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1 Introduction

Finding the bounds of certain global quantities is an important approach in the theoretical
study of turbulence. Particularly, maximum convective heat transport in Rayleigh-Bénard
convection is a much-studied subject. The idea dates back to Malkus [1]. Following this idea,
a rigorous upper bound of convective heat transport in Rayleigh-Bénard convection without
continuity constraint was Þrst derived by Howard [2], using a variational approach. In the
same paper [2], a single-wavenumber boundary layer approximation is used to study the
asymptotic solutions of the Euler-Lagrange equations. Busse [3] extended this asymptotic
technique and introduced multi-α-solutions, which has been proved fruitful in studying other
ßuid dynamics problems [4], [5], [6], and this approach is reviewed in [7]. A new approach to
derive the rigorous bounds on turbulent ßow quantities, the background method (Deoring-
Contantin approach), appeared in 1992 [8], and subsequently applied to Rayleigh-Bénard
convection [9], [10]. In this project report, these two above-mentioned techniques are applied
to bound the minimum average temperature in a ßuid layer with internal heating.

2 Governing Equations
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Figure 1: Geometry of convection with uniform internal heating.

The geometry is shown in Fig. (1). The setup is very similar to Rayleigh-Bénard con-
vection. A ßuid layer is conÞned between two parallel plates with a distance d. However,a
uniform volumetric heat ßux H(with unit J

s·m3 ) is pumped into the ßuid layer. The upper
and lower plates are held at Þxed temperatures T0 and T1 respectively, and there is no re-
striction on the temperature difference ∆T = T0−T1. With internal heating, the governing
equations are identical to Rayleigh-Bénard convection except for the additional term γ in
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the heat equation:

∂u

∂t
+ u ·∇u = −∇p+ ν∇2u+ �kgαT, (1a)

∂T

∂t
+ u ·∇T = κ∇2T + γ, (1b)

∇ · u = 0, (1c)

with the boundary conditions

u|z=0,1 = 0, T |z=0 = T0, T |z=1 = T1, (1d)

where

γ =
H

ρc
. (1e)

By introducing d2

κ as the unit of time, d of length,
κ
d of velocity and

κν
gαd3

as the unit of
temperature, the governing equations are put into the non-dimensional form

Pr−1
!
∂u

∂t
+ u ·∇u

"
+∇p = ∇2u+ T�k (2a)

∂T

∂t
+ u ·∇T = ∇2T +R (2b)

where

Pr =
ν

κ
, R =

gαd5γ

κ2ν
(2c)

R is the heat Rayleigh number, which is proportional to the internal heating rate. The
boundary conditions in non-dimensional form are

u|z=0,1 = 0, T |z=0 = −T0, T |z=1 = 0, (2d)

where T0 =
gαd3

κν |∆T |, which shows that the non-dimensional T0 is equivalent to the role
of the Rayleigh number Ra. A negative non-dimensional temperature at the bottom plate
means the upper plate is hotter. If T |z=0 is 0, then two plates have the same tempera-
ture. The case when the bottom plate is hotter corresponds to a positive non-dimensional
temperature at the bottom plate.

3 Linear and Energy Stability

A static solution can be found easily:

T = −1
2
Rz2 + (

1

2
R+ T0)z − T0 (3)

where T |z=0 = −T0. Fig (2) shows several possibilities of the of the static solutions. When
two plates have the same temperature, the proÞle is symmetric about z = 1

2 . The maximum
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Figure 2: Static solutions of an internally heated ßuid layer.

temperature occurs at z = 1
2 . Thus temperature gradient for the lower half of the ßuid layer

is positive, corresponding to a stable stratiÞcation. While in the upper half, the ßuid layer
is unstably stratiÞed. This proÞle provides the possibility, when the internal heating rate R
is big enough, that convection starts in the upper half of the ßuid layer. When T0 increases,
but not exceeding 1

2R,the unstable stratiÞcation persists with the position of maximum
temperature shifting toward the upper plate. Eventually, when T0 ≥ 1

2R, the temperature
gradient is positive everywhere which suggests that the ßuid layer is linearly stable, a fact
that will be established in the analysis of linear stability bellow.

