
Lecture 9: The Deep Ocean Circulation

Geoff Vallis; notes by Ashley Payne and Erica Rosenblum

June 26

In this lecture we try to understand the processes that give rise to a deep meridional
overturning circulation. We’ll present a zonally-averaged model of the meridional overturn-
ing circulation of the ocean, following Nikurashin & Vallis (2011, 2012). It is a quantitative
model, and might even be called a theory, depending on what one’s definition of theory is.

1 A Model of the Wind-driven Overturning Circulation

The model is motivated by the plot of the stratification shown in Fig. 1, and the schematic of
water mass properties of the Atlantic shown in Fig. 3. The following features are apparent.

1. Two main masses of water, known as North Atlantic Deep Water (NADW) and
Antarctic Bottom Water (AABW). Both are interhemispheric. NADW appears to
outcrop in high northern latitudes and high southern latitudes, and AABW just at
high Southern.

2. Isopycnals are flat over most of the ocean, and slope with a fairly uniform slope in
the Southern Ocean.

3. The circulation is along isopycnals in much of the interior. There is some water mass
transformation between AABW and NADW, but most of it occurs near the surface.

2 A Theory for the MOC in a Single Hemisphere

Let us first imagine there is a wall at the equator, and make a model of the circulation in
the Southern Hemisphere (Figs. 4, 5, 6); that is, essentially of AABW. The model will have
the following features, or bugs if you are being critical.

1. Zonally averaged.

2. Simple geometry. A zonally re-entrant channel at high latitudes, with an enclosed
basin between it and the equator.

3. We solve the equations of motion separately in the two regions and match the solutions
at the boundary.

4. Mesoscale eddies are parameterized with a very simple down-gradient scheme.

5. There are no wind-driven gyres.
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Figure 1: Stratification in the Pacific at 150◦W
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Figure 2: A schematic of deep ocean circulation.

2.1 Equations of motion

With quasi-geostrophic scaling the zonally-averaged zonal momentum and buoyancy equa-
tions are

∂u

∂t
− f0 v =− ∂

∂y
u′v′ +

∂τ

∂z
, (1)

∂b

∂t
+N2w =− ∂

∂y
v′b′ + κv

∂2b

∂z2
. (2)
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Figure 3: A simpler schematic of deep ocean circulation
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Figure 4: Idealized geometry of the Southern Ocean: a re-entrant channel, partially blocked
by a sill, is embedded within a closed rectangular basin; thus, the channel has periodic
boundary conditions. The channel is a crude model of the Antarctic Circumpolar Current,
with the area over the sill analogous to the Drake Passage.
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Figure 5: Cross-section of a structure of the single-hemisphere ocean model. There is a
channel between y1 and y2. The arrows indicate the fluid flow driven by the equatorward
Ekman transport in the channel, and the solid lines are isopycnals.

where b is buoyancy (‘temperature’) and N2 = ∂zb0. To these we add the thermal wind
relation and mass continuity:

f0
∂u

∂z
= −∂b

∂y
,

∂v

∂y
+
∂w

∂z
= 0.

Define a residual flow such that

v∗ = v − ∂

∂z

(
1

N2
v′b′
)
, w∗ = w +

∂

∂y

(
1

N2
v′b′
)
.

whence

∂u

∂t
− f0 v∗ = v′q′ +

∂τ

∂z
(3a)

∂b

∂t
+N2w∗ = κv

∂2b

∂z2
. (3b)

These are the so-called transformed Eulerian mean (TEM) equations. The theory of them
is extensive and suffice it to say here that v∗ and w∗ more nearly represent the trajectories
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Figure 6: As for Fig. 5, but now for a two-hemisphere ocean with a source of dense water,
b3, at high northern latitudes.

of fluid parcels. Note that there are no fluxes in the buoyancy equation and that only the
PV flux, v′q′, need be parameterized. If we now put back some of the terms we omitted,
our complete equations are

∂u

∂t
− fv∗ = v′q′ +

∂τ

∂z
(4a)

∂b

∂t
+ v∗

∂b

∂y
+ w∗

∂b

∂z
= κv

∂2b

∂z2
. (4b)

where (v∗ , w∗) = (−∂ψ/∂z, ∂ψ/∂y) and f∂u/∂z = −∂b/∂y. The stress τ in only non-zero
near the top (wind-stress) and bottom (Ekman drag), and τ integrates to zero. We’ll look
for steady state solutions and drop the ∗ notation so that all variables are residuals and
zonal averages.

Equations in the channel

We parameterize

v′q′ = −Ke
∂q

∂y
. (5)

where, approximately, for the large-scale ocean

q ≈ f ∂
∂z

(
b

bz

)
, so that

∂q

∂y
≈ f ∂

∂z

(
by

bz

)
= −f ∂S

∂z
(6)

where S = −by/bz is the slope of the isopycnals. Thus

v′q′ = fKe
∂S

∂z
. (7)
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Figure 7: Schematic of the single hemisphere meridional overturning circulation crudely
representing AABW. Thin black lines are the isopycnals, thick black line is a overturning
streamfunction, dashed vertical line is the northern edge of the channel, shaded gray areas
are the convective region and the surface mixed layer.

and the momentum equation becomes

−fv = fKe
∂Sb
∂z

+
∂τ

∂z
. (8)

Since v∗ = −∂ψ/∂z we integrate this from the top to a level z and obtain

ψ = −τw
f

+KeS. (9)

We have assumed ψ = 0 and S = 0 at the top, and τ = τw at the top (base of mixed layer)
and τ = 0 in the interior.

