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1 Introduction

Large scale ocean circulation is one of the main components of the climate system. The
enormous heat capacity of the oceans makes general oceanic circulation a great means of
transport of considerable amount tracers such as heat across the globe. Thus, a growing
number of research activities have been focused on understanding the oceans as a part of the
climate system. The main goal is to develop tools that will enable scientists to understand
the past history of the climate system and more importantly, to make predictions about the
future. The complexities of the components of the climate system such as the oceans and
the atmosphere demand numerical models to simulate their behaviors in conditions close
to reality. In particular, ocean general circulation models (GCM) have been developed
with the aim of simulating the general circulation and more local characteristics of the
ocean. The current ocean models used for climate studies cannot resolve the fine scale
turbulence and eddy characteristics due to computational cost limitations. Thus, resorting
to parameterizations for fine scale behaviors is inevitable. One of the key parameters used
in the GCMs to capture the turbulent characteristics is the eddy diffusivity, K, which
relates the flux of tracers to their mean gradients. This parametrizaion however requires
proper knowledge of the magnitude and variations of K as a function of latitude-longitude
and depth as well as its temporal variations. Great effort has been devoted to enhancing
our knowledge of the diffusivity over the past years. As one particular case, estimating the
tracer transport across a permanent jet is of great importance. The transport of heat across
the Antarctic Circumpolar Current (ACC) for example is of great importance specially in
the context of global warming and melting of the land ice sheets located in the Antarctica.
Ferrari and Nikurashin (2009) [1] (hereafter referred to as FN09) studied the variations
in the eddy diffusivity across the jets in the southern ocean. They compared different
methods of measurement of the the diffusivity and investigated the effect of the eddy-mean
flow interaction on the diffusivity across the jet. Several studies (such as those listed in
FN09) have used the mixing length theory to relate the diffusivity to the r.m.s velocity
of the eddies and the mixing length [. The mixing length was often set proportional to
the observed eddy sizes. This method led to a peak in the values of K in the core of the
ACC due to larger eddy velocities. A different approach taken by Marshal et al.(2006) [3]
provided estimates of the diffusivity by feeding flow simulations by velocities obtained from
observation and studying the diffusion of an artificially (numerically) injected passive tracer
field into the domain. They suggested that the diffusivity is rather suppressed in the core of
the ACC and enhanced in its flanks as opposed to the first group of studies. FN0O9 explained
this discrepancy by pointing out that the mixing length used in the first class of studies is
not necessarily of the same order of the eddy sizes. Using a dynamic model, FN0O9 showed
that the mixing length is modulated by the mean flow and the relative velocity between
the main flow and the speed of travelling of the eddies reduces the diffusivity. Thus, the
large values of K found by the earlier studies was mainly due to not taking the reduction
of the mixing length into account. It should also be mentioned that Marshal et al.(2006)
speculated that the large values of K in the flank of the ACC can be due to the presence
of critical layers.

Since our motivation for the present work is based on the model proposed by FNO9,
a brief introduction to their model is necessary before the motivation of our work can be

331



explained. Starting from a uniform zonal flow of constant velocity Uy, FN0O9 applied the
surface Quasi-Geostrophic (QG) formulation to describe the dynamics and used it to derive
an expression for the eddy diffusivity. The governing equations they started from are

by + J (¢ — Upy, b — T'y) =0, (1)
2
03¢ + O + ﬁ33¢ =0, (2)

where 1 is the perturbation (from the mean) geostrophic stream function, b is the per-
turbation surface buoyancy, J is the Jacobian operator, I' is the constant lateral gradient
of the background buoyancy 0,B = —I', and f and N are the inertial and stratification
frequencies respectively. They expanded (1) to get

Ob + Ugdpb — Tipy = N Jyr(t)e*) — p, (3)

where the nonlinear term J(1,b) in (1) is expressed in the form of a fluctuation-dissipation
stochastic model which is a crude representation of excitation of waves by baroclinic in-
stability at the most unstable wave number (k,1). The model is in terms of a stochastic
variable r(t) and a linear damping rate 4. The variable r(¢) is a white-noise function with
the property < r(t)r(t')* >= §(t — t') where ‘< >’ denotes the “expected value”. The
stochastic forcing “mimics the nonlinear damping of each wave through interaction with
other waves”[1]. The constant f sets the forcing amplitude. The forcing is kept monochro-
matic to keep the problem linear. FNO9 showed that this model generates a velocity field
with a correlation function decaying exponentially at the rate . The solution of the stream
function was obtained from (1,2) in the form of

'l/} — gﬁ/ T(t _ T)el'(kfl"f’ly*kcwﬂ')f’yT%»%Zd)r’ (4)
0

where k2 = k? 4 12, H;l = % is the deformation radius, and c,, = (1 — £)Uj is the phase
speed of the surface waves embedded in the current U. Next they considered a tracer S

with a constant gradient T’y = % embedded in the eddy field (4) given by

St + J(¢ - on, S) = —P53x¢- (5)

After solving for S from the above equation, and obtaining the jet cross-stream velocity v
from the stream function in (4), they calculated the tracer flux across the jet to be

k2 o 9Nk,
- 7 A0. 6
K2 72+k2(cw—U0)2€ ] (6)

1
< S >= _[§f2

The eddy diffusivity K| can be obtained by dividing (6) by I's. The simple expression (6)
has an important physical interpretation. It shows that for an eddy phase speed equal to
the jet mean velocity Up, the eddy diffusivity has a maximum value and indeed yields a
value similar to those obtained by the group of studies which used the mixing length to
relate the observations to the diffusivity. However, as the relative velocity of the eddies to
the main current increases, the denominator of (6) becomes larger leading to a suppression
in the diffusivity. In practice, this relative velocity is large (about 13 cm/s for the ACC)
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and comparable to the main jet speed Uy (which is about 15 cm/s in the core of the ACC).
Thus, the suppression effect is pronounced in the core of the ACC as shown by Marshal
et al.(2006) [3]. Neglecting the (c,, — U)? in the denominator of (6) leads to overestimation
of the mixing length and thus, over prediction of the diffusivity. It should also be noted that
the suppression is strong if the decorrelation timescale of the eddy is much slower than the
advection of the tracer out of the eddy due to the relative velocity (i.e. if k?(c, —U)? > ~?).