Let T = −1
2Rz

2+( 12R+T0)z−T0+ θ, where θ is the temperature disturbance. We can
write down the linearized equations governing the growth of the disturbances θ and u

Pr−1
!
∂u

∂t

"
+∇p = ∇2u+ θ�k (4a)

∂θ

∂t
=

!
z − 1

2
− T0

"
w +∇2θ (4b)

∇ · u = 0 (4c)

with the boundary conditions

u|z=0,1 = 0, θ|z=0,1 = 0. (4d)

Taking the z component of the curl curl of the u equation leads to

Pr−1
∂

∂t
∇2w = ∇4w +∆2θ, (5)
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where ∆2 is the horizontal Laplacian, deÞned as

∆2 =
∂2

∂x2
+
∂2

∂y2
. (6)

Then we make the ansatz

w = estf(x, y)W (z), θ = estf(x, y)Θ(z), (7a)

and

∆2f(x, y) = −a2f(x, y). (7b)

The exchange of stability holds in this problem ([11]). Hence to determine the critical R,
we can set s = 0: #

D2 − a2$2W = a2RΘ (8a)#
D2 − a2$Θ = −!z − 1

2
− T0

"
W (8b)

with the boundary conditions

W = DW = θ = 0 at z = 0, 1. (8c)

In Rayleigh-Bénard convection, the equations for linear stability turn out to be identical
to those of energy stability. Thus it is of interest to investigate the energy stability of the
internally heated ßuid layer. The equations for the disturbances u and θ are

Pr−1
!
∂u

∂t
+ u ·∇u+∇p

"
= ∇2u+ θ�k, (9a)

∂θ

∂t
+ u ·∇θ =

!
Rz − 1

2
R− T0

"
w +∇2θ, (9b)

∇ · u = 0. (9c)

Using u· equation (9a), θ× equation (9b), we integrate over the whole layer to get
1

2

d

dt

%
u2
&

Pr
= − %|∇u|2&+ $wθ% , (10a)

1

2

d

dt

%
θ2
&

R
=

'!
z − 1

2
− T0
R

"
wθ

(
−
%|∇θ|2&
R

. (10b)

Introducing a balance parameter s and adding the above equations yield

d

dt

1

2

)
s ·
%
u2
&

Pr
+

%
θ2
&

R

*
= −

)
s · %|∇u|2&−'!z − 1

2
− T0
R
+ s

"
wθ

(
+

%|∇θ|2&
R

*
(11)

Let

λ = s ·
%|∇u|2&− %#z − 1

2 − T0
R + s

$
wθ
&
+
$|∇θ|2%
R

1
2

+
s · #u2$Pr +

#θ2$
R

, , (12)
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then if minλ ≤ 0 among the Þelds with

∇ · u = 0, u|z=0,1 = 0, θ|z=0,1 = 0,

the disturbances decay exponentially in time, which implies energy stability. To determine
the critical value of R, we need the Euler-Lagrange equations:

s ·∇2u+ 1
2

!
z − 1

2
− T0
R
+ s

"
θ�k+∇p+ λu

R
= 0 (13a)

∇2θ + 1
2

!
z +

1

2
− T0
R

"
w + λθ = 0 (13b)

∇ · u = 0 (13c)

Setting λ = 0 and applying the ansatz (7) yields

s · (D2 − a2)2W − 1
2

!
z − 1

2
− T0
R
+ s

"
a2Θ = 0 (14a)

(D2 − a2)Θ+ 1
2

!
z − 1

2
− T0
R
+ s

"
RW = 0 (14b)

with the boundary conditions

W = DW = Θ = 0 at z = 0, 1 (14c)

For each s, the critical RE(s) can be found by minimizing the eigenvalue R with respect to
the horizontal wave-number a. Then s can be chosen such that it gives a maximal

RE(T0) = max
s
min
a
R(a, s)

.
The linear stability and energy stability equations are solved numerically, using a Cheby-

shev spectral method. The results are shown in Fig. (3) and Fig. (4). The Þrst Þgure (with
the bottom plate colder) shows the convergence of the linear stability to the straight line
T0 =

1
2R, which corresponds the temperature difference beyond which the entire ßuid layer

is stably stratiÞed. However, the energy stability increases with T0 but does not converge
to the line T0 =

1
2R. In the case of a hotter bottom plate, both the linear stability and

energy stability lines converge to the critical Rayleigh number 1708 for Rayleigh-Bénard
convection. This is expected since the ßuid layer is linearly unstable even without any in-
ternal heating in that case. In both Þgures, the critical R for energy stability is lower than
that of linear stability. This suggests the possibility of subcritical bifurcations.