The buoyancy equation in terms of streamfunction is

v · ∇b = κv
∂2b

∂z2
=⇒ ∂ψ

∂y

∂b

∂z
− ∂ψ

∂z

∂b

∂y
= κv

∂2b

∂z2
(10)

or
∂ψ

∂y
+ S

∂ψ

∂z
=
∂2zb

∂zb
. (11)

The boundary condition on ψ for this will be supplied by the basin! The other boundary
condition we will need is the buoyancy distribution at the top, and so we specify

b(y, z = 0) = b0(y). (12)
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Equations in the basin

In the basin the slope of the isopycnals is assumed zero and (11) becomes the conventional
upwelling diffusive balance,

w
∂b

∂z
= κ

∂2b

∂z2
or

∂ψ

∂y

∂b

∂z
= κv

∂2b

∂z2
. (13)

Integrate this from the edge of the channel, y = 0, to the northern edge, y = L, and obtain

ψ|y=0 = −κvL
bzz

bz
. (14)

2.2 Scaling

Let hats denote non-dimensional values and let

z = hẑ, y = lŷ, τw = τ0τ̂w, (15)

f = f0f̂ , ψ =
τ0
f0
ψ̂, S =

h

l
Ŝ, (16)

where h is a characteristic vertical scale such that S ∼ h/l. It will emerge as part of the
solution. If we have scaled properly then variables with hats on are of order one. The
nondimensional equations of motion are then

Buoyancy evolution: ∂ŷψ̂ + Ŝ∂ẑψ̂ = ε

(
l

L

)
∂ẑẑ b̂

∂ẑ b̂
, (17a)

Momentum balance: ψ̂ = − τ̂
f̂

+ ΛŜ, (17b)

Boundary condition: ψ̂|ŷ=0 = −ε∂ẑẑ b̂
∂ẑ b̂

, (17c)

where

Λ =
Eddies

Wind
=

Ke

τ0/f0

h

l
∼ 1. and ε =

Mixing

Wind
=

κv
τ0/f0

L

h
∼ 0.1− 1. (18a,b)

These are the two important nondimensional numbers in the problem and we can obtain
estimates of their values by using some observed values for the other parameters. Thus,
with κv = 10−5 m2 s−1, Ke = 103 m2 s−1, τ0 = 0.1 N m−2, f0 = 10−4 s−1, ρ0 = 103 kg m−3,
L = 10, 000 km, l = 1, 000 km, and h = 1 km we find

Λ = 1, ε = 0.1, and
l

L
= 0.1. (19)

Note that Λ and ε are not independent of each other for they both depend on the vertical
scale of stratification h which is a part of the solution, and for that we must look at some
limiting cases.
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The weak diffusiveness limit

Suppose that mixing is small and that ε � 1. We can then require that Λ = 1 in order
that the eddy-induced circulation nearly balance the wind-driven circulation (because the
diffusive term is small), whence the vertical scale h is given by

h

l
=
τ0/f0
Ke

. (20)

If Ke does become small then h becomes large, meaning that the isopycnals are near vertical.
Using the above value for h we find that

ε =
κvKe

(τ0/f0)2
L

l
(21)

This is an appropriate measure of the strength of the diapycnal diffusion in the ocean. Using
(17c) we see that ψ̂ ∼ ε so that the dimensional strength of the circulation goes as

Ψ = ε
τ0
f0

= κv
Ke

τ0/f0

L

l
. (22)

Another way to obtain this is to note that for weak diffusion the balance in the dimensional
momentum equation is between wind forcing and eddy effects (because they must nearly
cancel) so that

τw
f
∼ KeS, (23)

which may be written as
h

l
∼ τw
Kef

. (24)

Advective-diffusive balance in the basin gives

∂ψ

∂y

∂b

∂z
= κv

∂2b

∂z2
=⇒ Ψ =

κvL

h
(25)

and (24) and (25) together give (22).

The strong diffusiveness limit

This limit may be appropriate for the abyssal ocean and in any case it is worth doing, so
let us take ε � 1 and the circulation in the basin will in some sense be strong. As before
the nondimensional strength of the circulation is given by

ψ̂ = O(ε)� 1. (26)

The fact that ψ̂ 6= O(1) means we haven’t scaled things in an ideal fashion, but let’s proceed
anyway. Dimensionally

Ψ = ε
τ0
f 0

or Ψ =
κvL

h
(27a,b)

but h and ε are both different than before.
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Now, if ψ̂ ∼ ε� 1 the diffusion driven circulation in the basin cannot be matched by a
purely wind-driven circulation in the channel, since the latter is O(1). We can only match
the circulation with an eddy-driven circulation and therefore we require

Λ = O(ε). (28)

In particular, if we set Λ = ε then

ε = Λ =

√(
KeκvL

(τ0/f)2l

)
. (29)

