Hamiltonian formulation: water waves
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Hamiltonian formulation: water waves

This lecture:

A. Rapid review of Hamiltonian machinery
(see also extra notes)

B. Hamiltonian formulation of water waves
- Zakharov, 1967, 1968
[Lagrangian formulation - Luke, 1967]

C. Some consequences of Hamiltonian
structure



1.

A. Review of Hamiltonian systems

Example: nonlinear osci

0+ w0+ ab =0,

lator

w* >0, 9=ﬁ
dt



A. Review of Hamiltonian systems
1. Example: nonlinear oscillator
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0+w6+ab’ =0, 0* >0, e=%.

a) Find an energy integral

0-(eq'n) = Lo s %) o
(eq'n) E 2(@) = (6) +4(0) const.
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A. Review of Hamiltonian systems
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Example: nonlinear osci

0+ w0+ ab =0,

Find an energy integral

lator

w* >0, 8=ﬁ
dt
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(eq'n) E=_(6)'+(6)’ + (0" = const

Write eq’n as a first-order system

Define g =6(r), p=6()

equivalent:
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Review of Hamiltonian systems

2. Definition: A system of 2N first-order ODEs is Hamiltonian
if there exist N pairs of coordinates on the phase space,

), q0)}, j=12,...N,
and a real-valued Hamiltonian function,

H(pl?), 4(2), 1),

such that the original equations are equivalent to

: oH . oH |
q]'= = ’ pj=_ ’ ]=1,2,...,N.
dt  dp; aq ;
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2. Definition: A system of 2N first-order ODEs is Hamiltonian
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1 2
In example, N =1, choose H=E =5p2 +%q2 +%q4.



Review of Hamiltonian systems

2. Definition: A system of 2N first-order ODEs is Hamiltonian
if there exist N pairs of coordinates on the phase space,

), q0)}, j=12,...N,
and a real-valued Hamiltonian function,

H(pl?), 4(2), 1),

such that the original equations are equivalent to

. dq, JoH oH .
q;= L = , pj=——, j=12,..N.
dt  dp; aq ;
_ 1 5 w’ LA
In example, N = 1, choose H=E=5p SRR
: oH
q=7p (74

S



Review of Hamiltonian systems

2. Definition: A system of 2N first-order ODEs is Hamiltonian
if there exist N pairs of coordinates on the phase space,

), q0)}, j=12,...N,
and a real-valued Hamiltonian function,

H(pl?), 4(2), 1),

such that the original equations are equivalent to

. dq. oH . oH .
q]'= L = ’ pj=_ ’ ]=1,2,...,N.
dt  dp; aq ;
_ 1 5 w’ LA
In example, N = 1, choose H=E=5p +7q +Zq :
oH
1=p=-— . oH
q=p Py v pewqg-ag =-20



Review of Hamiltonian systems

3. Comments

a) Not every system of 2N first-order ODEs is
Hamiltonian.

b) An essential property of a Hamiltonian system:
the flow preserves volume in phase space.
(The volume of a “ball” of initial data is preserved.)
c) H is often the physical energy, but not necessarily.

d) H is often a constant of the motion, but not
necessarily.



Review of Hamiltonian systems

4. Plausibility argument for volume-preserving flows.

. Start with M first-order ODEs

B G =12 M
=v.(x,t), j=12,....M.
dt / /




Review of Hamiltonian systems

4. Plausibility argument for volume-preserving flows.

. Start with M first-order ODEs

B G =12 M
=v.(x,b0, j=12,.., :
dt / /

« Imagine a “fluid” that fills the M-dimensional phase space.
=2 {x,(9), x,(9), ..., xy(?)} are the coordinates of a fluid particle,
2> {v,(0), vy(9), ..., vy(?)} are the components of fluid velocity.



Review of Hamiltonian systems

4. Plausibility argument for volume-preserving flows.
(See p. 69 of Arnold’s “Classical Mechanics” for a real proof)

. Start with M first-order ODEs

B G =12 M
=v.(x,b0, j=12,.., :
dt / /

« Imagine a “fluid” that fills the M-dimensional phase space.

