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Hamiltonian formulation: water waves

This lecture:
A. Rapid review of Hamiltonian machinery

(see also extra notes)
B. Hamiltonian formulation of water waves

- Zakharov, 1967, 1968
[Lagrangian formulation - Luke, 1967]

C. Some consequences of Hamiltonian
structure



A. Review of Hamiltonian systems
1. Example: nonlinear oscillator
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A. Review of Hamiltonian systems
1. Example: nonlinear oscillator

a) Find an energy integral

b) Write eq’n as a first-order system
Define

equivalent:
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A. Review of Hamiltonian systems
1. Example: nonlinear oscillator

a) Find an energy integral
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Review of Hamiltonian systems
2. Definition: A system of 2N first-order ODEs is Hamiltonian

if there exist N pairs of coordinates on the phase space,
{pj(t), qj(t)},      j = 1,2,…,N,

and a real-valued Hamiltonian function,
H(p(t), q(t), t),

such that the original equations are equivalent to

! 
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=
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"H
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, j =1,2,...,N .
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Review of Hamiltonian systems
2. Definition: A system of 2N first-order ODEs is Hamiltonian

if there exist N pairs of coordinates on the phase space,
{pj(t), qj(t)},      j = 1,2,…,N,

and a real-valued Hamiltonian function,
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Review of Hamiltonian systems
3. Comments
a) Not every system of 2N first-order ODEs is

Hamiltonian.
b) An essential property of a Hamiltonian system:

the flow preserves volume in phase space.
(The volume of a “ball” of initial data is preserved.)

c) H is often the physical energy, but not necessarily.
d) H is often a constant of the motion, but not

necessarily.



Review of Hamiltonian systems
4. Plausibility argument for volume-preserving flows.

• Start with M first-order ODEs
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Review of Hamiltonian systems
4. Plausibility argument for volume-preserving flows.

• Start with M first-order ODEs

• Imagine a  “fluid” that fills the M-dimensional phase space.
 {x1(t), x2(t), …, xM(t)}  are the coordinates of a fluid particle,
 {v1(t), v2(t), …, vM(t)}  are the components of fluid velocity.
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Review of Hamiltonian systems
4. Plausibility argument for volume-preserving flows.

(See p. 69 of Arnold’s “Classical Mechanics” for a real proof)

• Start with M first-order ODEs

• Imagine a  “fluid” that fills the M-dimensional phase space.
 {x1(t), x2(t), …, xM(t)}  are the coordinates of a fluid particle,
 {v1(t), v2(t), …, vM(t)}  are the components of fluid velocity.
• The fluid is “incompressible”, so volume is preserved if
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Review of Hamiltonian systems
4. Plausibility argument for volume-preserving flows.
• Claim: Any Hamiltonian system of ODEs with a

smooth Hamiltonian is volume-preserving,
because
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Review of Hamiltonian systems
4. Plausibility argument for volume-preserving flows.
• Claim: Any Hamiltonian system of ODEs with a
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Review of Hamiltonian systems
4. Plausibility argument for volume-preserving flows.
• Claim: Any Hamiltonian system of ODEs with a
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Review of Hamiltonian systems
5.  Hamiltonian PDEs
Example: nonlinear wave equation, periodic b.c.
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Review of Hamiltonian systems
5.  Hamiltonian PDEs
Example: nonlinear wave equation, periodic b.c.

a) Find energy integral
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Review of Hamiltonian systems
5.  Hamiltonian PDEs
Example: nonlinear wave equation, periodic b.c.

a) Find energy integral

b) Choose “conjugate variables”

“index” (j) becomes continuous (x)
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Review of Hamiltonian systems
5.  Hamiltonian PDEs
Example: nonlinear wave equation, periodic b.c.

a) Find energy integral

b) Choose “conjugate variables”

“index” (j) becomes continuous (x)

c) Guess:
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Review of Hamiltonian systems
Q: What happens to    in the PDE setting?
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Review of Hamiltonian systems
Q: What happens to    in the PDE setting?
Define variational derivative:
Start with

    this defines variational derivative:

Example:

Q: What is       ?  Why?
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Review of Hamiltonian systems
Q: What happens to    in the PDE setting?