This is the square root of the expression for ε in the weak diffusiveness limit. Using (29)
and (27a) we find

h =

√
κv
Ke

Ll and Ψ =

√
KeκvL

l
. (30a,b)

Discussion of limits

If diffusion is weak the stratification itself is set by the eddies. Thus, upwelling-diffusion
gives ψ ∼ κvL/h, with h being set by the wind as in (24), thus giving a circulation strength
that is linearly proportional to diffusivity, as in (22). In the strong diffusion case the diffusion
itself affects the stratification, and so we get a weaker dependence of the circulation strength
on κv. In this limit diapycnal mixing deepens the isopycnals in the basin away from the
channel, so that the isopycnals are steeper in the channel. This steepening is balanced by
the slumping effects of baroclinic instability, and wind only has a secondary effect. From an
asymptotic perspective in the small ε limit the residual circulation is zero to lowest order.
At next order it follows the isopycnals except in the mixed layer.

Instead of varying diffusivity we can think of the wind changing. In the weak wind limit
the circulation is diffusively driven and independent of the wind strength. In the strong
wind limit the circulation actually decreases as the wind increases. This is because the
wind steepens the isopycnals so the diffusive term (∼ κvbzz) gets smaller and hence the
circulation weaker.

3 An Interhemispheric Circulation

We now introduce another ‘water mass’ into the mix — North Atlantic Deep Water, or
NADW. We will construct a model of similar type to what we did in the previous lecture,
but now we will divide the ocean into three regions, namely

1. a southern channel, say from 50◦ S to 70◦ S

2. a basin region, say from from 50◦ S to 60◦N

3. a northern convective region

(Fig. 8). The idea will be to write down the dynamics in these three regions and match
them at the boundaries. The main difference, and it is an important one, between this
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Figure 8: Schematic of the interhemispheric MOC. Thin solid black lines are the isopycnals,
dashed lines with arrows are the streamlines, dashed vertical lines are the boundaries be-
tween adjacent regions, shaded gray areas are the convective regions at high latitudes and
the surface mixed layer,and the red arrow represents downward diffusive heat flux. Labels
1, 2, and 3 (in circles) denote the circumpolar channel, ocean basin, and isopycnal outcrop
regions.

model and the previous one is the presence of an interhemispheric cell that is primarily
wind driven, and sits on top of the lower cell. It is convenient to write down the equations
of motion for each region separately, with the first two regions being similar to those of the
previous section.

3.1 Equations of motion

In the equations below use restoring conditions at the top, but a specified buoyancy would
work too.

Region 1, the southern channel

In the channel the buoyancy equation takes its full advective-diffusive form (although we
later find that in some circumstances diffusion is unimportant). The momentum equation
has a wind-driven component and and eddy-driven component, as before. In dimensional
form the equations are

Buoyancy advection: J(ψ1, b1) = κv
∂2b1
∂z2

(31a)
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Momentum: ψ1 = −τ(y)

f
−KeS (31b)

Surface boundary, at z = 0 : −κ∂b1
∂z

= λ(b∗(y)− b1) (31c)

Buoyancy match to interior: b1(z)|y=0 = b2(z) (31d)

Streamfunction match to interior ψ|y=0 = −κvL
bzz

bz
(31e)

These are more-or-less the same as those for the channel in the previous section, although we
have explicitly added a buoyancy condition and we use a restoring condition on temperature.

Region 2, the basin

In the basin the isopycnals are flat and the buoyancy equation is an upwelling-diffusive
balance. We won’t need the momentum equation, and so we have

Upwelling diffusive:
(ψ3 − ψ1)

L

∂b2
∂z

= κv
∂2b2
∂z2

(32a)

Surface boundary: −κ∂b2
∂z

∣∣∣∣
z=0

= λ(b∗ − b2) (32b)

The upwelling diffusive balance is just w∂zb = ∂2zb with flat isopycnals, with ψ1 and ψ3

being the streamfunctions at the southern and northern ends of the basin, respectively. If
ψ1 6= ψ2 there is a net convergence and hence an upwelling. If κv = 0 then either there is
no upwelling or no vertical buoyancy gradient. However, there can be an interhemispheric
flow; the properties of the water mass do not change, and we expect the meridional flow to
occur in a western boundary current.

Region 3, the northern convective region

In this region the values of buoyancy at the surface (i.e., b3(y, z = 0)) are mapped on to the
flat isopycnals in the interior (i.e, b2(z)). We assume this matching occurs by convection.
That is, the surface waters convect downward to the level of neutral buoyancy and then
move meridionally. By thermal wind the outcropping isopycnals give rise to a zonal flow,
with the total zonal transport being determined by the meridional temperature gradient
and the depth to which flow convects, which is a function of such things as the winds, eddy
strength and diapycnal mixing in the Southern channel. The zonal flow is thus

u3(y, z) = − 1

f

∫ z

−h

∂b3
∂y

dz′ + C (33)

where C is determined by the requirement that
∫ 0
−h u3 dz = 0. When the relatively shallow

eastward moving zonal flow collides with the eastern wall it subducts and returns. When the
deep westward flow collides with the western wall it may move equatorward in a frictional
deep western boundary current. It is the upper, northward moving branch of the deep
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western boundary current that feeds the eastward moving flow. The total volume transport
in these zonal flows thus translates to a meridional streamfunction that has the value

ψ3(z) =

∫ z

−h
dz′
∫ Ln

Ly

u3 dy (34)

where Ly is the latitude of the southern edge of the convecting region and Ln = Ly + ln is
the northern edge of the domain. Summing up, the equations in the convective region are

Convective matching: b2(z)⇒ b3(y, z = 0) (35)

Thermal wind: fu3(y, z) = −
∫ z

−h

∂b3
∂y

dz′ + C (36)

Mass Continuity: ψ3(z) =

∫∫
u3 dy dz (37)

We now discuss how all this fits together.