=2 {x,(9), x,(9), ..., xy(?)} are the coordinates of a fluid particle,

=2 {v,(9), vy(0), ..., vy(?)} are the components of fluid velocity.

e The fluid is “incompressible”, so volume is preserved if
V-v= 7, =0

i1 9%




Review of Hamiltonian systems

4. Plausibility argument for volume-preserving flows.

o (Claim: Any Hamiltonian system of ODEs with a
smooth Hamiltonian is volume-preserving,
because |v.3 -




Review of Hamiltonian systems

4. Plausibility argument for volume-preserving flows.

o (Claim: Any Hamiltonian system of ODEs with a
smooth Hamiltonian is volume-preserving,
because |v.3 -

¢ Proof: dq, _oH dp; __OH . 15 N

dt &pj’ dt q ;




Review of Hamiltonian systems

4. Plausibility argument for volume-preserving flows.

o (Claim: Any Hamiltonian system of ODEs with a
smooth Hamiltonian is volume-preserving,
because |v.3 -

e Proof: dq, oH dp, oH

dt &pj’ dt &qj’




Review of Hamiltonian systems

5. Hamiltonian PDEs
Example: nonlinear wave equation, periodic b.c.

0°0=c’9"0-w0-ab’




Review of Hamiltonian systems

5. Hamiltonian PDEs
Example: nonlinear wave equation, periodic b.c.

0°0=c’9"0-w0-ab’

a) Find energy integral

1 , , ® ., A .
E=1[-000)+—©@60)+—0 +—0"]dx, ~= _0.
JEGO +=-0.0)+=-0"+ 0] 0



Review of Hamiltonian systems

5. Hamiltonian PDEs
Example: nonlinear wave equation, periodic b.c.

0°0=c’9"0-w0-ab’

a) Find energy integral

1 2 CZ 2 (1)2 2 a 4 dE
E=1[-000)+—©@60)+—0 +—0"]dx, ~= _0.
JEGO +=-0.0)+=-0"+ 0] 0

b) Choose “conjugate variables”

p(x,t)=430(x,t), q(x,t)=0(x,1).
\ "\

“index” (j) becomes continuous (x)



Review of Hamiltonian systems

5. Hamiltonian PDEs
Example: nonlinear wave equation, periodic b.c.

0°0=c’9"0-w0-ab’

a) Find energy integral

1 , , ® ., A .
E=1[-000)+—©@60)+—0 +—0"]dx, ~= _0.
JEGO +=-0.0)+=-0"+ 0] 0

b) Choose “conjugate variables”

p(x,t)=430(x,t), q(x,t)=0(x,1).
\ "\

“index” (j) becomes continuous (x)

c) Guess: 1 c’ W’ o
) H(p.g.t)= [ [Ep2 + E(ﬁxcz)2 + 7612 + Zq“]dx



Review of Hamiltonian systems
Q: What happens to <37?> in the PDE setting?
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Define variational derivative:
Start with H(p.q.t)= [[..Jdx




Review of Hamiltonian systems

Q: What happens to ¢ in the PDE setting?
Define variational derivative:
Start with H(p.q.0) = [[..Jdx

H(p+0p.q.t) — H(p.q.t) = [ [(**)dp + O((dp)°1dx

oH
this defines variational derivative:\ (5_
P
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Q: What happens to ¢ in the PDE setting?
Define variational derivative:
Start with H(p.q.0) = [[..Jdx

H(p+0p.q.t) — H(p.q.t) = [ [(**)dp + O((dp)°1dx

OH
this defines variational derivative:\ —

\ op

H(p.q+8q.t)-H(p.q.t) = [ [(—)561 + O((8g)*1dx




Review of Hamiltonian systems

Q: What happens to ¢ in the PDE setting?
Define variational derivative:
Start with H(p.q.0) = [[..Jdx

H(p+0p.q.t) — H(p.q.t) = [ [(**)dp + O((dp)°1dx

OH
this defines variational derivative:\ —

\ op

H(p.q+8q.t)-H(p.q.t) = [ [(—)&1 + O((8g)*1dx

2

Example:  gpgn= (o + @007 + 2o + Cq'ld
(pg:1) f[2p+ (0,9)° +—-q" + 4" dx

Q: Whatis §-? Why?



Review of Hamiltonian systems
Q: What happens to <37H_> in the PDE setting?

2 2
Continue example:  H(pg,1) = f[%p2 + %(axq)2 + %qz + %q“]dx



Review of Hamiltonian systems
Q: What happens to <37H_> in the PDE setting?

