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Lecture 1: Introduction

Examples of wave motion:
Water waves, atmospheric and oceanic internal waves (gravity waves),
sound waves (music), electromagnetic waves (light, radio), elastic waves
(earthquakes), etc.

An atmospheric gravity wave train in Northern Australia:
the “Morning Glory”.



1.1: Linear Waves

For simplicity, assume only one space dimension, and that a typical field
variable is u(x , t). Linear waves can then be represented by the Fourier
component,

u = Real [A exp (ikx − iωt)] , (1)

where k is the wavenumber, ω is the wave frequency and A is the wave
amplitude, which may also be a function of k . The full solution is
obtained by a superposition of such components.

The wave dynamics are determined by the dispersion relation

ω = ω(k) , (2)

whose precise form is determined by the physical system under
consideration. For instance, for water waves,

ω2 = gk tanh (kh) , (3)

where h is the still water depth, and g is gravity. Here there are two
branches of the dispersion relation.



1.2: Linear Waves

An important feature of linear waves is that the dispersion relation
captures the full system in Fourier space. That is, if the physical system
takes the schematic form

D(i
∂

∂t
,−i

∂

∂x
) u = 0 , then D(ω, k) = 0 , (4)

whose solutions are the branches ω = ω(k). For stable waves, ω is
real-valued for all real-valued k . There are two important velocities,

Phase Velocity : c =
ω

k ,
and Group Velocity : cg =

dω

dk
. (5)

For a dispersive wave system, they are different. The phase of the wave
(e.g. a wave crest) propagates with velocity c , but the wave energy
propagates with the velocity cg . The wave energy E for each Fourier
component is typically given by an expression of the form E = F (k)|A|2.
For instance, for water waves E = g |A|2/2 where A is the surface
elevation above the still-water depth.



1.3: Nonlinear Waves

In general, as a linear dispersive wave system evolves, each Fourier
component with wavenumber k propagates with its own group velocity,
and so the system disperses. Then nonlinearity, that is the necessity to
take account that the amplitude is finite and not infinitesimally small,
typically arises in three scenarios.

(1) Long waves: Here k → 0. Because the dispersion relation can be
made to satisfy the antisymmetry condition ω(k) = −ω(−k) (ensuring
real-valued solutions), it follows that when also ω(0) = 0, we have that
ω = c0k + O(k3), and so cg = c0 + O(k2), with weak dispersion.
(2) Wave packets: Here it is assumed that the wave energy is
concentrated around a finite wavenumber k0 say. Consequently, there is
again only weak dispersion, and approximately the wave group
propagates with a constant group velocity cg0 = cg (k = k0).
(3) Resonant wave interactions: Due to nonlinearity, two linear waves
with wavenumbers k1,2 say, will interact to form another wave with
wavenumber k0 = k1 + k2. If the corresponding frequencies are resonant,
that is ω0 ≈ ω1 + ω2 (ωi = ω(k = ki )), then there can be a strong effect.



1.4: Korteweg-de Vries (KdV) equation

Here we consider the long-wave regime, where k → 0, and assume that
we can use the approximate dispersion relation

ω = c0k − βk3 , (6)

with an error of O(k5). This translates to an evolution equation

ut + c0ux + βuxxx = 0 , (7)

where we recall that −iω = ∂/∂t, ik = ∂/∂x for each Fourier component.
The dominant term is ut + c0ux ≈ 0, showing that the wave propagates
with speed c0 unchanged, except for the effect of the weak dispersion due
to the term uxxx . This small effect needs to be balanced by nonlinearity,
and in many physical systems this has the form µuux , for some constant
coefficient µ. Thus the model equation takes the form

ut + c0ux + µuux + βuxxx = 0 . (8)

This is the famous Korteweg-de Vries (KdV) equation, first derived in
the water-wave context in 1895, and subsequently found to hold in many
physical systems.



1.5: KdV equation, solitons

The KdV equation is, in the reference frame moving with speed c0

(transform x → x − c0t),

ut + µuux + βuxxx = 0 . (9)

This is an integrable equation,a result first established in the 1960’s by
Kruskal and collaborators. Its principal solutions are solitons. A single
soliton is the solitary wave, an isolated and steadily-propagating pulse,
given by

u = a sech2(γ(x − Vt)) , V =
µa

3
= 4βγ2 . (10)

This is a one-parameter family of solutions, parametrized by the
amplitude a say. The speed V is proportional to the amplitude a and is
positive (negative) as β > (<)0, and is also proportional to the square of
the wavenumber γ; thus large waves are thinner and travel faster. They
are waves of elevation (depression) when µβ > (<)0 Integrability means
that the general initial-value problem for a localized initial condition can
be solved through the Inverse Scattering Transform (IST), with the
generic outcome of a finite number of solitons propagating in the positive
x-direction, and some dispersing radiation, propagating in the negative
x-direction (when µβ > 0).



1.6: KdV equation, solitons

x

 t

A

The generation of three solitons from a localized initial condition for the
KdV equation

At + 6AAx + Axxx = 0 .