3.2 Scaling and Dynamics

Our main focus is on the upper cell, since the lower cell has essentially the same dynamics
as in the single hemisphere case. We proceed by writing down some parametric expressions
for the streamfunctions in the three domains.

Ψ1 =

(
τ0
f1
−Ke

h

ls

)
Lx, (38a)

Ψ2 = Ψ3 −Ψ1 =
κv
h
LxLy, (38b)

Ψ3 =
∆bh2

f3
. (38c)

We don’t like these equations because when doing scaling we don’t like having additive
expressions but for now we damn the torpedoes. The four unknowns are Ψ1,Ψ2, Ψ3 and
h and there are four equations (note that (38b) is two equations). If we combine them we
obtain

∆bh2

f3
−
(
τ0
f1
−Ke

h

ls

)
Lx =

κv
h
LxLy (39)

This expression is very similar to one obtained by Gnanadesikan (1999).

With no northern source

Suppose that ∆b = 0 and that there is no deep water formation in the North Atlantic. If
also κv is small then we obtain h/ls = (τ0/f1)/Ke, which is essentially the same as (20),
obtained previously. If κv is large then we find h2 = κvLls/Ke; that is, we recover (30a).
Pretty much everything is the same as it was section 2.
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With no southern channel

If there is no southern channel then Ψ1 = 0 and we have

∆bh2

f3
=
κv
h
LxLy (40)

and

h3 = κv

(
f3LxLy

∆b

)
and Ψ3 = Ψ2 = (κvLxLy)

2/3

(
∆b

f3

)1/3
. (41)

These are classical expressions for the thickness of a diffusive thermocline and the strength
of a diffusively-driven overturning circulation, going back to Robinson and Stommel. This
is also the same as the strong diffusivity limit.

With all three regions

This is the new bit. The weak diffusivity limit is the interesting case, as the strong diffusivity
limit is really just the case with no southern channel.

In this case the upwelling is weak and |Ψ3| ≈Ψ1| and

∆bh2

f3
−
(
τ0
f1
−Ke

h

ls

)
Lx = 0. (42)

In this case the basin is just a ‘pass-through’ region: water formed in the North Atlantic
just passes through the basin without change, and upwells in the Southern Ocean. For the
moment let us also assume that Ke is small and then

∆bh2

f3
=

τ0
ρ0f1

Lx, (43)

which results in a depth scale h for the stratification,

h =

(
τ0f3Lx
f1∆b

)1/2

(44)

Putting in the numbers, we find h ≈ 320 m. Furthermore, the strength of the circulation is
just determined by the wind stress,

Ψ1 = Ψ3 =

(
τ0Lx
f1

)
(45)

which is about 10 Sv .
In the more general case we solve (42) to give

h =

(
τ0f3Lx
f1∆b

)1/2 (
−α+

√
1 + α2

)
(46)

where α is the nondimensional number given by the ratio of the wind to eddy effects

α =
1

2

Ke

ls

(
Lxf1f3
τ0∆b

)1/2

=
1

2

Ψ∗

Ψ
. (47)
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where

Ψ =
τ0
f1
Lx, Ψ∗ = −Keh

Lx
ls

= −ke
Lx
ls

(
τ0f3Lx
f1∆b

)1/2
. (48)

If we put in numbers then α ≈ 0.08, Ψ∗ ≈ 1.6 Sv and Ψ ≈ 10 Sv . That is, the wind-
induced circulation is the dominant factor in the meridional overturning circulation, and if
we take α to small then we have

h ≈
(
τ0f3Lx
f1∆b

)1/2
, Ψ ≈ τ0

f1
Lx (49)

Discussion

Although there can be no certainties when eddy diffusivities are present, the use of rep-
resentative parameters suggests that the eddy-induced circulation is indeed smaller than
the wind-driven circulation in the Southern Ocean. That is, putting in numbers, we find
α ≈ 0.08 with Ψ∗ ≈ 1.6 Sv and Ψ ≈ 10 Sv . This suggests that, for typical oceanic pa-
rameters, the strength of the eddy-induced circulation on isopycnals corresponding to the
middepth overturning cell is only about 10-20% of the wind-driven circulation. Thus, rather
than the residual circulation vanishing as is sometimes assumed, the middepth residual cir-
culation is comparable to the wind-driven circulation and acts to pull O(10) Sv of deep
water formed at high northern latitudes in the North Atlantic back up to the surface. As
a result, the depth scale of stratification h is not linearly proportional to the wind stress τ ,
as one would obtain from the vanishing residual circulation argument with a simple eddy
parameterization, but rather it scales with τ as τ1/2 and is dependent on ∆b which is the
buoyancy range for isopycnals which are shared between the circumpolar channel and the
isopycnal outcrop region in the Northern Hemisphere.

