.

$$\Rightarrow \qquad \nabla \cdot \vec{F} = \frac{1}{2} [|\nabla \phi|^2 + \phi \nabla^2 \phi]$$

<u>The test</u> (continued)

Recall divergence theorem:

Let S be a piecewise smooth, closed, oriented, 2-D surface with outward normal \hat{n} . Let \vec{F} be a continuously differentiable vector field defined on S and its interior, V.

Then
$$\iint_{S} [\vec{F} \cdot \hat{n}] ds = \iiint_{V} [\nabla \cdot \vec{F}] dv$$

• Choose
$$\vec{F} = \frac{1}{2}\phi\nabla\phi$$
, where $\nabla^2\phi = 0$.

$$\Rightarrow \qquad \nabla \cdot \vec{F} = \frac{1}{2} [|\nabla \phi|^2 + \phi \nabla^2 \phi]$$

$$H_{kin} = \frac{1}{2} \iint_{R} \left[\int_{-h}^{\eta} |\nabla \phi|^{2} dz \right] dx dy = \frac{1}{2} \oiint_{S} \left[\phi \partial_{n} \phi \right] ds$$

The test (continued)

$$H_{kin} = \frac{1}{2} \iint_{R} \left[\int_{-h}^{\eta} |\nabla \phi|^{2} dz \right] dx dy = \frac{1}{2} \oiint_{S} \left[\phi \partial_{n} \phi \right] ds$$

1) On z = -h, $\partial_n \phi = 0$

Water waves as Hamiltonian system <u>The test</u> (continued) $H_{kin} = \frac{1}{2} \iint_{R} [\int_{-h}^{\eta} |\nabla \phi|^{2} dz] dx dy = \frac{1}{2} \oiint_{S} [\phi \partial_{n} \phi] ds$ 1) On z = -h, $\partial_{n} \phi = 0$

2) ϕ periodic in $(x,y) \rightarrow$ on vertical sides, $\iint [\phi \partial_n \phi] ds = 0$

Water waves as Hamiltonian system <u>The test</u> (continued) $H_{kin} = \frac{1}{2} \iint_{R} [\int_{-h}^{\eta} |\nabla \phi|^{2} dz] dx dy = \frac{1}{2} \oiint_{S} [\phi \partial_{n} \phi] ds$ 1) On z = -h, $\partial_{n} \phi = 0$

2) ϕ periodic in $(x,y) \rightarrow$ on vertical sides, $\iint [\phi \partial_n \phi] ds = 0$

<u>Last step</u>: Relate $\partial_n \phi |_{z=\eta}$ to ψ

Water waves as Hamiltonian system Last step: Relate $\partial_n \phi |_{z=\eta}$ to ψ Dirchlet-to-Neumann map:

z = -h

<u>Last step</u>: Relate $\partial_n \phi |_{z=\eta}$ to ψ

Dirchlet-to-Neumann map:

There is $G(x,y;\mu,\nu)$, symmetric Green's f'n

$$\partial_n \phi(x, y, z, t) \mid_{z=\eta} = \iint_{\substack{\text{free}\\ \text{surface}}} [\psi(\mu, \nu, t) G(x, y; \mu, \nu)] ds$$
$$= \iint_R [\psi(\mu, \nu, t) G(x, y; \mu, \nu)] \sqrt{1 + |\nabla \eta|^2} d\mu d\nu$$

Water waves as Hamiltonian system Last step: Relate $\partial_n \phi |_{z=n}$ to ψ

Dirchlet-to-Neumann map: There is $G(x,y;\mu,\nu)$, symmetric Green's f'n

$$\partial_n \phi(x, y, z, t) \mid_{z=\eta} = \iint_{\substack{free \\ surface}} [\psi(\mu, \nu, t)G(x, y; \mu, \nu)] ds$$
$$= \iint_R [\psi(\mu, \nu, t)G(x, y; \mu, \nu)] \sqrt{1 + |\nabla \eta|^2} d\mu d\nu$$

Substitute into $H_{kin:}$

$$H_{kin} = \frac{1}{2} \iint_{R} dx dy \sqrt{1 + |\nabla \eta|^2} \iint_{R} d\mu d\nu \sqrt{1 + |\nabla \eta|^2} \psi(x, y, t) \psi(\mu, \nu, t) G(x, y; \mu, \nu)$$

 $\nabla^2 \phi = 0$

z = -h

<u>Last step</u>: Relate $\partial_n \phi |_{z=\eta}$ to ψ Dirchlet-to-Neumann map:

There is $G(x,y;\mu,\nu)$, symmetric Green's f'n

$$\partial_n \phi(x, y, z, t) \mid_{z=\eta} = \iint_{\substack{free \\ surface}} [\psi(\mu, \nu, t)G(x, y; \mu, \nu)] ds$$
$$= \iint_R [\psi(\mu, \nu, t)G(x, y; \mu, \nu)] \sqrt{1 + |\nabla \eta|^2} d\mu d\nu$$

Substitute into
$$H_{kin}$$

$$H_{kin} = \frac{1}{2} \iint_{R} dx dy \sqrt{1 + |\nabla \eta|^2} \iint_{R} d\mu d\nu \sqrt{1 + |\nabla \eta|^2} \psi(x, y, t) \psi(\mu, \nu, t) G(x, y; \mu, \nu)$$

Finally! Vary ψ , hold η fixed.