The FN09 expression for tracer flux mentioned above is for an ideal environment of
infinite extent and with a constant velocity and constant stochastic forcing over the whole
domain. Left panel of figure 1 shows the zonally averaged eddy kinetic energy and mean
jet velocity curves for a patch of the southern ocean between 125°W-150°W and 66°5-30°S.
The right panel of the figure shows a snapshot of the observed sea surface height anomalies
for the same patch. As the figures show, there is considerable variations in both the forcing
(eddy field) and the jet velocity from the main core of the ACC to its flanks. Thus, one
can curiously wonder what happens if continuous or piece-wise continuous variations in the
forcing and jet velocity are considered in the context of the model developed by FNO09.
To be more clear, the question is whether (and how) the expression (6) would change if
for example we considered two semi-infinite velocity zones of adjacent flows with different
forcing or different velocities? The main motivation of this study is to take the model
explained above few steps further by allowing for these variations and investigating their
effects on the tracer fluxes. In what follows in the remainder of this article, we start from
a simple case of two semi-infinite adjacent zones and allow for variations in the forcing and
the velocities between the two zones. The approach is to start from the simplest case and
add complexity to the problem step by step to gain insight into the basic physics of the
problem.

2 Barotropic Quasi-Geostrophic Formulation

As mentioned by FN09, their final results on eddy mixing are independent of their partic-
ular choice of the surface Quasi Geostrophic (QG) model. We opt to use two-dimensional
barotropic QG formulations in this work and will recover the FN09 results for the surface
of the ocean (z = 0). Modifying the formulation and results of this work to the surface QG
formulation is an easy and straight forward task and only adds an exponential z-dependence
to the stream functions and the fluxes obtained. Starting from 2D barotropic QG equations
we have

qr + J(¢a Q) = 0’ (7)
V2 — khY = q — By, (8)

where ¢ is the potential vorticity, /{Bl = /gHy/ fo is the deformation radius, and v is the
velocity stream function. In the QG formulation, ¢ = % where 7 is the surface elevation (or
depression) from the reference surface level (located at Hp above the flat bottom boundary).
Since 7 is easily related to the pressure, the stream function can be interpreted as the surface
pressure or the surface height and thus, can be estimated from altimetry data. In the two
above formulae and all that follows beyond this point, a subscript denotes a differentiation.
Next we make the assumption that the potential vorticity, ¢, is a function of the meridional
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Figure 1: (a)Zonally averaged mean kinetic energy (black) and eddy kinetic energy (EKE)
(gray) at the surface for a patch in the Pacific sector of the Southern Ocean between 125W-
150W and 66S-30S; (b) Snapshot of sea surface height anomaly for the same patch: (black)
positive anomaly, (gray) negative anomaly. (Taken from Ferrari and Nikurashin 2009 by
permission).

coordinate y alone and so ¢ = Q(y). This assumption along with (8) mean that v is also
only a function of y and so v = —ty, = U(y) and v = 1, = 0. The equation (8) takes the
simpler form

%)

a2 kpY = Q(y) — By. (9)
Next we perturb equations (7,8) around a mean flow u = U(y) by introducing
q=Q+eq,
b=+ e,
u=U+ e,
v=ev. (10)
Substituting (10) into (7,8) we get
1 1
qt + EQt + J(\Ila ql) + J(¢/7 Q) + EJ(\D’ Q) + EJ(d/a ql) - 07 (11)

(V2= kD0 =4 (12)

The second and the fifth term in (11) form the background field and sum up to zero. The
J(¥,q") term simplifies to U(y)a, and the J(¢', Q) simplifies to Q(y)¢, leading to

(O + U ) + Qi = F (13)
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where F is the nonlinear term coming from J(¢',¢"). Dropping the primes we reach the
linearized QG equations for the perturbation quantities ¢ and :

(V2= k) =, (14)
(O + U(y)0r)a + Qyibe = F. (15)

The @, term can be obtained by taking the y-derivative of (9)
Qy=B8+rpU(y) = U®)yy- (16)

The set of equations (14,15) will be the starting point of our analysis in the consequent
sections. As we will see, the background velocity U(y) is considered to be constant (or
piecewise constant) throughout this article and thus the third term in (16) drops out and
the second term simplifies to a constant value.