In summary, in the limit of weak diapycnal mixing, relevant to the present middepth
ocean, the strength of the middepth overturning circulation is primarily determined by
the Ekman transport in the Southern Ocean. The rest of the ocean is essentially forced
to adjust and produce the amount of deep water demanded by the Ekman transport and
the associated wind-driven upwelling in the Southern Ocean. For instance, during the
transient adjustment, the Ekman transport in the circumpolar channel, in conjunction
with the surface buoyancy flux, pulls dense waters up from the deep ocean, converts them
into light waters at the surface, and pumps these waters into, or just below, the main
thermocline in the ocean basin. The rate at which these light waters are then imported into
the deep water formation region in the North Atlantic, converted back into dense waters, and
exported to the ocean basin at middepth, is controlled by the meridional pressure gradient
set up by the outcropping isopycnals in the north. Hence, light waters pumped into the
ocean basin by the Ekman transport in the south accumulate in, or just below, the main
thermocline, therefore deepening the middepth isopycnals and increasing the transport of
light water into the deep water formation region in the north until the transports in the
north and south match. The established interhemispheric balance sets the depth of the
isopycnals in the ocean basin and thus stratification throughout the entire ocean.

In the case when deep waters are not produced in the north, as observed in the Pacific
Ocean, light waters pumped into the ocean basin by the Southern Ocean wind will deepen
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the mid-depth isopycnal in the ocean basin, and thus steepen their slopes in the Southern
Ocean, until the eddy-induced circulation in the Southern Ocean cancels the wind-driven
circulation resulting in a zero residual circulation and water mass transformation.

4 Theory of the Main Thermocline
(And why it is not really like the tropopause)

Our goal in this lecture is to give a sense of the structure of the thermocline, and to draw
out similarities and differences (mainly differences) with the tropopause.

A simple kinematic model

The fact that cold water with polar origins upwells into a region of warmer water suggests
that we consider the simple one-dimensional advective–diffusive balance,

w
∂T

∂z
= κ

∂2T

∂z2
, (50)

where w is the vertical velocity, κ is a diffusivity and T is temperature. In mid-latitudes,
where this might hold, w is positive and the equation represents a balance between the
upwelling of cold water and the downward diffusion of heat. If w and κ are given constants,
and if T is specified at the top (T = TT at z = 0) and if ∂T/∂z = 0 at great depth (z = −∞)
then the temperature falls exponentially away from the surface according to

T = (TT − TB)ewz/κ + TB, (51)

here TB is a constant. This expression cannot be used to estimate how the thermocline depth
scales with either w or κ, because the magnitude of the overturning circulation depends on
κ. However, it is reasonable to see if the observed ocean is broadly consistent with this
expression. The diffusivity κ can be measured; it is an eddy diffusivity, maintained by
small-scale turbulence, and measurements produce values that range between 10−5 m 2 s−1

in the main thermocline and 10−4 m 2 s−1 in abyssal regions over rough topography and in
and near continental margins, with still higher values locally.

The vertical velocity is too small to be measured directly, but various estimates based
on deep water production suggest a value of about 10−7 m s−1 . Using this and the smaller
value of κ in (51) gives an e-folding vertical scale, κ/w, of just 100 m , beneath which the
stratification is predicted to be very small (i.e., nearly uniform potential density). Using
the larger value of κ increases the vertical scale to 1000 m , which is probably closer to the
observed value for the total thickness of the thermocline (look at Fig. 9), but using such a
large value of κ in the main thermocline is not supported by the observations. Similarly,
the deep stratification of the ocean is rather larger than that given by (50), except with
values of diffusivity on the large side of those observed.
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Figure 9: Sections of potential density (σθ) in the North Atlantic. Upper panel: meridional
section at 53◦W , from 5◦N to 45◦N , across the subtropical gyre. Lower panel: zonal
section at 36◦N , from about 75◦W to 10◦W .
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5 Scaling and Simple Dynamics of the Main Thermocline

The Rossby number of the large-scale circulation is small and the scale of the motion large,
and the flow obeys the planetary-geostrophic equations:

f × u = −∇φ, ∂φ

∂z
= b, (52a,b)

÷v = 0,
Db

Dt
= κ

∂2b

∂z2
. (53a,b)

5.1 An advective scale

If there is upwelling (w > 0) from the abyss, and Ekman downwelling (w < 0) at the
surface, there is some depth Da at which w = 0. By cross-differentiating (52a) we obtain
βv = −f ÷ [z]u , or

βv = f
∂w

∂z
→ βV = f

W

Da
= f

WE

Da
. (54)

Thermal wind

f × ∂u

∂z
= −∇b → U

Da
=

1

f

∆b

L
, (55)

where ∆b is the scaling value of variations of buoyancy in the horizontal. Assuming the
vertical scales are the same in (54) and (55) and that V ∼ U then

Da = W
1/2
E

(
f2L

β∆b

)1/2
. (56)