As shown above, even though the bottom plate is colder and the lower half of the ßuid
is stably stratiÞed, the system can still be linearly unstable. Once the convection starts, it
tries to lower the average temperature of the ßuid layer. Thus it is of interest to investigate
the scaling of the minimum average temperature. In the following two sections, this scaling
will be studied with the background method and the multi-α-solution approach.
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Figure 3: Linear and energy stability.
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Figure 4: Linear and energy stability (Hotter lower plate).
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4 Background method

To apply the background method, Þrst we decompose the temperature Þeld T into a back-
ground proÞle τ(z) and a ßuctuating part θ(x, y, z, t):

T = τ(z) + θ(x, y, z, t). (15)

The boundary conditions of T are contained in τ(z):

τ(0) = τ(1) = 0. (16)

The velocity Þeld u still satisÞes divergence-free and no-slip boundary conditions:

∇ · u = 0, u|z=0,1 = 0. (17)

Then the governing equations (2) become

Pr−1
!
∂u

∂t
+ u ·∇u

"
+∇p = ∇2u+ τ�k+ T�k, (18a)

∂θ

∂t
+ u ·∇θ = ∇2θ + τ %% +R− wτ %. (18b)

DeÞne < · >= limt=1→∞ 1
t

- t
0 dt

% 1
LxLy

-
dxdydz· to be the average over both space and time.

Then $u · (18a)% yields %|∇u|2& = $wθ% , (19)

and $θ · (18b)%, $τ · (18b)% yield, respectively,%
wθτ %

&
= − %|∇θ|2&− %θ%τ %&+R $θ% , (20)

− %wθτ %& = − %θ%τ %&+R $τ% − %τ %2& . (21)

The difference of the above two identities is

R ($θ% − $τ%) = %|∇θ|2&+ 2 %wθτ %&− %τ %2& . (22)

Since $T % = $τ%+ $θ%, we have

R $T % = %|∇θ|2&+ 2 %wθτ %&+ 2R $τ% − %τ %2& . (23)

The identity (23) can also be written as

0 = a
%|∇u|2&− a $wθ% , (24)

where a is a positive number used as an optimization parameter to be adjusted to yield the
best prefactor. Adding equation (24) to equation (23) enables us to express the average
temperature as follows:

R $T % = 2R $τ% − %τ %2&+H, (25)
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where

H =
.%|∇θ|2&+ %(2τ % − a)wθ&+ a %|∇u|2&/ . (26)

We require the functional H to be semi positive deÞnite among the Þelds u and θ satisfying

∇ · u = 0, ,u|z = 0, 1 = 0, θ|z=0,1 = 0.
A bound can readily be obtained by applying the following background proÞle

τ(z) =

)
a
2z, 0 ≤ z ≤ 1− δ
a(1−δ)
2δ (1− z), 1− δ < z ≤ 1 (27)

With this background proÞle, 2τ % − a vanishes in the interval 1 ≤ z ≤ 1− δ. Thus we only
need to estimate | $(2τ % − a)wθ% | = a

δ $wθ% in the region 1− δ < z ≤ 1, and adjust δ and a
to make H semi positive deÞnite. Following ([9]), an estimate is given by

| %(2τ % − a)wθ& | ≤ a

δ

δ2

4

0
c

4

%|∇u|2&+ δ2
4c

%|∇θ|2&1 . (28)

Then.%|∇θ|2&+ %(2τ % − a)wθ&+ a %|∇u|2&/ ≥ !a− a
δ

δ2c

16

"%|∇u|2&+ !1− a
δ

δ2

4c

"%|∇θ|2& .
(29)

The choice

aδ2

64
= 1, c =

aδ

4
(30)

makes the right hand side equal to zero, which ensures H ≥ 0. Then
R $T % ≥ 2R $τ % − %τ %2&

=
aR

2
(1− δ)− a

2

4

1− δ
δ
.

(31)

Minimizing the right hand side with respect to a gives the optimal choice of the parameter
a,

a = δR. (32)

And δ can be solved from equation (30),

δ =
4
3
√
R
. (33)

Finally,

$T % ≥ 2 $τ% −
%
τ %2
&

R

=
1

4
Rδ(1− δ)

= R2/3 − 4R1/3.