3 Basic Case: Non-stochastic forcing

qu\\ zone

>

EEEE@ jl

Figure 2: Schematic view of the basic case flow configuration.

zone 1

As the first basic case, we consider two semi-infinite adjacent zones with velocities Uy
and Us. Figure 2 shows the schematic of the problem. The top zone (zone 2) is an unforced
region while the bottom zone is forced with a monochromatic forcing in the form of:

F = feik(x—ct)7 (17)

where f is the forcing amplitude, £ is its x-direction wavenumber and c is the correspond-
ing phase speed. The forcing is chosen to be monochromatic to keep the problem linear.
Although a y-dependence can also be included in the expression for forcing, it does not add
new physics into the problem and ( 17) can be used without loss of generality. The forcing
is demonstrated by the red vertical lines in the figure. The linearized form of the governing
equations in the top layer takes the form

(V? = k)Y = qo (18)
(815 + Uax)QZ + B'L/}Z,m + Y92 = 07 (19)
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and in the bottom layer we have

(V2 — k)Y = q1 (20)
(0 +U0z)q1 + P12 +vq1 = F. (21)

It is easy to see that the solution of ( 19) and the homogeneous solution of( 21) have the
general form:

¥ = ae™¥ 4+ be= W, (22)

where a and b are constants and [ is

— C

zza¢UF S (k2 R), (23)

where /{Bl = \/gHy/ fo is the deformation radius for the barotropic case and T' = 3 + KQDU
is a constant. We consider homogeneous solutions that radiate out from the interface and
pick the proper term of ( 22) for each zone. Next, we set to calculate the particular solution
of ( 21). To do that, we notice that the following expressions for 1 and ¢ satisfy ( 21):

T;Z) —_A f eik(mfct)’ (24)

B k2—|—m%

q= Af eik(xfct). (25)
Replacing these into ( 21), the coefficient A becomes

1
oy +ik(Up —c

— (26)
= )

It should be noted that A is an imaginary number and would be pure imaginary in the
absence of the damping coefficient, v. So, the total solution in the two zones become

—1 f ik(x—c
wl = [ale hy _ Am]e k( t), (27)
o = aQeilgyeik(x—ct). (28)

Coefficients a1 and as can be found by matching the interfaces using two jump conditions
which are originally due to Rayleigh (1880) [4]. The first jump condition ensure that the
stream function (which can be interpreted as surface height in the QG formulation) is
continuous across the interface. The second jump condition is that the displacement of the
interface between the two regions of the flow be the same on both sides of the interface to
ensure no cavitation occurs. A general derivation of these two conditions will be presented
in the next section. For this case however, these conditions simply take the form
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were A stands for jump across the interface and both conditions are enforced at y = 0.
Applying these conditions to the two stream functions we get

ABly
— 72 31
MR (31)
ABRIly
= —_-—— 2
a2 R2l1 —|—l2, (3 )

where R = Ul:c and B = =—. Next we set to calculate the cross-jets diffusivities in the
Us—c k?+kK

two zones. Following FN09, we introduce the equation for the transport of a passive scalar
in the fields described by stream functions ( 27, 28):

Sy = —=J(i — Uiy, S — T'sy), (33)

where I'y is a constant background tracer gradient equal to 48 and i = 1,2 corresponds to

the two zones. Rearranging we get “
S+ J(1,S) + Ui Sy = —Ts(¢z)i = —Tsv;. (34)
We will shortly see that the second term in ( 34) is zero and the scalar equation reduces to
S, + U; Sy = —Tgv;. (35)

Solving (35) for the two zones using (27,28), the solutions of the scalar fields becomes:

(are” 1y — AB)eik(m*ct), (36)

Sy = i _SC(CLQe_ﬂQy — AB)eklz=et), (37)

One can substitute ( 36, 37) back into the J(¢,S) in ( 34) to confirm that the Jacobian
vanishes. With the solutions of the scalar field obtained in both zones, we can calculate the
diffusivity

K, - Fizre< Su>. (38)

s

According to ( 36) for the first zone we have

I's

S = -5
YT k(UL — o)

(39)

and thus the cross-jet flux becomes

/{?(Ul — C)

< Sv > = T,

R< 5151 > =0. (40)

This simply means that for a velocity field of the general form v = cos(a) + isin(«), the
solution to the scalar equation takes the form S = ¢ — sin(a) + icos(a) and so the flux
R< Sv > takes the form < sin(a) cos(a) > which is identically zero. Repeating the analysis
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for the second zone yields the same result. This outcome simply indicates that a linear
monochromatic forcing (which yields to north and south monochromatic radiations) cannot
mix the fluid. To introduce diffusion (i.e., a nonzero flux) one has to either take into
effect the nonlinear wave dynamics and wave interactions or introduce a forcing (and the
consequent radiations) that decorelate from itself in a finite time. The second approach was
that taken by FN09. In the next section we introduce a random forcing to investigate its
effects. But before that, an interesting point can be observed by a closer look at equations
(136, 37, 40). If the velocity of the main flow in one of the zones (lets say Uj) is equal
to the zonal phase speed of the wave propagation, then the conclusion obtained above is
not strictly valid. To better understand this fact, one can assume a single one-dimensional
wave propagating eastward in the absence of any mean flow. The streamlines of the flow
inside the fluid induced by the wave propagation form closed circulating regions and particle
paths form closed elliptic curves. So, a particle (or a tracer filament) departing from some
arbitrary initial location will return to its initial location due to the linear wave propagation.
An introduction of any nonlinear effect (such as the Stoke’s drift) will lead to the particle
not returning to its initial position and thus mixing. This is also true for the case were a
uniform background velocity U is superposed as one can go to the reference frame moving
with U and observe the wave with the relative phase speed U —c. However, if the wave phase
speed and the background flow velocities are the same (i.e., U — ¢ = 0), then an observer
sitting on the reference frame which moves with U will observe a frozen wave pattern with
fixed recirculating regions (a critical layer). Particles or tracer filaments left in these regions
will mix with the ambient fluid at a high rate and considerable mixing will occur. That is
why the value of the flux in equation ( 40) can not be clearly estimated in this limit as the
denominator tends to zero. This behavior will be further examined in the next section.