5.2 A diffusive scale

The estimate (56) cares nothing about the thermodynamic equation, so let’s now include
some and construct a scaling from from advective–diffusive balance in the thermodynamic
equation, the linear geostrophic vorticity equation, and thermal wind balance:

w
∂b

∂z
= κ

∂2b

∂z2
, βv = f

∂w

∂z
, f

∂u

∂z
= k×∇b, (57a,b,c)

with corresponding scales

W

δ
=

κ

δ2
, βU =

fW

δ
,

U

δ
=

∆b

fL
, (58a,b,c)

where δ is the vertical scale. Because there is now one more equation than in the advective
scaling theory we cannot take the vertical velocity as a given, otherwise the equations would
be overdetermined. We therefore take it to be the abyssal upwelling velocity, which then
becomes part of the solution, rather than being imposed. From (58) we obtain the diffusive
vertical scale,

δ =

(
κf2L

β∆b

)1/3
. (59)

With κ = 10−5 m 2 s −2 and with the other parameters taking the values given following
(56), (59) gives δ ≈ 150 m and, using (58a), W ≈ 10−7 m s−1 , which is an order of
magnitude smaller than the Ekman pumping velocity WE .
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6 The Internal thermocline

6.1 The M equation

The planetary-geostrophic equations can be written as a single partial differential equation
in a single variable, although the resulting equation is of quite high order and is nonlinear.
We write the equations of motion as

−fv = −∂φ
∂x

, fu = −∂φ
∂y
, b =

∂φ

∂z
, (60a,b,c)

÷v = 0,
∂b

∂t
+ v · ∇b = κ∇2b, (61a,b)

where we take f = βy. Cross-differentiating the horizontal momentum equations and using
(61a) gives the linear geostrophic vorticity relation βv = f∂w/∂z which, using (60a) again,
may be written as

∂φ

∂x
+

∂

∂z

(
−f

2

β
w

)
= 0. (62)

This equation is the divergence in (x, z) of (φ,−f2w/β) and is automatically satisfied if

φ = Mz and
f2w

β
= Mx. (63a,b)

where the subscripts on M denote derivatives. Then straightforwardly

u = −∂yφ
f

= −Mzy

f
, v =

∂xφ

f
=
Mzx

f
, b = ∂zφ = Mzz. (64a,b,c)

The thermodynamic equation, (61b) becomes

∂Mzz

∂t
+

(−Mzy

f
Mzzx +

Mzx

f
Mzzy

)
+

β

f2
MxMzzz = κMzzzz (65)

or
∂Mzz

∂t
+

1

f
J(Mz,Mzz) +

β

f2
MxMzzz = κMzzzz. (66)

where J is the usual horizontal Jacobian. This is the M equation,1 somewhat analogous to
the potential vorticity equation in quasi-geostrophic theory in that it expresses the entire
dynamics of the system in a single, nonlinear, advective–diffusive partial differential equa-
tion, although note that Mzz is materially conserved (in the absence of diabatic effects) by
the three-dimensional flow. Because of the high differential order and nonlinearity of the
system analytic solutions of (66) are very hard to find, and from a numerical perspective
it is easier to integrate the equations in the form (60) and (61) than in the form (66).
Nevertheless, it is possible to move forward by approximating the equation to one or two
dimensions, or by a priori assuming a boundary-layer structure.

1Welander (1971).
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A one-dimensional model

Let us consider an illustrative one-dimensional model (in z ) of the thermocline. Merely
setting all horizontal derivatives in (66) to zero is not very useful, for then all the advective
terms on the left-hand side vanish. Rather, we look for steady solutions of the form M =
M(x, z), and the M equation then becomes

β

f2
MxMzzz = κMzzzz, (67)

which represents the advective–diffusive balance

w
∂b

∂z
= κ

∂2b

∂z2
. (68)

(We must also suppose that the value of κ varies meridionally in the same manner as does
β/f2; without this technicality M would be a function of y , violating our premise.) If the
ocean surface is warm and the abyss is cold, then (67) represents a balance between the
upward advection of cold water and the downward diffusion of warm water. The horizontal
advection terms vanish because the zonal velocity, u, and the meridional buoyancy gradient,
by, are each zero. Let us further consider the special case

M = (x− xe)W (z), (69)

where the domain extends from 0 ≤ x ≤ xe, so satisfying M = 0 on the eastern boundary.
Equation (67) becomes the ordinary differential equation

β

f2
WWzzz = κWzzzz, (70)

where W has the dimensions of velocity squared. We non-dimensionalize this by setting

z = Hẑ, κ = κ̂(HWS), W =

(
f2WS

β

)
Ŵ , (71a,b,c)

where the hatted variables are non-dimensional and WS is a scaling value of the dimensional
vertical velocity, w (e.g., the magnitude of the Ekman pumping velocity WE). Equation
(70) becomes

ŴŴ ẑẑẑ = κ̂Ŵ ẑẑẑẑ, (72)

The parameter κ̂ is a non-dimensional measure of the strength of diffusion in the interior,
and the interesting case occurs when κ̂ � 1; in the ocean, typical values are H = 1 km ,
κ = 10−5 m s −2 and WS = WE = 10−6 m s −1 so that κ̂ ≈ 10−2, which is indeed small.
(It might appear that we could completely scale away the value of κ in (70) by scaling W
appropriately, and if so there would be no meaningful way that one could say that κ was
small. However, this is a chimera, because the value of κ would still appear in the boundary
conditions.)