(34)

This shows that as R→∞, $T % ∼ R2/3, which will be veriÞed in the next section by using
the multi-α solution approach.
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5 Howard-Busse Approach

5.1 Formulation of the Functional

The governing equations are repeated here again

Pr−1
!
∂u

∂t
+ u ·∇u

"
+∇p = ∇2u+ T�k, (35a)

∂T

∂t
+ u ·∇T = ∇2T +R, (35b)

with

u|z=0,1 = 0, T (0) = −T0, T (1) = 0. (35c)

Assume the turbulence is statistically stationary and the velocity Þeld v and temperature T
can be decomposed into a time independent horizontal average and a meanless ßuctuating
part:

T = T + θ, θ = 0 with u = 0, θ = 0.. (36)

After taking horizontal average of (35b), we have

dwθ

dz
=
d2T

d2z
+R. (37)

Integrate once,

wθ =
dT

dz
+Rz + c. (38)

The integration constant c is determined by integrating above equation over [0, 1]. This
yields

dT

dz
= wθ − $wθ% −R

!
z − 1

2

"
+ T0 (39)

With the decomposition (36), equation (35b) can be written as

∂θ

∂t
+ w

dT

dz
+ u ·∇θ = ∇2θ + d

2T

d2z
+R = ∇2θ + dwθ

dz
(40)

where equation (37) has been used. Multiply both sides with θ and integrate over the bulk,
we have '

wθ
dT

dz

(
= − %|∇θ|2& . (41)

Together with equation (39), the above expression yields

R

'!
z − 1

2

"
wθ

(
=
%|∇θ|2&+ %(wθ− < wθ >)2&+ T0 $wθ% (42)

184



Another power integral is derived by multiplying equation (35a) by u and integrating over
the bulk: %|∇u|2& = $wθ% (43)

We can Þnd an expression of the average temperature by multiplying equation (39) by z
and integrate over [0, 1]:

$T % = −
'!
z − 1

2

"
wθ

(
+
1

12
R− 1

2
T0 (44)

In summary, we have the following expressions:%|∇u|2& = $wθ% (45)

R

'!
z − 1

2

"
wθ

(
=
%|∇θ|2&+ %(wθ − $wθ%)2&+ T0 $wθ% (46)

$T % = −
'!
z − 1

2

"
wθ

(
+
1

12
R− 1

2
T0 (47)

From equation (46), R can be expressed as

R =

%|∇θ|2&+ < (wθ − $wθ%)2 > +T0 $wθ%%#
z − 1

2

$
wθ
& . (48)

Substitute the above expression into equation (47),

$T % = −
'!
z − 1

2

"
wθ

(
+
1

12

%|∇θ|2&+ %(wθ − $wθ%)2&+ T0 $wθ%%#
z − 1

2

$
wθ
& − 1

2
T0

=

%|∇θ|2&+ %(wθ− < wθ&)2 > −12 %#z − 1
2

$
wθ
&

12
%#
z − 1

2

$
wθ
&2 + T0

2
$wθ%

12
%#
z − 1

2

$
wθ
& − 1

2

3
.

(49)

Let

h(z) =
√
12

!
z − 1

2

"
. (50)

Notice that

$h% = 0, %
h2
&
= 1. (51)

This property of h(z) yields the following identity:4#
wθ − h $hwθ% − $wθ%$25 = 4wθ25− $wθ%2 − $hwθ%2 . (52)

Together with equation (45), the average temperature can be expressed as follows,

<
√
12T > =

%|∇θ|2&+ < (wθ− < wθ >)2 > −$hwθ%2
$hwθ% + T0

!
< wθ >

$hwθ% −
√
3

"
=

%|∇θ|2& %|∇u|2&
< wθ >< hwθ >

+
< (wθ − h < hwθ > − < wθ >)2 >

< hwθ >
+ T0

!
< wθ >

$hwθ% −
√
3

"
.

(53)
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Thus the variational problem (T0 = 0 case) can be formulated as
Given µ =< hwθ >, Þnd the minimum of the functional

F =
%|∇θ|2& %|∇u|2&
$hwθ% $wθ% + µ

%
(wθ − h $hwθ% − $wθ%)2&

$hwθ%2 (54)

among the u, θ Þelds with

∇ · u = 0, u|z=0,1 = 0, θ|z=0,1 = 0, (55)

where

w = u · �k, h(z) =
√
12

!
z − 1

2

"
.