4 Case I: Semi-infinite white-noise forcing

As the first case with random forcing, we consider two semi-infinite adjacent zones with
similar velocities U. Figure 3 shows the schematic of the problem. The top zone (zone 2)
is an unforced region while the bottom zone is forced similar to the previous section but
with a stochastic forcing in the form of:

F = fry/yrt)e* —~q, (41)

where f is the forcing amplitude, and r(¢) is a stochastic stationary variable satisfying

< r(t)r*(t') >= 6(t — t'). The forcing is chosen to be monochromatic to keep the problem

linear and is a crude representation of the wave excitation by the baroclinic instability and

thus, k£ can be interpreted as the wave number of the most unstable mode of the instability.
The linearized form of the governing equations in the top layer takes the form

(V2 — ka)tb = o (42)
(815 + Uax)QZ + B'L/}Z,m + Y92 = 07 (43)
and in the bottom layer we have
(V2= k)Y =@ (44)
(O +U0ds)q1 + b2 + a1 = F. (45)
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Figure 3: Schematic view of the case 1 flow configuration.

zone 1

From previous section we know that the homogeneous solutions of equations ( 43, 45) can
be written in the form of

Uy, = eikx/A(w) ey gt (46)

Substitution of ( 46) in ( 43) and in the homogeneous part of ( 45) leads to the dispersion
relation

Bk

w=Ukt0 = e e

(47)
Using 47 one can calculate the vertical wavenumber [ for any particular frequency w.
However, the choice of [ in zone 2 should be made in the way that all wave components
travel away from the interface (and thus R(l3) > 0) and all components decay as y — oo
(and thus J(l2) > 0). A single component of such form is shown in zone 2 in figure 3
as the representative of the homogeneous solution in that zone. The components of the
homogeneous solution in zone 1 should also travel downward and decay as y — —oo. This
translates to {1 (w) = —l2(w). A single component of such form is also shown in zone 1 in
the figure in black. We next set to derive the particular solution of the forced equation
( 45). To do that, we note that

g1 = —a(t)kfe'*, Pp1 = a(t)geim (48)

satisfy the equations ( 44, 45). Substitution of ( 48) into ( 45) gives

ar + [y + k(U — %)]a — (), (49)

which can be solved to give

a(t) = ﬁ/om e~ (VFikew)T r(t —7)dr, (50)
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where ¢, = U — % is the phase speed of the eddies embedded in the current U. Thus the
particular solution in zone 1 takes the form

v = Ly et [T e g ryar, (51)
0

and the total solutions in the two zones become

Py = Ppo = e“m/Ag(w) @)y it g, (52)

Y1 =t +Yp1 = e“m/Al(w) e~ WY ety + g\/’_y ei’m/ e~ (rtiken)T (s — 1Ydr. (53)
0

The stream functions ( 52 and 53) have to satisfy the jump conditions across the
interface. The fist jump condition can be obtained by integrating the stream functions
across the interface:

0 +e

1 dy = ; ¥y dy. (54)

Calculating the limit of ( 54) as € — 0 gives the fist jump condition at the interface
Al(w) = —AQ(UJ). (55)

The second jump condition can be obtained by requiring the solution for the interface
perturbation 7 (shown schematically in figure 11) obtained in the two zones to be equal to
each other. Using ( 101) from appendix A and evaluating the jump condition at y = 0 we
get

o 1 -
Al = §¢p1, (56)

where ‘"7 denotes the Fourier transform. Using ( 55, 56) and taking the Fourier transform
of 1p1 in ( 51) we get

- f ﬁ eikm X
Ay = ﬂmr(w% (57)

. f \/,7 eikx

Next we set to calculate the < vS > flux for the unforced region (zone 2). As before, the
flux equation is

(8, + ikU)S = —ikI'p (59)

kUt

multiplying both sides by e and rearranging we get

Sy, = —ikDe*Vly = H(t), (60)
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where S = ¢i5XULS. As before, the flux can be written in the form
1 * *
<Sv>:§<Sv+Sv > . (61)
We can write
< 8% >=< S§*(—iktp) >=< e Uk G* (—ikep)eUM >=< §* 22 > (62)
and according to (60) we get

o _<SH@M)> 1d .
<Swe= = na <S> (63)

It is shown in the appendix B that for any two functions V(t) and S(t) if we have
V(t) = bA(t) *r(t) and Sy = V(t) (where b is a constant), then < SV >= 14 < 62 >—
3100°||A(0)A*(0))-

Thus if we can show that H(t) can be written in the form of H(t) = bA(t) % r(t) then
from (63) and (60) we get

< 5% >= L|HO) = SIHO)|A ) (64)

Its easy to show that < Sv* > has also the same value as < S*v > and so < Sv >=< S*v >

according to (61). In order to calculate the flux we have to calculate H(0) and also show
that H(t) has the bA(t) x r(t) form. From (60) we have

H(w) = =ik (w — Uk). (65)

Taking the Fourier transform of (52,53) and using (56,57,58) we get

ikx
b — A —il(w)y 9 ikr _ i \/f_y € A —Zl( )y 2e zkx
ik
e — A il(w)y jikz _ i ﬁe N il(w)y ikx
9 e e o —7 i —Fen) 7(w)e e (67)

and so both ; and 15 (and thus H) have the desired bA(t) % r(t) (or bAF) form. It should
be noted that in calculating the Fourier transform of 1), we have assumed a non-zero value
for the damping rate . Thus, in interpreting the results that follow, v = 0 is not permitted
event hough some equations might suggest it has a meaning. So, according to appendix B
and (64), the diffusivity in the forced zone becomes

e*l’l(w)y 2 _ 1]02/{?2 y
2 8 K2 Y2+ kAU — cy)?