Continue example: (2 gt @ty G
P& H(pg.n = [Iop*+ (0,00 + 4"+ 4" 1dx
H(p,q+0q,t) - H(p.q,1) =
f [c?(0.9)(0.6q) + w°qSq + ag’dq + O((6g)°)1dx

/

new twist: integrate by parts, with g = 0 on boundaries



Review of Hamiltonian systems
Q: What happens to <37H_> in the PDE setting?

2 2
Continue example:  H(pg,1) = f[%p2 + %(axq)2 + %qz + %q“]dx

H(paq + 6q9t) - H(p’qJ) =
[ [c?(3,9)(9,69) + w*qdq + ag’8q + O(8g))dx

/

new twist: integrate by parts, with g = 0 on boundaries

D H(p.q+8q.t)- H(p.q.t) = [[(~c*Fq + 0’q+ ag")dq + O((8g)*)1dx

I Yem

&



Review of Hamiltonian systems
Q: What happens to <37H_> in the PDE setting?

2

Continue example: (2 gt @ty G
P& H(pg.n = [Iop*+ (0,00 + 4"+ 4" 1dx
H(p,q+0q,t) - H(p.q,1) =
f [c?(0.9)(0.6q) + w°qSq + ag’dq + O((6g)°)1dx

/

new twist: integrate by parts, with g = 0 on boundaries

> H(p.q+0q.0) - H(p.q.t) = [[(=’3}q + w’q+ ag’)dq + O((5g)*)]dx
'\\ X sy
S
End of lightning tour of Hamiltonian systems



B. Inviscid water waves

Recall:
IN+Ve-Vn=24d.09,
on z = n(x,y,t)

§¢+1IV¢I +g77——V v
1+ 1V P

Vig=0 -h(xy) <z <n(xyt)
d,9 =0 on z = -h(x,y)

¥, on z = n(x,y,t)
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Vig=0 -h(x,y) <z <nxy.Y)
J,¢=0 on z = -h(x,y)

Q: Where does t-evolution occur?
A. (Zakharov): on z = n(xy,z)



B. Inviscid water waves

Recall:
IN+Ve-Vn=24d.09,
on z = n(x,y,t)
(9¢+1IV¢I +gn——V Vi Iz on z = n(x,y,t)
2 1+ 1V P
Vig=0 -h(x,y) <z <nxy.Y)
J,¢=0 on z = -h(x,y)

Q: Where does t-evolution occur?
A. (Zakharov): on z = n(xy,z)

=» Propose conjugate variables:

n(xayat)a UJ(X»)’J) = ¢(X,y,Z,f) |z=77




Water waves as Hamiltonian system
T](.X,y,t), W(Xa)’af) = ¢(X,y,Z,f) |z=7f]

Plausibility check: T z=1
periodic b.c. V2¢ 0
Suppose at some fixed ¢, o~

{nGx.y.0), y=@x.y.0),-, } are given. =



Water waves as Hamiltonian system
n(xayat)a UJ(X»)’J) = ¢(X,y,Z,f) |z=77

Plausibility check: T z=1
periodic b.c. V2% =0
Suppose at some fixed ¢, o~

{nCx.y.1), y=dxy1)l,-,} are given. =
Then ¢(x,y,z,t) is determined uniquely in domain.

[We need a procedure to find ¢(x,y,z¢) from {n, y}].

Result: At any fixed time, {n, y} determine the entire
solution.



Water waves as Hamiltonian system

Proposed conjugate variables:
n(x,y,0, Px,y,t)=¢(x,y,z,0)1_,
Q: What is H(n,y) ?

A: Physical energy (from Hw #1):

| | o
H = &f[af_”h|v¢ P dz +5gn2 4 ;(\/1+ 1V P = 1)]dxdy

/ (N

Kinetic energy potential energy




Water waves as Hamiltonian system

Claim (Zakharov, 1968):

Let R be a fixed region in x-y plane. Let i(x,y) be
continuous and differentiable on R. Define

1 n 2 1 2 2
H(n,tp)=ff[5f_hlv¢l dz+-gn +%(\/1+|vn| —1)]dxdy

We need to show that

_OH . _OH

om=—, dp=——
i o

are equivalent to the two boundary conditions
on z = n(x,y,1).