1.7: Nonlinear Schrödinger Equation

Here we assume that the solution is a narrow-band wave packet, where
the wave energy in Fourier space is concentrated around a dominant
wavenumber k0. The dispersion relation ω = ω(k) can then be
approximated for k ≈ k0 by

ω − ω0 = cg0 (k − k0) + δ(k − k0)2 , (11)

where ω0 = ω(k0), cg = cg (k0) and δ = cgk(k0)/2, and we recall that
cg (k) = dω/dk, so that cgk = ωkk . This translates to an evolution
equation for the wave amplitude

i(At + cg0Ax) + δAxx = 0 , where u = Real [A exp (ikx − iωt)] . (12)

Here it assumed that the envelope function A(x , t) is slowly-varying with
respect to the carrier phase kx − ωt. The dominant term is
At + cg0Ax ≈ 0, showing that the wave envelope propagates with the
group velocity cg0, modified by the effect of weak dispersion due to the
term Axx . The result is well-known in quantum mechanics as the
Schrödinger equation.
The small dispersion effect needs to be balanced by nonlinearity, and in
many physical systems this has the typical cubic form ν|A|2A, for some
constant coefficient ν.



1.8: Nonlinear Schrödinger equation

Thus the model evolution equation for the wave envelope is the
nonlinear Schrödinger equation (NLS), expressed here in the reference
frame moving with speed cg0 (transform x → x − cg0t),

iAt + ν|A|2A + δAxx = 0 . (13)

Like the KdV equation it is a valid model for many physical systems,
including notably water waves and nonlinear optics, a result first realized
in the late 1960’s. Remarkably, like the KdV equation, it as an
integrable equation through the IST, first established by Zakharov and
collaborators in 1972. It also has soliton solutions, and the single soliton
or solitary wave solution is

A = a sech(γ(x − Vt)) exp (iKx − iΩt) , (14)

νa2 = 2δγ2 , Ω = δ(K 2 − γ2) , V = 2δK . (15)

This solution exists only when δν > 0, the so-called focussing case. It
forms a two-parameter family, the parameters being the amplitude a and
“chirp” wavenumber K ; however, K amounts to a perturbation of the
carrier wavenumber k to k + K , |K | << |k |, and so can be removed by a
gauge transformation.



1.9: Higher space dimensions

In two space dimensions the wavenumber becomes a vector k = (k, l) and
the dispersion relation is then

ω = ω(k) = ω(k , l) , (16)

where the wave phase is now k .x−ωt = kx + ly−ωt. The phase velocity
is c = ωk/κ2, where κ = |k|. The group velocity becomes the vector

cg = ∇k .ω = (
∂ω

∂k
,
∂ω

∂l
) . (17)

In general the group velocity and the phase velocity differ in both
magnitude and direction. For water waves the dispersion relation is

ω = gκ tanhκh . (18)

This is an example of an isotropic medium, as the wave frequency
depends only on the wavenumber magnitude, and not its direction. In
this case the group velocity is parallel to the wavenumber k, and hence
parallel to the phase velocity, with a magnitude cg = |cg| = dω/dκ.



1.10: Kadomtsev-Petviashvili equation

The KP equation is the two-dimensional extension of the KdV equation
for isotropic systems, and is given by, in the reference frame moving with
the linear long-wave speed c0 in the x-direction,

(ut + µuux + βuxxx)x +
c0

2
uyy = 0 . (19)

This equation assumes that there is weak diffraction in the y -direction,
that is ∂/∂y << ∂/∂x . The linear terms can be deduced from the linear
dispersion relation ω = ω(κ), κ = (k2 + l2)1/2, where it assumed that
l2 << k2. Thus in the long-wave limit, since κ ≈ k + l2/2k,

ω ≈ c0k − βk3 +
c0l

2

2k
· · · .

Recalling that −iω ∼ ∂/∂t, ik ∼ ∂/∂x , il ∼ ∂/∂y , we se that (19)
follows. When c0β > 0 holds in (19), this is the KPII equation, and it
can be shown that then the solitary wave (10) is stable to transverse
disturbances. This is the case for water waves. On the other hand if
βc0 < 0 holds, this is the KPI equation for which the solitary wave is
unstable; instead this equation supports “lump” solitons. Like the KdV
equation, both KPI and KPII are integrable equations.



1.11: Benney-Roskes equation

For systems with an isotropic dispersion relation, the two-dimensional
extension of the NLS equation is, in the reference frame moving with the
x-component cg0 of the group velocity in the x-direction

iAt + ν|A|2A + δAxx + δ1Ayy + QA = 0 . (20)

Here Q is a wave-induced mean flow expression, which satisfies a forced
long-wave equation. The precise form depends on the particular physical
system being considered. For water waves, where c2

0 = gh, it is

(1−
c2
g0

c2
0

)Qxx + Qyy + ν1|A|2yy = 0 . (21)

The resulting system (20, 21) is the Benney-Roskes equations, also
known as the Davey-Stewartson equations. The linear terms in (20) can
be found by expanding the dispersion relation as in the one-dimensional
case (11), so that for k ≈ k0, l ≈ 0,

ω − ω0 = cg0 (k − k0) + δ(k − k0)2 + δ1l
2 ,

where, as before δ = ωkk(k0, 0)/2 = cgk(k0, 0)/2 and δ1 = ωll(k0, 0) =
cg0/2k0. For water waves δ < 0, δ1 > 0 and cg0 < c0, so that (20) is
hyperbolic, but (21) is elliptic.
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