= 5| A1 Af||1 ~ (4 4?0V — e300 cos(3(1)y)), (68)

l\')IH

and in the unforced zone we get

1 f2k? gl _2g
Ko = = Sy
TR P R0 —cu)? € (69)
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Two interesting points immediately emerge by looking at the expression for Ks. First, the
magnitude of the diffusivity at the interface is a quarter of that of the diffusivity of the one
infinite zone problem studied by FN09. This could already be known by the second jump
condition ( 56) and noting that K o< |A(0)|?. The second point is the y-dependence of the
result in ( 69). As we move away from the interface in the unforced region, the diffusivity
decays exponentially to zero. So the mere introduction of a jump in the forcing leads to
differences in magnitude and behavior of the diffusivity in the unforced region.

Expression ( 68) shows that similar to Ko, K also takes the value of one quarter of that
of the infinite-domain case at the interface (y = 0) and so the solutions in the two zones
match at the interface as expected. However, as y — —oo, the diffusivity tends to the result
obtained in the infinite-domain case. So in the forced region, there is a transition from the
value of one quarter of the constant infinite-domain flux at the interface to the full value in
the far distances from the interface. This transition however, does not have an exponential
decay pattern such as zone 2 and shows oscillatory behavior as determined by the terms in
the parenthesis on the right hand side of ( 68). To demonstrate these behaviors better, figure
4 shows a series of plots of the wave patterns and diffusivity variations in the neighborhood
of the interface for a set of parameters. The left column shows the wave pattern for the
intrinsic (w — Uk = 0) wave pattern in the two zones and the right column shows the
corresponding diffusivity curves. The relative magnitude of the ratio of the imaginary part
of the vertical wave number [ (which determines the decay rate in both zones) to the real
part of [ (which determines the oscillations in the forced zone) changes from 0 in case (a)
to 1 in case (e). The green lines in the right column represent the constant diffusivity
corresponding to the one-zone problem for the same parameters of each case. Starting from
panel (a) where (1) = 0, we can clearly see pure oscillatory behavior in both zones. The left
panel shows the north-east propagation of waves coming from the homogeneous solution
in the upper zone and superposition of a south-east propagation wave(coming from the
homogeneous solution in zone 1) and a east propagating wave (coming from the particular
solution in zone 1) in the lower zone. These results were expected from the w —Uk = 0 mode
of the solutions ( 52, 53) in the Fourier space. The right panel shows the corresponding
effective diffusivity. Pure oscillatory motion due to the absence of an imaginary part to [
is clear as the diffusivity oscillates around the infinite-zone value (green line). It should be
noted that as mentioned earlier, the value of the diffusivity at the interface (the point of
meeting of the red and blue curves) is one fourth of that of the green line. This value retains
a constant value in the unforced zone indicating a constant diffusivity. It is important to
note that the ¥(I) = 0 condition can be achieved only when v = 0 which means in the
absence of any damping. Since the assumption of v # 0 was used in the derivation of ( 69,
68), case (a) should be treated as a limiting case where v — 0.

As (1) grows larger than zero, the decay in the vertical direction leads to exponential
decay of this one-fourth value to zero away from the interface in the upper zone and an
oscillatory decay to the green line value in the forced zone. This can be seen as (1) grows
to 0.1 in the case (b). The left panel in case (b) also show the decay of the waves to zero as
we move away from the interface in the north zone and the decay of the radiative waves in
the lower zone until only the forcing pattern remains. As the 3(7)/R(l) ratio increases in
cases (c-e), the decaying layer in each zone becomes compressed about the interface. For
the final case with &(l)/R(l) = 1, we almost have two regions of constant diffusivity with
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a value of zero in the upper zone and that of the one-zone problem in the lower region.
Although K still has the one-fourth value (of the green line) at the interface, the transition
to the two limiting constant values in the two regions is very fast and limited to the close
vicinity of the interface.

It would now be interesting to see how the real physical case corresponding to the ACC
would compare to the cases of figure 4. To do that, we substitute for parameters in the
obtained expressions for the diffusivity in the two zones by typical values of the southern
ocean. The results for the diffusivity and the corresponding eddy kinetic energy are shown
in figure 5. As the figure shows, the decay rates of the information away from the interface
are very large meaning that (1)/R(l) > 1 according to figure 4. In fact, I(1)/R(l) ~ 40
for figure 5,.

To investigate if I(1)/R(l) can be smaller, we set to calculate real and imaginary parts
of [. From the dispersion relation we have:

Bk

P=—— k3 70
Uk —w) + iy d (70)
for (Uk —w) and k ~ kg we get
Gk
I’ = —% — 2k? (71)

it then can be shown that

R(l) = k 1/ +1-1
3(1) =k 1/ +1+1 (73)

l w/ 5 +1—1
()

The fraction 0] tends to 1 for very large values of k and tends to oo for very small values

and so

B«

of m. So, even for the smallest value of this ratio the interface effects are very limited to
the interface neighborhood as shown in case (e) of figure 4. Substituting typical values of
the southern ocean in (74) gives a ratio of 40.
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Figure 4: (a) Wave patterns for the intrinlslilc zero wave velocity in the two zones (left
column) and the corresponding effective diffusivity (right column) for U = 1, ¢,, = U/7,
k=1and R(I) = 1. (a) S{)/R(1) = 0; (b) S()/R1) = 0.1; (¢) I()/R() = 0.2; (d)
S(0)/R(1) = 0.5; (e) I(1)/R(I) = 1. Green lines in the right column represent the cons tan
diffusivity corresponding to the one-zone problem for the same parameters of each case.
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Figure 5: The diffusivity (left) and the corresponding eddy kinetic energy (right) for a case
with parameters chosen to be in the range of those of the ACC.

5 Case II: Confined white-noise forcing

A

U >< -9

| >< zone 1
orcing N

-

Figure 6: Schematic view of the case II flow configuration.