Water waves as Hamiltonian system

Step 1: Rewrite 2 eg'ns on z = nin terms of {n,y}
and normal velocity on z = n.

e Define F(x,y,zt) =z-n(xyt), so F=0 onz=n.
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e unit normal vector on z = n:

oo VF _ {-dn,-dnl}
IVF1 \1+1Vn P




Water waves as Hamiltonian system

Step 1: Rewrite 2 eg'ns on z = nin terms of {n,y}
and normal velocity on z = n.

e Define F(x,y,zt) =z-n(xyt), so F=0 onz=n.
e unit normal vector on z = n:

oo VF _ {-dn,-dnl}
IVF1 \1+1Vn P

 Normal component of velocity on z = n:
-Vo-Vn+0. ¢

0,0 = Vit =
1+ 1V P




Water waves as Hamiltonian system

Step 1: Rewrite 2 eg'ns on z = nin terms of {n,y}
and normal velocity on z = n.

e Define F(x,y,zt) =z-n(xyt), so F=0 onz=n.
e unit normal vector on z = n:
e VF _ {-9dn,—dn.1}
IVF1  \l+1vnP
 Normal component of velocity on z = n:
-Vo-Vn+0. ¢
1+ 1V P

0,p=Vp-i=

e Eqn#1onz=mn:
In+Ve-Vn=0¢ <« dn=+1+1VnlFa .




Water waves as Hamiltonian system

Step 2: Rewrite 2" eqg’'non z = n:

1
* g+ IVHF rgn-"V

o \l+1vyP
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Step 2: Rewrite 2" eqg’'non z = n:

1
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Water waves as Hamiltonian system

Step 2: Rewrite 2" eqg’'non z = n:

I
. (9¢+—IV¢I2+gn——V v
2 \/1+|vn|2

}=0

e But  w(xy.0)=0(x,y.2.0_ .0

-> Y =09 |z=n "'aij |z=77 Jn (chain rule)
=3¢l +d.9l_ {3.9-Vo-Vnil_,

e EqQn#20nz=n:

1 2 2 2 O Vn
J —[(0 J — (0 OP)Vo-V -—V- =0
0+ 1607+ @ -G GOV Vi gn- TV )




Water waves as Hamiltonian system

The test:
H-= ff[ f IV¢I2dz+;gn +;(\/1+IV17I2—1)]dxdy
. /
Hkin Hpot
SH SH
Q: oMm=5, 7 5’JP=—% ?

(check this) (see Zakharov's paper)



Water waves as Hamiltonian system

The test:
H-= ff[ f A& dz+;gn +—(\/1+ IV P =1)]dxdy
\ /
Hkin p
o=, ==
Q. u 51/) ! ¥ = 67} !
(check this) (see Zakharov's paper)
OH
pOt =O
1) 5 (easy)
OH
2) in (not so easy)

oy



Water waves as Hamiltonian system

The test (continued) S

A
Recall divergence theorem: n @

Let S be a piecewise smooth, closed, oriented, 2-D
surface with outward normal n. Let F be a continuously
differentiable vector field defined on S and its interior, V.

Then fFIF - nlds = [[[1V- Fldv
S \%




Water waves as Hamiltonian system

The test (continued) S
Recall divergence theorem: n @
Let S be a piecewise smooth, closed, oriented, 2-D

surface with outward normal n. Let F be a continuously
differentiable vector field defined on S and its interior, V.

Then fFIF - nlds = [[[1V- Fldv
S \%

e Choose F = %qu, where V’¢ =0.

> v-ﬁ%pvmhm



Water waves as Hamiltonian system

The test (continued) S
Recall divergence theorem: n @
Let S be a piecewise smooth, closed, oriented, 2-D

surface with outward normal n. Let F be a continuously
differentiable vector field defined on S and its interior, V.

Then fFIF - nlds = [[[1V- Fldv
S \%

e Choose F = %qu, where V¢ =0.

> v-ﬁ%pvmhm

i =5 I[1 V0 Paciady = 4190, 01as




Water waves as Hamiltonian system

The test (continued) T
Loppe (o 1
Hig, =~ f [L" 19 Pdzldxdy = Egéﬂ[qwn(/)]ds P
z=-h

1) Onz=-h, 0,¢=0



Water waves as Hamiltonian system

The test (continued) T
Loppe (o 1
Hig, =~ f [L" 19 Pdzldxdy = Eggé[qwmds P
z=-h

1) Onz=-h, 0,¢=0

2) ¢ periodic in (x,y) = on vertical sides,  [[[¢d,¢lds =0

5> = [ 169,005~ : [T 1,01, Wis 19 sy




Water waves as Hamiltonian system

The test (continued) T
Loppe (o 1
Hig, =~ f [L" 19 Pdzldxdy = Efl;f[qb&m]ds P
z=-h