Since the functional F is homogeneous in both w and θ, we can impose two normalization
conditions

$hwθ% = 1, %
w2
&
=
%
θ2
&
. (56)

5.2 Multi-α Solution

We are seeking the minimum of the functional F as µ→∞. This implies that wθ = h+$wθ%
(here and in the following discussion the normalization condtions (55) have been assumed.)
in most of the interval 0 < z < 1 , which makes the second term in the functional vanish
in this interval. Only near the boundary z = 0, 1 the boundary conditions prevent a close
appoach of wθ to h + $wθ%. And the contribution to the functional is thus from possible
boundary layers at z = 0, 1. Since h(1) + $wθ% = √

3 +
%|∇u|2& > 0 (equation (45 and

deÞnition (50)), there must be a boundary layer at z = 1. At z = 0, h(0) + $wθ% =
−√3 + $wθ% is indeÞnite. Thus the existence of a boundary layer at z = 0 depends on
whether h(0) + $wθ% is zero. Without loss of generality, we assume there are two boundary
layers at z = 0, 1 respectively, and make the ansatz

w =
6

wnφn + w
∗
nφ

∗
n, θ =

6
θnφn + θ

∗
nφ

∗
n, (57)

where φn and φ
∗
n satify

∆2φn = −α2nφn, ∆2φ
∗
n = −α∗n2φ∗n. (58)

We introduce the following boundary layer variables:

w =

)
µ−pn �w(ζn) for 1− z = O(µ−rn),
µ−sn �w(ζn−1) for 1− z = O(µ−rn−1) (59)

θ =

)
µpn �θ(ζn) for 1− z = O(µ−rn),
µsn �θ(ζn−1) for 1− z = O(µ−rn−1) (60)

w∗ =

)
µ−pn �w∗(ζ∗n) for z = O(µ−rn),
µ−sn �w∗(ζ∗n−1) for z = O(µ−rn−1)

(61)

θ∗ =

)
µpn �θ∗(ζ∗n) for z = O(µ−rn),
µsn �θ∗(ζ∗n−1) for z = O(µ−rn−1)

(62)

(63)
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where

ζn = (1− z)µrn , ζ∗n = zµ
rn (64)

The boudnary layer structure is such that in the interior

�w1�θ1 + �w∗1 �θ
∗
1 ≈ h+ $wθ% , (65)

and in the boundary layers

�wn�θn + �wn−1�θn−1 ≈ h1 + $wθ% , �w∗n�θ
∗
n + �w∗n−1�θ

∗
n−1 ≈ h0 + $wθ% , for n = 1, . . . , N − 1,

(66)

where

h0 = h(0) = −
√
3, h1 = h(1) =

√
3.

With boundary layer approximations, the functional becomes:

�FN = 1

$wθ%

)
N6
1

µ2pn+rn
!7 ∞

0

�θ%n
2dζn +

7 ∞

0

�θ∗
"2
n dζ∗n

"

+
N6
2

µqn−rn+2sn
!
b2n

7 ∞

0

�θ2ndζn−1 + b
∗2
n

7 ∞

0

�θ∗2n dζ
∗
n−1

"
+ µq1

8
b21

4
�θ21

5
+ b∗21

4
�θ∗21
59*

·
)

N6
1

µ3rn−2pn−qn
!
1

b2n

7 ∞

0
�w%%n
2dζn +

1

b∗2n

7 ∞

0
�w∗

""2
n dζ∗n

"

+

N6
2

µqn−rn−1−2sn
!
b2n

7 ∞

0
�w2ndζn−1 + b

∗2
n

7 ∞

0
�w∗2n dζ

∗
n−1

"
µq1

#
b21 < �w21 > +b

∗2
1

%
�w∗21
&$*

+

:
µ1−rN

!7 ∞

0
( �wN �θN − h1− < wθ >)2dζN +

7 ∞

0
( �w∗N �θ

∗
N − h0− < wθ >)2dζN

";
(67)

Balancing the exponents in the above exrepssion yields

rn =
1− 4−n
3− 4−n , qn =

2− 4−n
3− 4−n , sn = 0, 2pn =

4−n

3− 4−n . (68)