For the second case with white-noise forcing, we extend the previous case by confining
the forcing region into a zone with width 2D. The flow configuration is shown in figure 6.
The velocities are uniform and equal in all three zones. The forcing is only applied to the
middle zone (zone 1) and has a form similar to the previous case. The y = 0 point is chosen
to be half way between the two interfaces in zone 1. As before, the stream functions take
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the form

Py = (A1,1€ily + A1,2€7ily) + TZJpa (75)
1&2 = Ageily, (76)
U3 = Aze™, (77)

where 1), in zone 1 is similar to the previous case. It should be noted that due to symmetry,
both north propagating and south propagating waves are allowed to exist in the middle
zone. Applying the first of the jump conditions to the two interfaces gives

Apae? = Ay pe=itP = ApelP,
ALle_ilD — ALQeﬂD = —AgeilD. (78)
And applying the second jump condition at the two interfaces gives
Ap1eP 4 Ay et 14, = Ayl
ALle_ﬂD + ALgeilD + TIZA)p = 12136“[). (79)
And so we get

~

" 1~ . .
Ay = Ay = =iy (e"P = e7P) (80)

Considering a tracer equation like before and following the procedure explained in the
last case for calculating the flux < Sv > closely, the diffusivities in the three zones become

1 f2k? g 1D il —ilyy |2
K =- 2 — P (el 4 ity 81
1 8 /12 '72 + kQ(U o cw)z ‘ € (e +e )‘ ) ( )
1 f2k? ' ; '
Ko f v . ‘elly(ellD _ e—le)‘Z7 (82)

T8 K2 2+ R2(U —cy)

1 f2k? — ,
o e @

To demonstrate the variations in the diffusivity expressions obtained for the three zones,
figure 7 shows a series of plots similar to those of figure 4. The third zone is not plotted in
the figure since it is similar to the second zone but just mirrored with respect to the y =0
line. The green lines in the right column represent the constant diffusivity corresponding to
the one-zone problem for the same parameters of each panel. The right panel of the figure
shows pure oscillatory motion due to the absence of an imaginary part to [ for panel (a).
Similar to the previous case, the values of the diffusivity at the interfaces are one fourth of
that of the green line. This value retains a constant value in the unforced zone indicating
a constant diffusivity. It is important to note that the I(!) = 0 condition can be achieved
only when v = 0 which is not permitted as explained before.

As (1) grows larger than zero, the decay in the vertical direction leads to exponential
decay of this one-fourth value to zero away from the interface in the upper zone and an
oscillatory symmetric pattern in the middle zone forced zone. This can be seen as (1) grows
to 0.1 in the case (b). With further increase in (I)/Rl, the decaying layer in each zone
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becomes more compressed about the interface. If we calculate the diffusivity curves for this
case using values typical to the southern ocean (similar to figure 5 for the previous case),
we find again that the variations in the diffusivities are limited to a very close proximity of
the interfaces. And so, The two interfaces will not even feel the effect of each other as if
they are each located between two semi-infinite zones.

Comparison of the right column of the figure for larger values of I(1)/RIl (panels (b, ¢, d))
with figure 7 of FN09 (reproduced in figure 8d in this article) poses some similarities. This
may suggest that confinement of the forcing to a zone of a a limited width (2D in our case)
can affect the general pattern of the diffusivity in the core of the ACC where the mean
velocity is larger than the flanks of the ACC. A close look at figure 2 of FN09 (reproduced
in figure 8c in this article) justifies the choice of a confined forcing for this particular patch
of the pacific in which we are making the comparisons. As the figure shows, the eddy kinetic
energy is dominant in the core of the ACC in the band between 50°S5 and 60°S.

As both figures 4 and 7 showed, the curve for the diffusivity in the unforced zone
decay to a small value with a rapid rate, whereas the diffusivity curve in the forced region
shows oscillatory behavior. This is mainly due to the absence of the forcing in the top zone.
The forcing in the governing equations gives rise to a particular solution from which the
oscillatory terms in the diffusivity expressions are originated. So a smoother transition in
forcing from the main current to its flanks (zone 1 to zone 2) is needed to capture more
variability in the second zone. Also, a change in the velocity from zone 1 to zone 2 might
have consequences which can imply more variations in the diffusivity in the unforced zone.
The effect of a piece-wise discontinuity in the velocities of the two zones will be briefly
visited in the next section.

Regardless of the above arguments however, we have already found out that within
the ranges of the parameters associated with the southern ocean all the variations in the
diffusivity are compressed to the interface neighborhood. This simply implies that one has
to consider smooth variations in the velocity and forcing fields rather than discontinuities
considered here. In short, all the interesting physics are compressed into the region of
discontinuity by the flow configurations used in our study. However, one can still use the
expressions obtained to obtain realistic estimates of the diffusivity from observational data.
FNO09 described the procedure of translating the observational data into the parameters
needed by the expressions we have developed for the diffusivity. Partly (and relatively
crudely) following their steps, we can relate the damping rate « to the eddy kinetic energy
through

v =dy'VK2EKE, (84)

were dj is a constant defined in FN09. We also relate the amplitude of the forcing, f, to
the eddy kinetic energy by