1) Onz=-h, 0,¢=0

2) ¢ periodic in (x,y) = on vertical sides,  [[[¢d,¢lds =0

5> Hu=s [ 160,915 - : [ w01, Wix 1V sy

Last step: Relate d,¢1_, to vy




Water waves as Hamiltonian system

Last step: Relate d,¢1_, toy L
Dirchlet-to-Neumann map: V2 =0
\/\
N

z=-h



Water waves as Hamiltonian system

Last step: Relate d,¢1., toy /2=
. TN
Dirchlet-to-Neumann map: V26 -0
There is G(x,y;u,v), symmetric Green’s f'n \/\\
d,0(x,y,z,t)|_, = ff[UJ(M,V,t)G(x,y;M,v)]ds z=-h
free

surface
= [ (uv.0GG ) W1+ 1V Pdudy
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Water waves as Hamiltonian system

Last step: Relate d,¢1., toy /2=
. TN
Dirchlet-to-Neumann map: V26 -0
There is G(x,y;u,v), symmetric Green’s f'n \/\\
é)ngb(x’yvzat) IZ=7]= ff[w(M,VJ)G(.X,y,M,V)]dS z=-h
free

surface

= [ (uv.0GG ) W1+ 1V Pdudy

Substitute into H,,.

H, = % If dxdy\1+ 1V If dudv1+ 1V Py (e, y, p(uv ) GCx, y;u,v)
R R

Finally! Vary vy, hold n fixed.



Water waves as Hamiltonian system

H, = % If dxdy\1+ |V If dudv1+ 1V Py (e, y, p(uv ) GCx, y;u,v)
R R

Vary vy, hold n fixed



Water waves as Hamiltonian system

1
Hy, = fR T dxdy\1+ |V fR Il dudv1+ 1V Py (e, y, p(uv ) GCx, y;u,v)
Vary vy, hold n fixed

OH;, = % JJ dxy... [ dudv..[owCe.yp(uv) + w(xy)ow(uv)IG...



Water waves as Hamiltonian system

1 2 2
Hy, = fR T dxdy1+ |V | fR Il dudv1+ 1V Py (e, y, p(uv ) GCx, y;u,v)
Vary vy, hold n fixed

1
O, = JJ dxdy... [ dudv - 1owCe, ypuy) + 1 (xy)opmIGE..)

But G is symmetric =
0H,,, = J[ dxdy~.. [ dudv[ow (e, yp(uvGe...)

> 0H,, = [[ dxdy\1+ 1V Poy(x.)d,1_,



Water waves as Hamiltonian system

1 2 2
Hy, = fR T dxdy1+ |V | fR Il dudv1+ 1V Py (e, y, p(uv ) GCx, y;u,v)
Vary vy, hold n fixed

1
O, = JJ dxdy... [ dudv - 1owCe, ypuy) + 1 (xy)opmIGE..)

But G is symmetric =
0H,,, = J[ dxdy~.. [ dudv[ow (e, yp(uvGe...)

> 0H,, = [[ dxdy\1+ 1V Poy(x.)d,1_,

5 oH

=1+ 1V Pd ¢l_ =0 v
(SUJ \/ T’ n¢z=17 tn




Water waves as Hamiltonian system

Conclusion: Zakharov is correct!

 The equations of inviscid,irrotational water waves
are Hamiltonian.

 (Conjugate variables are {n, y}.
« The Hamiltonian is the physical energy.



C. So what?

Q: What does Hamiltonian structure buy?
A: Volume-preserving flow =»
 Asymptotic stability is impossible
neutral stability is only choice
e “attractors” and “repellers” are impossible

o Symplectic integrators: numerical integrators
that preserve volume in phase space

 For water waves, (n,y) are good variables
e Complete integrability



C. So what?

Q: What is complete integrability?

1.

2.

Need to define Poisson bracket for correct
statement.

If a system of 2N first-order ODEs is Hamiltonian,
and if one finds N (not 2N) constants of the
motion, in involution relative to the Poisson
bracket, then the motion is confined to an N-
dimensional submanifold of 2N dim. phase space.

If this manifold is compact, it is a torus.
The N action variables are constants of the motion.
N angle variables are coordinates on the torus.
All of soliton theory fits into this framework.



Next lecture:

The (completely integrable)
Korteweg-de Vries equation
as an approximate model
of waves of moderate amplitude
in shallow water.