The time-dependent form of (72), namely

Ŵ ẑẑt + ŴŴ ẑẑẑ = κ̂Ŵ ẑẑẑẑ (73)

130



is similar to Burger’s equation
Vt + V Vz = νVzz (74)

which is known to develop fronts. (In the inviscid Burger’s equation, DV/Dt = 0, where the
advective derivative is one-dimensional, and therefore the velocity of a given fluid parcel is
preserved on the line. Suppose that the velocity of the fluid is positive but diminishes in
the positive z-direction, so that a fluid parcel will catch-up with the fluid parcel in front
of it. But since the velocity of a fluid parcel is fixed, there are two values of velocity at
the same point, so a singularity must form. In the presence of viscosity, the singularity is
tamed to a front.) Thus, we might similarly expect (72) to produce a front, but because
of the extra derivatives the argument is not as straightforward and it is simplest to obtain
solutions numerically.

Equation (72) is fourth order, so four boundary conditions are needed, two at each
boundary. Appropriate ones are a prescribed buoyancy and a prescribed vertical velocity
at each boundary, for example

Ŵ = ŴE , −Ŵ ẑẑ = B0, at top

Ŵ = 0, −Ŵ ẑẑ = 0, at bottom,
(75)

where ŴE is the (non-dimensional) vertical velocity at the base of the top Ekman layer,
which is negative for Ekman pumping in the subtropical gyre, and B0 is a constant, pro-
portional to the buoyancy difference across the domain. We obtain solutions numerically
by Newton’s method. The solutions here are obtained using about 1000 uniformly spaced
grid points to span the domain, taking just a few seconds of computer time. Because of
the boundary layer structure of the solutions employing a non-uniform grid would be even
more efficient for this problem, but there is little point in designing a streamlined hat to
reduce the effort of walking. These are shown in Figs. 10 and 11. The solutions do indeed
display fronts, or boundary layers, for small diffusivity. If the wind forcing is zero (Fig. 11),
the boundary layer is at the top of the fluid. If the wind forcing is non-zero, an internal
boundary layer — a front — forms in the fluid interior with an adiabatic layer above and
below. In the real ocean, where wind forcing is of course non-zero, the frontal region is
known as the internal thermocline.

6.2 Boundary-layer analysis

The reasoning and the numerical solutions of the above sections suggest that the internal
thermocline has a boundary-layer structure whose thickness decreases with κ. If the Ekman
pumping at the top of the ocean is non-zero, the boundary layer is internal to the fluid. To
learn more, let us perform a boundary layer analysis.

One-dimensional model

Let us now assume a steady two-layer structure of the form illustrated in Fig. 12, and
that the dynamics are governed by (72) in a domain that extends from 0 to −1. The
buoyancy thus varies rapidly only in an internal boundary layer of non-dimensional thickness
δ̂ located at ẑ = −h; above and below this the buoyancy is assumed to be only very slowly
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Figure 10: Solution of the one-dimensional thermocline equation, (72), with boundary
conditions (75), for two different values of the diffusivity: κ̂ = 3.2 × 10−3 (solid line) and
κ̂ = 0.4× 10−3 (dashed line), in the domain 0 ≤ ẑ ≤ −1.

Vertical velocity Temperature

D
e
p
th

∂T/∂z

0 0.05
1

0.5

0

0 5 10 0 100 200

Figure 11: As for Fig. 10, but with no imposed Ekman pumping velocity at the upper
boundary (ŴE = 0), again for two different values of the diffusivity.

varying. Following standard boundary layer procedure we introduce a stretched boundary
layer coordinate ζ where

δ̂ζ = ẑ + h. (76)

That is, ζ is the distance from ẑ = −h, scaled by the boundary layer thickness δ̂, and within
the boundary layer ζ is an order-one quantity. We also let

Ŵ (ẑ) = Ŵ I(ẑ) + W̃ (ζ), (77)

where Ŵ I is the solution away from the boundary layer and W̃ is the boundary layer correc-
tion. Because the boundary layer is presumptively thin, Ŵ I is effectively constant through
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Figure 12: The simplified boundary-layer structure of the internal thermocline. In the limit
of small diffusivity the internal thermocline forms a boundary layer, of thickness δ in the
figure, in which the temperature and buoyancy change rapidly.

it and, furthermore, for ẑ < −h, Ŵ vanishes in the limit as κ = 0. We thus take Ŵ I = 0
throughout the boundary layer. (The small diffusively-driven upwelling below the boundary
layer is part of the boundary layer solution, not the interior solution.) Now, buoyancy varies
rapidly in the boundary layer but it remains an order-one quantity throughout. To satisfy
this we explicitly scale W̃ in the boundary layer by writing

W̃ (ζ) = δ̂2B0A(ζ), (78)

where B0 is defined by (75) and A is an order-one field. The derivatives of W are

∂Ŵ

∂ẑ
=

1

δ̂

∂W̃

∂ζ
= δ̂B0

∂A

∂ζ
,

∂2Ŵ

∂ẑ2
= B0

∂2A

∂ζ2
, (79)

so that Ŵ ẑẑ is an order-one quantity. Far from the boundary layer the solution must be able
to match the external conditions on temperature and velocity, (75); the buoyancy condition
on Wẑẑ is satisfied if

Aζζ →
{

1 as ζ → +∞
0 as ζ → −∞.