1
EKEziﬁ, (85)

which is not exact for our case but provides a good approximation. We apply these as-
sumptions to the same patch of the pacific ocean as discussed before. The observed EKE
for that patch is shown in figure 8(c). To facilitate the calculation, an analytical form if
(shown in panel a) is fitted to the EKE curve in panel c. There are few other parameters
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Figure 8: (a) An analytical fit to the observational FKE (shown in panel (¢)) used in the
present model; (b) Calculated diffusivity corresponding to the FK E of panel (a); (¢) Zonally
averaged eddy kinetic energy EFK FE in gray for a patch in the pacific sector of the Southern
Ocean; (d) Diffusivities calculated by using various methods. (¢,d) are from Ferrari and
Nikurashin(2009)

needed to be determined for calculating the diffusivity from (81,82). The y-wavenumber,
[, can be obtained from the dispersion relation (47) by setting w = U;k for each case. The
x-wavenumber k is set to be that of the most unstable mode of the baroclinic instability
and a typical value for the southern ocean is used for the deformation radius. Plugging
these information into (81,82) we obtain the curves for diffusivities in the two regions. The
curves are shown in the panel (b) of figure 8. The green line is defined similar to figures 4
and 7. Comparing the result with those predicted by FN09 (dashed lines in panel (d) of
our figure 8), it seems that our calculation captures the size and pattern reasonably well.
Indeed, all that we have achieved is to map the FK E map of panel (a) into the diffusivity
curve of panel (b) through the parameters v and f. And hence, there is not much variation
in our diffusivity curve in the unforced zone because of the very small constant value of
EKE considered in that zone. One can wonder how come the EKE curve of panel (c)
leads to the diffusivity curves of panel (d) whereas that is not the case in our calculations
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from (a) to (b). Probably the answer is that some physical phenomena accruing in the
flanks are being missed out of our modeling due to our flow configurations. This will be
further discussed in the discussion section.

6 Case III: Semi-infinite forcing with discontinuous velocity

U%\\ zZone 2

U

-

E&%ﬂlﬁ ﬂl

Figure 9: Schematic view of the case I1I flow configuration.

zone 1

As the last case in this study, we also allow for a piecewise discontinuity in the velocity
field (unlike the previous two cases) with white-noise forcing. Although previous cases
have taught us that we should expect the consequences of the velocity discontinuity to be
confined to the close neighborhood of the interface, this case might give some insight into
possible outcomes of a change in the jet velocity. The flow configuration is schematically
shown in figure 9. As previous cases, we start by writing the general form of the stream
functions in the two regions

Py = AreY 4 oy, (86)
12)2 = Ageihy. (87)

It should be noted that the y-wavenumber components /1 (w), l2(w) are not the same anymore
due to the velocity discontinuity. The jump conditions for this case become

l(w+ Uik) (K + 1) A1 = L (w + Usk) (K + 13) As, (88)
(W 4 Usgk)(Ay +9) = (w + Urk) As. (89)

Solving for Ay and Ay we get

7 _ li(w + Usk)?(k? +13) .
Ar(w) = lo(w + Uik)2(k2 +12) — l1(w + égk:)z(k:Q - l%)¢p (90)
Ao(w) = la(w + Urk)(w + Usk) (k* + 13) b, (91)

lo(w+ Urk)2(k2 4+ 13) — I3 (w + Usk)2(k2 + 13)
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In the case of U; = Us, we have Iy = —ly and these jump conditions reduce to ( 55, 56)
obtained for Case I. The stream functions become

= (Are™Y + 1), (92)
oy = AgeVej, (93)

where A; and A, are the fractions on the right hand sides of (190, 91) respectively. Finally,
the expressions for the diffusivity in the two regions take the form

12k gl il 2
K= 2 K2 V2 4+ k2(U — cyp)? [Are™? + 1|(at Uik)’ (94)
12k Y g ilay|2
K= T Wy e v, (95)

where the subscripts (at U;k) imply that the expressions should be evaluated at w = U;k for
each case. Two points can be pointed out by looking at (94,95). First, similar to previous
cases the expression for Ko decays exponentially in zone 2 while the |f~116illy + 1|2 term
in (1 94) allows for oscillatory behavior in the forced zone. Second point is that one might
argue that only the difference between the two velocities U; and Us matters as one can
move with the reference frame attached to one of the zones and hence set its velocity to
zero. However, that is not possible due to the dependence of the diffusivities in the two
zones on the (Up — ¢y) and (U — ¢,,) terms. So it is the difference of the velocity of the
main flow and the eddy propagation velocity that really matters for mixing in each zone.

Figure 10 shows the diffusivity curves in the two zones for different Us/U; ratios. The
plots are made for typical values for the southern ocean similar to figure 5. It should be
noted that the figures ( 5, 10) differ from figure 8 in that fixed values for EKE (and
subsequently fixed values of v and f) are used in obtaining them. The velocity of zone
1 is chosen to be 15 em/s and ¢, is taken to be U1/7. The first panel simply recovers
the results of case I as the velocity ratio is unity. However, the value of the diffusivity at
the interface is changed as the velocity ratio is varied. This is shown by the overlapping
of the blue and red curves in panel (b) and the discontinuity between them in panel (c).
So, the unphysical sharp discontinuity in the velocity field leads to an expected unphysical
discontinuity in the diffusivity. It should also be noted that the value of the diffusivity
on each side of the interface does not show a monotonic behavior with the change in the
velocity ratio. This can be clearly seen by comparing the tips of the red and blue lines
at the interface and comparing them for the three cases in the figure. As before, the fast
decay of the information away from the interface emphasizes the necessity of considering
smoother changes in the velocity and forcing fields.