 $H_{kin} = \frac{1}{2} \iint_{R} dx dy \sqrt{1 + |\nabla \eta|^2} \iint_{R} d\mu d\nu \sqrt{1 + |\nabla \eta|^2} \psi(x, y, t) \psi(\mu, \nu, t) G(x, y; \mu, \nu)$

Vary ψ , hold η fixed

$$H_{kin} = \frac{1}{2} \iint_{R} dx dy \sqrt{1 + |\nabla \eta|^2} \iint_{R} d\mu d\nu \sqrt{1 + |\nabla \eta|^2} \psi(x, y, t) \psi(\mu, \nu, t) G(x, y; \mu, \nu)$$

Vary ψ , hold η fixed

$$\delta H_{kin} = \frac{1}{2} \iint_{R} dx dy \sqrt{\dots} \iint_{R} d\mu d\nu \sqrt{\dots} [\delta \psi(x, y) \psi(\mu, \nu) + \psi(x, y) \delta \psi(\mu, \nu)] G(\dots)$$

$$H_{kin} = \frac{1}{2} \iint_{R} dx dy \sqrt{1 + |\nabla \eta|^2} \iint_{R} d\mu d\nu \sqrt{1 + |\nabla \eta|^2} \psi(x, y, t) \psi(\mu, \nu, t) G(x, y; \mu, \nu)$$

Vary ψ , hold η fixed

$$\delta H_{kin} = \frac{1}{2} \iint_{R} dx dy \sqrt{\dots} \iint_{R} d\mu d\nu \sqrt{\dots} [\delta \psi(x, y) \psi(\mu, \nu) + \psi(x, y) \delta \psi(\mu, \nu)] G(\dots)$$

But *G* is symmetric \rightarrow

$$\delta H_{kin} = \iint_{R} dx dy \sqrt{\dots} \iint_{R} d\mu d\nu \sqrt{\dots} [\delta \psi(x, y) \psi(\mu, \nu)] G(\dots)$$

$$\Rightarrow \delta H_{kin} = \iint_{R} dx dy \sqrt{1 + |\nabla \eta|^{2}} \delta \psi(x, y) \partial_{n} \phi|_{z=\eta}$$

$$H_{kin} = \frac{1}{2} \iint_{R} dx dy \sqrt{1 + |\nabla \eta|^2} \iint_{R} d\mu d\nu \sqrt{1 + |\nabla \eta|^2} \psi(x, y, t) \psi(\mu, \nu, t) G(x, y; \mu, \nu)$$

Vary ψ , hold η fixed

$$\delta H_{kin} = \frac{1}{2} \iint_{R} dx dy \sqrt{\dots} \iint_{R} d\mu d\nu \sqrt{\dots} [\delta \psi(x, y) \psi(\mu, \nu) + \psi(x, y) \delta \psi(\mu, \nu)] G(\dots)$$

But G is symmetric \rightarrow

$$\delta H_{kin} = \iint_{R} dx dy \sqrt{\dots} \iint_{R} d\mu d\nu \sqrt{\dots} [\delta \psi(x, y) \psi(\mu, \nu)] G(\dots)$$

$$\Rightarrow \delta H_{kin} = \iint_{R} dx dy \sqrt{1 + |\nabla \eta|^{2}} \delta \psi(x, y) \partial_{n} \phi |_{z=\eta}$$

$$\Rightarrow \quad \frac{\delta H}{\delta \psi} = \sqrt{1 + |\nabla \eta|^2} \partial_n \phi |_{z=\eta} = \partial_t \eta$$

Conclusion: Zakharov is correct!

- The equations of inviscid, irrotational water waves are Hamiltonian.
- Conjugate variables are $\{\eta, \psi\}$.
- The Hamiltonian is the physical energy.

C. So what?

- Q: What does Hamiltonian structure buy?
- A: Volume-preserving flow \rightarrow
- Asymptotic stability is impossible neutral stability is only choice
- "attractors" and "repellers" are impossible
- Symplectic integrators: numerical integrators that preserve volume in phase space
- For water waves, (η, ψ) are good variables
- Complete integrability

C. So what?

- Q: What is complete integrability?
- 1. Need to define Poisson bracket for correct statement.
- 2. If a system of 2*N* first-order ODEs is Hamiltonian, and if one finds *N* (**not** 2*N*) constants of the motion, in involution relative to the Poisson bracket, then the motion is confined to an *N*dimensional submanifold of 2*N* dim. phase space.
- If this manifold is compact, it is a torus.
- The *N* action variables are constants of the motion.
- N angle variables are coordinates on the torus.
- All of soliton theory fits into this framework.

Next lecture: The (completely integrable) Korteweg-de Vries equation as an approximate model of waves of moderate amplitude in shallow water.