Then we have

�FN = µ
2

3−4−N FN (69)
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where

FN =
1

$wθ%

)
N6
1

!7 ∞

0

�θ%n
2dζn +

7 ∞

0

�θ∗
"2
n dζ∗n

"
N6
2

!
b2n

7 ∞

0

�θ2ndζn−1 + b
∗2
n

7 ∞

0

�θ∗2n dζ
∗
n−1

"
+
8
b21 <

�θ21 > +b
∗2
1 < �θ∗21 >

9*

·
)

N6
1

!
1

b2n

7 ∞

0
�w%%n
2dζn +

1

b∗2n

7 ∞

0
�w∗

""2
n dζ∗n

"
N6
2

!
b2n

7 ∞

0
�w2ndζn−1 + b

∗2
n

7 ∞

0
�w∗2n dζ

∗
n−1

"
+
#
b21 < �w21 > +b

∗2
1 < �w∗21 >

$*

+

:7 ∞

0
( �wN �θN − h1− < wθ >)2dζN +

7 ∞

0
( �w∗N �θ

∗
N − h0− < wθ >)2dζ∗N

;
. (70)

Now the Euler-Lagrange equatins for the functional FN can be written down:

1

$wθ%
Dθ
b2n
�w(4)n − µrN−rn �θn

8
h1 + $wθ% − �wn�θn − �wn+1�θn+1

9
= 0, (71)

1

$wθ%Dw
�θ%%n + µ

rN−rn �wn
8
h1+ < wθ > − �wn�θn − �wn+1�θn+1

9
= 0, n = 1, . . . , N

(72)

b2n+1
$wθ%Dθ �wn+1 − µ

rN−rn �θn+1
8
h1+ < wθ > − �wn�θn − �wn+1�θn+1

9
= 0, (73)

b2n+1
$wθ%Dw

�θn+1 − µrN−rn �wn+1
8
h1 + $wθ% − �wn�θn − �wn+1�θn+1

9
= 0, n = 1, . . . , N − 1

(74)

And for �w1, �θ1,

Dθ
$wθ%b

2
1 �w1 − �θ1

:
DθDw

2 $wθ%2 (h $wθ%+ 1) + µ
rN (h+ $wθ% − �w1�θ1 − �w∗1 �θ

∗
1)

+ h

!7 ∞

0
( �wN �θN − h1 − $wθ%)2dζN +

7 ∞

0
( �w∗N �θ

∗
N − h0 − $wθ%)2dζ∗N

";
= 0, (75)

Dw
$wθ%b

2
1
�θ1 − �w1

:
DθDw

2 $wθ%2 (h $wθ%+ 1) + µ
rN (h+ $wθ% − �w1�θ1 − �w∗1 �θ

∗
1)

+ h

!7 ∞

0
( �wN �θN − h1− < wθ >)2dζN +

7 ∞

0
( �w∗N �θ

∗
N − h0 − $wθ%)2dζ∗N

";
= 0, (76)

The same set of equations are also satisÞed by the starred quantities �w∗n, �θ∗n, �w∗n, �θ∗n.
From equation (75) and (76), we have

Dθ �w
2
1 = Dw

�θ21, (77)

Dθ �w
∗2
1 = Dw�θ

∗2
1 . (78)
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Adding these two identities yields

Dθ
%
�w21 + �w∗21

&
= Dw

4
�θ21 +

�θ∗21
5
. (79)

Hence the normalization condition < w2 >=< θ2 > implies

Dθ = Dw = D. (80)

This identity together with equation (75) and (76) yields

�w21 =
�θ21, b1 = b

∗
1. (81)

Equation (73) together with equation (74) gives

Dθ �w
2
n+1 = Dw

�θ2n+1.

Same identity holds for �w∗n+1 and �θ∗n+1. Therefore

�w2n+1 =
�θ2n+1, �w

∗2
n+1 =

�θ∗2n+1 for n = 1, . . . , N − 1. (82)

Substitute the above identity back into equation (73), we have

h1+ < wθ > − �wn�θn − �wn+1�θn+1 = µ
rn−rN b2n+1

D

< wθ >
, n = 1, . . . , N − 1, (83)

h0+ < wθ > − �w∗n�θ∗n − �w∗n+1�θ
∗
n+1 = µ

rn−rN b∗2n+1
D

< wθ >
, n = 1, . . . , N − 1. (84)

Then equation (71) and equation (72) become

1

b2n
�w(4)n − b2n+1�θn = 0, (85)

�θ%%n + b
2
n+1 �wn = 0, n = 1, . . . , N − 1. (86)