7 Conclusion

The aim of this project was to investigate the effects of variations in the forcing and the
velocity field employed in the FN09 model on the expression for the diffusivity. Several test
cases where considered with piecewise discontinuities in both the forcing and the velocity
fields. It was shown mathematically that among the numerous radiative waves produced
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Figure 10: The diffusivity for three cases with different velocity rations. (a) Uy/U; = 1; (b)
Us /Uy = 0.5; (¢) Uy /Uy = 0.1. The parameters are chosen in a similar way to figure 5.

through the discontinuity at the interface, only the one with a phase speed equal to the
ambient jet velocity is the one contributing to the mixing process. This finding is of a great
physical importance and also provides a very efficient tool for calculating the diffusivities.
The mathematical derivations would be more rigorous without this finding. The results
of this study suggest that one needs to consider a smoother variation in the velocity field
to obtain more information about the mixing in the flanks of the jet. An estimate for
the meridional variations in the velocity field can be obtained from the observational data
such as those presented in FN09 both for the pacific patch and for the zonally averaged
case. Considering a smoothly varying jet velocity enables investigating the presence of
the critical layers in the flanks of the ACC and their implications for the mixing. As an
instructional example, one can simply apply the expression derived for the eddy diffusivity
in FN09 (equation (6) in this article) to a jet with a zonal velocity which uniformly decreases
with y. By keeping the other parameters constant (for the sake of physical intuition), the
denominator of the expression for the flux becomes smaller as the jet velocity is reduced as
the (U — ¢y,) becomes smaller. At a critical layer where the jet velocity reaches the speed of
propagation of the eddies, the diffusivity obtains a maximum value. Although this argument
is only true as long as the other parameters are kept constant, it shows that one can expect
a rise in the eddy diffusivity in the regions where the jet velocity has reduced to a value close
to ¢y The enhancing effect of the critical layers was suggested by Marshal et al.(2006) [3]

352



and seems to be in agreement with the results of FN09. The introduction of a continuously
varying jet velocity into the governing equations may pose analytical difficulties but one
might be able to choose a profile which makes the mathematical derivations easier (such as
the work of Talley (1983) [5]).

Another important feature of all the results of our study was the fast decay of the
effects of the interface away from it. By revisiting the procedure we followed in the stability
analysis, we note that the solutions were sought in the form of e!**=¢") where ¢ was assumed
real. This assumption was made to exclude the temporally growing modes. However, the
final results indicated a fast spacial decay (and so “trapped” waves). One can wonder if
there might be modes that can grow in time but decay in space? Indeed stability analysis
done with allowance for a complex ¢ (and thus the possibility of growing modes) shows that
those modes can exist. They might grow in time and decay in space (in the y direction) in
a way that they form a wave-packet travelling north (or south) with a group velocity. Or,
they might still be trapped but decay to zero much slower than our results (due to their
temporal growth). Either way, these waves can propagate information much further from
the interface compared to our results. A nice discussion on these groups of waves can be
found in Kamenkovich and Pedlosky (1995) [2].

So, it seems that the first step in extending this study is to revisit the cases considered
in this work by allowing for modes with temporal growth rates which were not included.
This can allow for the information to propagate further from the interface which can have
interesting implications for the mixing in the flanks of the jet. Allowing for continuous
variations in the velocity would also be a natural step towards building a more realistic
model.
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8 Appendix A

The second jump condition can be obtained by setting the solution for the interface pertur-
bation 7 obtained in the two zones to be equal to each other. The interface perturbation
is shown schematically in figure 11. The equations for 7 in the two zones have the form

D
7 = 0m+ V10 = v = =0, (96)
D

D—:Z = O + U0y = va = =012 (97)

Taking the Fourier transform of the two equations and expecting 1 to have the same -

dependence as the stream functions (i.e., %), we get
Oy + kU i) = ikay (98)
Oy + ikUsyf) = ikay (99)
Subtracting ( 99) from ( 98) we get
=
=—. 100
=G e (100)

substituting ( 100) into ( 98) gives the jump condition

(O + ikUL) (11 — t2) = ikihy (Uy — U). (101)

Figure 11: Schematic view of the perturbation of the interface between zones 1 and 2.
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9 Appendix B

The goal of this appendix is to to show that if two complex functions S(t) and V' (¢) satisfy
the relations

Sy =V(t), (102)
V(t) = A(t) * r(t), (103)

where A(t) is a general function and r(t) satisfies
C(t—t")=<r)r(t')* >= a stationary function, (104)
then the following is true:

< Sv >= =|A(0)2C(0). (105)

DN | =

C is the covariance function and ‘*’ denotes the convolution of the two functions. The fact

that C'(t — ') is stationary means that it only depends on At = ¢ —t' and not on ¢ or ¢'.
To start the proof we have

o0

1d I 1
< Sv>= 37 < 5% >= 5/ < V)V >dt' = 5/ <V*)V(t—t)>dt'. (106)
0 —00

Its easy to show that the second and term expressions are equal in the above equality. The
integrand in the last expression in (106) can be simplified to

< VWVt —t) >=< (Axr)[((Axr)|_py >=

= /Z /Z At — )1 () A(t — £/ — to)r(ta)dtydty >=
/OO /Oo At — t)r* (1) A(t — ' — t2)C(ty — to)dtydto, (107)

where C'is defined in (104). Replacing the last expression back into (106) and integrating
with respect to ¢’ we get

< Sv >= %A(O)/ / A*(t — tl)C(tl — tg)dtldtg.

Next integrating with respect to to we get
1 . . 0
< Sv>= 514(0)0(0)/ A*(t — tl)dtl.
— o
And finally integrating with respect to t; we get

< S >= L A(0)4*(0)C(0) =

: SIAO)PC(). (108)
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This completes the proof. Had we included a constant b in the definition of V(¢) at the

beginning (i.e., V' (t) = bA(t) % r(t)), the final result (108) would become
< Su>= %|bb*||fl(0)|2é(0).
For a white noise function r(¢) (used throughout this article) we get
Clt—t)=<rt)yrt) >=0o(t—1t),
and so

é(0) = 1.
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