Continue example:
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Review of Hamiltonian systems
Q: What happens to    in the PDE setting?

Continue example:

new twist: integrate by parts, with δq = 0 on boundaries
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Review of Hamiltonian systems
Q: What happens to    in the PDE setting?

Continue example:

new twist: integrate by parts, with δq = 0 on boundaries
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Review of Hamiltonian systems
Q: What happens to    in the PDE setting?

Continue example:

new twist: integrate by parts, with δq = 0 on boundaries



End of lightning tour of Hamiltonian systems
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B. Inviscid water waves
Recall:

on z = η(x,y,t)

 on z = η(x,y,t)

  -h(x,y) < z < η(x,y,t)
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B. Inviscid water waves
Recall:

on z = η(x,y,t)

 on z = η(x,y,t)

  -h(x,y) < z < η(x,y,t)

on z = -h(x,y)
Q: Where does t-evolution occur?
A. (Zakharov):   on z = η(x,y,t)
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B. Inviscid water waves
Recall:

on z = η(x,y,t)

 on z = η(x,y,t)

  -h(x,y) < z < η(x,y,t)

on z = -h(x,y)
Q: Where does t-evolution occur?
A. (Zakharov):   on z = η(x,y,t)
   Propose conjugate variables:
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Water waves as Hamiltonian system

Plausibility check:

     periodic b.c.

Suppose at some fixed t,
 {η(x,y,t), ψ = φ(x,y,t)|z=η }  are given.
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Water waves as Hamiltonian system

Plausibility check:

     periodic b.c.

Suppose at some fixed t,
 {η(x,y,t), ψ = φ(x,y,t)|z=η }  are given.
Then φ(x,y,z,t) is determined uniquely in domain.

[We need a procedure to find φ(x,y,z,t) from {η, ψ}].

Result:  At any fixed time, {η, ψ} determine the entire
solution.

! 

"(x,y,t), #(x,y,t) = $(x,y,z,t) |z="

! 

"2# = 0

! 

z = "h

! 

z ="



Water waves as Hamiltonian system
Proposed conjugate variables:

Q:  What is H(η,ψ) ?

A:  Physical energy (from  HW #1):

kinetic energy  potential energy
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Water waves as Hamiltonian system
Claim (Zakharov, 1968):

Let R be a fixed region in x-y plane.  Let h(x,y) be
continuous and differentiable on R.  Define

We need to show that

are equivalent to the two boundary conditions
on z = η(x,y,t).
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Water waves as Hamiltonian system
Step 1: Rewrite 2 eq’ns on  z = η in terms of {η,ψ}

and normal velocity on z = η.
• Define F(x,y,z,t) = z - η(x,y,t) ,  so  F = 0   on z = η.



Water waves as Hamiltonian system
Step 1: Rewrite 2 eq’ns on  z = η in terms of {η,ψ}

and normal velocity on z = η.
• Define F(x,y,z,t) = z - η(x,y,t) ,  so  F = 0   on z = η.
• unit normal vector on z = η:
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Water waves as Hamiltonian system
Step 1: Rewrite 2 eq’ns on  z = η in terms of {η,ψ}

and normal velocity on z = η.
• Define F(x,y,z,t) = z - η(x,y,t) ,  so  F = 0   on z = η.
• unit normal vector on z = η:

• Normal component of velocity on z = η:
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Water waves as Hamiltonian system
Step 1: Rewrite 2 eq’ns on  z = η in terms of {η,ψ}

and normal velocity on z = η.
• Define F(x,y,z,t) = z - η(x,y,t) ,  so  F = 0   on z = η.
• unit normal vector on z = η:

• Normal component of velocity on z = η:

• Eq’n #1 on z = η:
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Water waves as Hamiltonian system
Step 2: Rewrite 2nd eq’n on  z = η:

•
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Water waves as Hamiltonian system
Step 2: Rewrite 2nd eq’n on  z = η:

•

• But

 (chain rule)
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Water waves as Hamiltonian system
Step 2: Rewrite 2nd eq’n on  z = η:

•

• But

 (chain rule)
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Water waves as Hamiltonian system
Step 2: Rewrite 2nd eq’n on  z = η:

•

• But

 (chain rule)

• Eq’n #2 on z = η: 
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Water waves as Hamiltonian system
The test:

Hkin Hpot

Q:   ? ?
  (check this)   (see Zakharov’s paper)
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Water waves as Hamiltonian system
The test:

Hkin Hpot

Q:   ? ?
  (check this)   (see Zakharov’s paper)

1) (easy)

2) (not so easy)
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Water waves as Hamiltonian system
The test (continued)
Recall divergence theorem:

Let S be a piecewise smooth, closed, oriented, 2-D
surface with outward normal    .  Let     be a continuously
differentiable vector field defined on S and its interior, V.
Then

! 

ˆ n   

! 

! 
F 

  

! 

[
! 
F " ˆ n ]ds = [# "

! 
F ]dv

V

$$$
S

$$

! 

ˆ n 

! 

S



Water waves as Hamiltonian system
The test (continued)
Recall divergence theorem:

Let S be a piecewise smooth, closed, oriented, 2-D
surface with outward normal    .  Let     be a continuously
differentiable vector field defined on S and its interior, V.
Then

• Choose         , where


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Water waves as Hamiltonian system
The test (continued)
Recall divergence theorem:

Let S be a piecewise smooth, closed, oriented, 2-D
surface with outward normal    .  Let     be a continuously
differentiable vector field defined on S and its interior, V.
Then

• Choose         , where


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Water waves as Hamiltonian system
The test (continued)

1) On z = -h,
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Water waves as Hamiltonian system
The test (continued)

1) On z = -h,

2) φ periodic in (x,y)  on vertical sides,
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Water waves as Hamiltonian system
The test (continued)

1) On z = -h,

2) φ periodic in (x,y)  on vertical sides,



Last step:  Relate              to  ψ
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Water waves as Hamiltonian system
Last step:  Relate              to ψ
Dirchlet-to-Neumann map:
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Water waves as Hamiltonian system
Last step:  Relate              to ψ
Dirchlet-to-Neumann map:
There is G(x,y;µ,ν), symmetric Green’s f’n
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Water waves as Hamiltonian system
Last step:  Relate              to ψ
Dirchlet-to-Neumann map:
There is G(x,y;µ,ν), symmetric Green’s f’n

Substitute into Hkin:
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Water waves as Hamiltonian system
Last step:  Relate              to ψ
Dirchlet-to-Neumann map:
There is G(x,y;µ,ν), symmetric Green’s f’n

Substitute into Hkin:

Finally!  Vary ψ, hold η  fixed.
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Water waves as Hamiltonian system

Vary ψ, hold η fixed
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Water waves as Hamiltonian system

Vary ψ, hold η fixed
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Water waves as Hamiltonian system

Vary ψ, hold η fixed

But G is symmetric 


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Water waves as Hamiltonian system

Vary ψ, hold η fixed

But G is symmetric 



 ✔
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Water waves as Hamiltonian system
Conclusion: Zakharov is correct!
• The equations of inviscid,irrotational water waves

are Hamiltonian.
• Conjugate variables are {η, ψ}.
• The Hamiltonian is the physical energy.



C. So what?
Q: What does Hamiltonian structure buy?
A: Volume-preserving flow 
• Asymptotic stability is impossible

neutral stability is only choice
• “attractors” and “repellers” are impossible
• Symplectic integrators: numerical integrators

that preserve volume in phase space
• For water waves, (η,ψ) are good variables
• Complete integrability



C. So what?
Q: What is complete integrability?
1. Need to define Poisson bracket for correct

statement.
2. If a system of 2N first-order ODEs is Hamiltonian,

and if one finds N (not 2N) constants of the
motion, in involution relative to the Poisson
bracket, then the motion is confined to an N-
dimensional submanifold of 2N dim. phase space.

• If this manifold is compact, it is a torus.
• The N action variables are constants of the motion.
• N angle variables are coordinates on the torus.
• All of soliton theory fits into this framework.



Next lecture:
The (completely integrable)
Korteweg-de Vries equation

as an approximate model
of waves of moderate amplitude

in shallow water.