The above equations hold in the region where �wn�θn ,= h1+ $wθ%. When the equality holds,
then from equation (71) and equation (72) we can derive:

�w
(4)
n

b2n
= −

�θn�θ
%%
n

wn
= (h1 + $wθ%)2 �w

%%
n �wn − 2 �w%n2

�w5n
(87)

With the following change of variables,
ζ = b

1/3
n b

2/3
n+1ζn

�Ω = b
−1/3
n b

1/3
n+1 (h1 + $hwθ%)−1/2 �wn

�Θ = b
1/3
n b

−1/3
n+1 (h1 + $hwθ%)−1/2 �θn

(88)

equations (85), (86) and (87) become:
�Ω(4) − �Θ = 0
�Θ%% + �Ω = 0
�Ω(4) =

�Ω"" �Ω−2�Ω"2
�Ω5

(89)
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Starred quantities satisfy the same equations with h1 replaced by h0. This set of differential
equations have been studied in [3], which gives the constant β:

3β =

7 ∞

0

�Ω%%2dζ +
7 ∞

0
(1− �Ω�Θ)dζ. (90)

And the integral7 ∞

0

w%%n2

b2n
dζn +

7 ∞

0
b2n+1 �w

2
n+1dζn = 3β (h1 + $wθ%) b−1/3n b

4/3
n+1, n = 1, . . . , N − 1. (91)

When n = N , the differential equations for �wN and �θN are

D

< wθ > b2N
�w
(4)
N − (h1 + $wθ% − �wN �θN)�θN = 0, (92)

D

< wθ > b2N

�θ%%N + (h1 + $wθ% − �wN �θN ) �wN = 0, (93)

With the following change of variables,
ζ = b

1/3
n (h1 + $wθ%)1/3

8
D
#wθ$

9−1/3
ζN

Ω = b
−1/3
n (h1 + $hwθ%)−1/3

8
D
#wθ$

9−1/6
�wN

Θ = b
1/3
n (h1 + $hwθ%)−2/3

8
D
#wθ$

91/6
�θN

, (94)

equation (92) and (93) become

Ω(4) − (1− ΩΘ)Θ = 0, (95)

Θ%% + (1−ΩΘ)Ω = 0. (96)

In ([2]) the following result is given:

σ =

7 ∞

0
Ω%%2dζ =

7 ∞

0
Θ%2dζ =

1

4

7 ∞

0
(1−ΩΘ)2dζ. (97)

Thus the following integrals can be expressed in σ:7 ∞

0

#
�w(4)

$2
b2N

dζN = σ (h1 + $wθ%)5/3
!
D

$wθ%
"−2/3

b
−1/3
N , (98)7 ∞

0

�θ%N
2dζN = σ (h1 + $wθ%)5/3

!
D

$wθ%
"−2/3

b
−1/3
N , (99)7 ∞

0

8
h1 + $hwθ% − �wN �θN

92
dζN = 4σ (h1 + $wθ%)5/3

!
D

$wθ%
"1/3

b
−1/3
N . (100)

Putting the above integrals together, the functional FN can be expressed as

FN =
D2

$wθ% + 4σ (h1 + $wθ%)
5/3

!
D

$wθ%
"1/3

b
−1/3
N + 4σ (h0 + $wθ%)5/3

!
D

$wθ%
"1/3

b
∗−1/3
N ,

(101)
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and

D =

N−16
n=1

3β

)0
b4n+1
bn

11/3
(h1 + $wθ%) +

0
b∗4n+1
b∗n

11/3
(h0 + $wθ%)

*

+ σ

!
D

$wθ%
"−2/3 +

(h1 + $wθ%)5/3 b−1/3N + (h0 + $wθ%)5/3 b∗−1/3N

,
+ b21 $wθ% . (102)

Minimizing FN with respect to bn and b
∗
n yields

∂D

∂b1
= 0⇒ 2b1 $wθ% = β

@
(h1 + $wθ%)

!
b2
b1

"4/3
+ (h0 + $wθ%)

!
b∗2
b1

"4/3A
, (103)

∂D

∂bn
= 0⇒

0
bn+1
bn

14/3
= 4

0
bn
bn−1

11/3
, (104)

∂D

∂b∗n
= 0⇒

0
b∗n+1
b∗n

14/3
= 4

0
b∗n
b∗n−1

11/3
, (105)