(80)

On vertical velocity we require that W → (ẑ/h+ 1)WE as ζ → +∞, and W → constant as
ζ → −∞. The first matches the Ekman pumping velocity above the boundary layer, and
the second condition produces the abyssal upwelling velocity, which as noted vanishes for
κ→ 0.

Substituting (77) and (78) into (72) we obtain

B0AAζζζ =
κ̂

δ̂3
Aζζζζ . (81)
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Because all quantities are presumptively O(1), (81) implies that δ̂ ∼ (κ̂/B0)
1/3. We restore

the dimensions of δ by using κ = κ̂(HWS) and ∆b = B0Lf
2WS/(βH

2), where ∆b is the
dimensional buoyancy difference across the boundary layer [note that b = Mzz = (x −
1)Wzz ∼ LWzz ∼ LB0f

2WS/(βH
2) using (71)]. The dimensional boundary layer thickness,

δ, is then given by

δ ∼
(
κf2L

∆b β

)1/3
, (82)

which is the same as the heuristic estimate (59). The dimensional vertical velocity scales as

W ∼ κ

δ
∼ κ2/3

(
∆b β

f2L

)1/3
, (83)

this being an estimate of strength of the upwelling velocity at the base of the thermo-
cline and, more generally, the strength of the diffusively-driven component of meridional
overturning circulation of the ocean.

The qualitative features of these models transcend their detailed construction, and in
particular:

• the thickness of the internal thermocline increases with increasing diffusivity, and
decreases with increasing buoyancy difference across it, and as the diffusivity tends to
zero the thickness of the internal thermocline tends to zero.

• the strength of the upwelling velocity, and hence the strength of the meridional over-
turning circulation, increases with increasing diffusivity and increasing buoyancy dif-
ference.

The three-dimensional equations

We now apply boundary layer techniques to the three-dimensional M equation.2 The main
difference is that the depth of the boundary layer is now a function of x and y , so that the
stretched coordinate ζ is given by

δ̂ζ = z + h(x, y). (84)

[The coordinates (x, y, z) in this subsection are non-dimensional, but we omit their hats to
avoid too cluttered a notation.] Just as in the one-dimensional case we rescale M in the
boundary layer and write

M = B0δ̂
2Â(x, y, ζ), (85)

where the scaling factor δ̂2 again ensures that the temperature remains an order-one quan-
tity. In the boundary layer the derivatives of M become

∂M

∂z
=

1

δ̂

∂A

∂ζ
, (86)

and
∂M

∂x
= δ̂2B0

(
∂A

∂ζ

∂ζ

∂x
+
∂A

∂x

)
= δ̂2B0

(
∂A

∂ζ

1

δ̂

∂h

∂x
+
∂A

∂x

)
. (87)

2Following Samelson (1999).
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Substituting these into (65) we obtain, omitting the time-derivative,

δ̂

[
1

f
(AζxAζζy −AζyAζζx) +

β

f2
AxAζζζ

]
+

β

f2
hxAζAζζζ

+
1

f
[hx (AζζAζζy −AζyAζζζ) + hy (AζxAζζζ −AζζAζζx)]

=
κ

B0δ̂2
Aζζζζ ,

(88)

where the subscripts on A and h denote derivatives. If hx = hy = 0, that is if the base of
the thermocline is flat, then (88) becomes

1

f
[AζxAζζy −AζyAζζx] +

β

f2
AxAζζζ =

κ

B0δ̂3
Aζζζζ . (89)

Since all the terms in this equation are, by construction, order one, we immediately see that
the non-dimensional boundary layer thickness δ̂ scales as

δ̂ ∼
(
κ

B0

)1/3
, (90)

just as in the one-dimensional model. On the other hand, if hx and hy are order-one
quantities then the dominant balance in (88) is

1

f
[hx(AζζAζζy −AζyAζζζ) + hy(AζxAζζζ −AζζAζζx)] =

κ

B0δ̂2
Aζζζζ (91)

and

δ̂ ∼
(
κ

B0

)1/2
, (92)

confirming the heuristic scaling arguments. Thus, if the isotherm slopes are fixed indepen-
dently of κ (for example, by the wind stress), then as κ→ 0 an internal boundary layer will
form whose thickness is proportional to κ1/2. We expect this to occur at the base of the
main thermocline, with purely advective dynamics being dominant in the upper part of the
thermocline, and determining the slope of the isotherms (i.e., the form of hx and hy). Inter-
estingly, the balance in the three-dimensional boundary layer equation does not in general
correspond locally to wTz ≈ κTzz. Both at O(1) and O(δ) the horizontal advective terms
in (88) are of the same asymptotic size as the vertical advection terms. In the boundary
layer the thermodynamic balance is thus u · ∇zT +wTz ≈ κTzz, whether the isotherms are
sloping or flat. We might have anticipated this, because the vertical velocity passes through
zero within the boundary layer.
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