∂FN
∂bN

= 0⇒
0
bN+1
bN

14/3
= 4

0
bN
bN−1

11/3
, (106)

∂D

∂b∗N
= 0⇒

0
b∗N+1
b∗N

14/3
= 4

0
b∗N
b∗N−1

11/3
, (107)

where

bN+1 =

!
σ

β

"4/3!(h1 + $wθ%) $wθ%
D

"1/2
, (108)

b∗N+1 =
!
σ

β

"4/3!(h0 + $wθ%) $wθ%
D

"1/2
. (109)

From the above relations, bn can be solved

bn+1 = 4
n−1

@!
bN+1
4N−1

"1−4−n
· (4b1)4−n−4−N

A 1

1−4−N

(110)

b∗n+1 has a similar form

b∗n+1 = 4
n−1

@!
b∗N+1
4N−1

"1−4−n
· (4b1)4−n−4−N

A 1

1−4−N

(111)

It is clear from the above expressions that bn ,= b∗n for n ,= 1 since bN (equation (108) is
different from b∗N (equation (109). b1 can be solved from equation (103) and the recursion
relation

b1 =

)
β

25/3 $wθ%
!
σ

β

" 3

4(1−4−N )
@
(h1 + $wθ%)

4(1−4−N)
3−4−N + (h0 + $wθ%)

4(1−4−N)
3−4−N

A* 1−4−N
3−4−N

(112)
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Putting all these together, the prefactor FN is a function of $wθ% only:

FN =
D2

< wθ >

3− 4−N
1− 4−N

= (3− 4−N )(1− 4−N)2
−4N4−N
3−4−N ·

2
25/3β ×

!
σ

β

" 3

4(1−4−N )
3 4(1−4−N )

3−4−N

×

(h1 + $wθ%) 3−2·4−N
2(1−4−N ) + (h0 + $wθ%)

3−2·4−N
2(1−4−N )

$wθ%
1−3·4−N
4(1−4−N )


4(1−4−N)
3−4−N

(113)

Now the value of $wθ% can be determined by setting FN
#wθ$ to zero. The resulting equation

for $wθ% is

(α− 1)x 3−2c
2(1−c) − αx− αx 1

1−c + (α− 1) = 0 (114a)

where

x =

√
3+ < wθ >√
3− < wθ >, α =

3− 2c
1− 3c , c = 4−N . (114b)

For general values of N , the above equation has to be solved numerically:

N = 1, $wθ% = 0.4831
N = 2, $wθ% = 0.9259
N = 3, $wθ% = 1.0120

...

When N →∞, the above equation can be solved exactly:

$wθ%∞ =
3
√
3

5
= 1.039. (115)

This shows that there indeed is a boundary layer at z = 0 since all $wθ%�s are less than
h0 =

√
3. Now we can write down the scaling of $T % as N →∞:

$T % = 1√
12
F∞µ2/3 = 10.285µ2/3. (116)

Recalling the identity (47) with T0 = 0:

$T % = −
'!
z − 1

2

"
wθ

(
+
1

12
R,

we know that as µ→∞

µ ∼ 1√
12
R. (117)
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This leads to the scaling of $T % with respect to R:

$T % ∼ 4.421R2/3. (118)

The proÞles of �w1 and �θ1 can be determined from the fact that in the interior of the interval
0 < z < 1,

�w1�θ1 ≈ h+ $wθ% , and �w1 = �θ1. (119)

In the case N →∞, h = 2√3z − 2
√
3
5 . And then

�w1 =

HIIJKKKKK2√3z − 2
√
3

5

KKKKK, �θ1 = ±
HIIJKKKKK2√3z − 2

√
3

5

KKKKK (120)

However, whether θ changes sign in 0 < z < 1 can not be inferred from the variational
problem since only the product of w and θ appears in the funcional F . Thus the possibility
of w changing its sign can not be excluded.

6 Conclusion

In this project, the scaling of the min $T % has been studied for an internally heated ßuid
layer with both background method and multi-α solution approach. For the case when
two plates are held at the same temperature these two methods yield the same scaling:
$T % ∼ R2/3. The prefactor given by the background method is about a quarter of that from
the other appoach. By adjusting the background Þeld we expect the prefactor to be closer
to that predicted by the multi-α approach. However, The scaling of the minimum average
temperature when two plates are at different temperatures is not clear yet. It is part of our
future work to investicate the scaling in this case.
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