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Lecture 10: Wave-Mean Flow Interaction, Part II

The Great Wave at Kanagawa
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10.2 Lagrangian formulation

Part 2: General theory

Suppose that the physical system is governed by a Lagrangian
L(φ, φt , φxi ; t, x) where the field variables are the vector-valued φ(t, xi ).
Here t is time, and xi , i = 1, 2, · · · are the spatial variables. The
governing equations are then the Euler-Lagrange equations

∂

∂t
(
∂L

∂φt
) +

∂

∂xi
(
∂L

∂φxi

)− ∂L

∂φ
= 0 . (1)

Here we use the summation convention over the index “i ′′.

From this formulation we can recover the conservation laws
corresponding to the symmetries of the Lagrangian. Thus, for instance,
energy conservation corresponds to time symmetry, that is when
∂L/∂t = 0, and momentum conservation corresponds to space symmetry,
that is when ∂L/∂xi = 0. Wave action conservation corresponds to a
phase symmetry.



10.2 Waves and mean flow

We now suppose that the solution being sought consists of waves and a
mean flow. To describe the waves, we introduce a phase parameter θ,
such that

φ(t, xi , θ + 2π) = φ(t, xi , θ) . (2)

For example, for small-amplitude sinusoidal waves,

φ(t, xi ) ≈ a sin (kixi − ωt + θ) ,

where ki is the wavenumber vector, ω is the wave frequency, a is the
wave amplitude. Define a phase average by

< · >=
1

2π

∫ 2π

0

(·)dθ . (3)

We then denote φ̄ =< φ > and write

φ = φ̄+ φ̂ , (4)

so that by definition φ̄ is the mean flow and φ̂ is the wave field.



10.3 Wave action

Since the Lagrangian has no intrinsic dependence on the parameter θ, it
can be shown that the corresponding symmetry is

∂A

∂t
+
∂Bi

∂xi
= 0 , (5)

A =< φ̂θ
∂L

∂φt
> , Bi =< φ̂θ

∂L

∂φxi

> . (6)

Then A is the wave action density, Bi is the wave action flux.
Importantly it is a wave quantity, being zero if there are no waves, and so
is a good measure of wave activity. Equation (6) is a conservation law in
all physical systems, assuming (as here) that there is no forcing and no
dissipation. Note that formally this law is valid without restriction on
amplitude and without restriction on the relative time and space scales of
the waves vis-a-vis the mean flow.

But we shall now proceed to implement it for small-amplitude waves in
a slowly-varying medium.



10.4 Slowly varying medium

We now suppose that the mean flow, the background medium and the
wave parameters are slowly varying, and write

φ̂ ∼ φ̂(S(t, xi ) + θ; t, xi ) , ω = −∂S

∂t
, κi =

∂S

∂xi
. (7)

Here ω is the local frequency, and κi is the local wavenumber. Then the
expressions (6) reduce to

A ∼ − ∂L̄

∂ω
, Bi ∼

∂L̄

∂κi
. (8)

Here L̄ =< L > is the averaged Lagrangian and like ω, κi is a slowly
varying function of t, xi . But, recall that φ is rapidly varying in the phase
itself. Note that (8) is formally valid without any amplitude restriction.
Also, for slowly varying waves, we must add the equation for
conservation of waves

∂κi

∂t
+
∂ω

∂xi
= 0 . (9)



10.5 Linearized waves

Next we can decompose L as follows

L = L0(φ̄t , φ̄xi , φ̄; t, xi ) + L1(φ̂t , φ̂xi , φ̂; t, xi ) , (10)

where L0 = L(φ̄, φ̄t , φ̄xi ; t, xi ) is the Lagrangian for the mean flow and L1

is then Lagrangian for the wave field. The dependence of L1 on the mean
fields is here temporarily suppressed into the explicit t, xi dependence.

In the small amplitude approximation the wave field is

φ̂(t, xi ) ≈ a(t, xi ) sin (S(t, xi ) + θ) . (11)

Then in this small amplitude approximation (11)

L̄1 ≈ D(ω∗, κi ; t, xi )a
2 , ω∗ = ω − Uiκi . (12)

where we have extracted the dependence on the mean velocity field, Ui

and ω∗ is the intrinsic frequency, while the remaining mean fields
remain suppressed into the explicit xi , t dependence. In this linearized
approximation, the mean fields are known. The result that L̄1 depends
only on the mean velocity Ui through ω∗ follows from Galilean invariance.



10.6 Wave action for linearized waves

Then, from the expressions (8) we get that

A = −∂L̄1

∂ω
= − ∂D

∂ω∗
a2 , Bi =

∂L̄1

∂κi
=
∂D

∂κi
a2 . (13)

But we also have that ∂L̄1/∂a = 0, so that we get the dispersion relation

D(ω∗, κi ; t, xi ) = 0 . (14)

This defines ω = Ui (t, xi )κi + ω∗, ω∗ = Ω(κi ; xi , t). Then substitution
into (14) and differentiation with respect to the wavenumber κi yields

∂D

∂ω∗
cgi +

∂D

∂κi
= 0 , (15)

where cgi =
∂ω

∂κi
= Ui + c∗gi , c∗gi =

∂ω∗

∂κi
, (16)

defines the group velocity. Hence we finally get that Bi = cgiA and the
wave action equation (5) is

∂A

∂t
+
∂(cgiA)

∂xi
= 0 . (17)



10.7 Energy and momentum

We now need to provide a more physical interpretation of wave action,
and for this we shall consider the conservation laws for energy and
momentum for the full Lagrangian system (1), obtained from the
Lagrangian L(φ, φxs ; xs), s = 0, 1, 2, 3 where x0 = t. It is useful to note
the general expression, valid for any ψ = ψ(xs),

∂

∂xs
(ψ

∂L

∂φxs

) = ψxs

∂L

∂φxr

+ ψ
∂L

∂φ
. (18)

Then putting ψ = φxr generates the conservation laws

∂Trs

∂xs
= − ∂L

∂xs
, where Trs = φxr

∂L

∂φxs

− Lδrs (19)

Trs is the energy-momentum tensor of classical physics. We can identify
T00 with energy density, T0i with energy flux, Ti0 with momentum
density, and Tij with momentum flux.

We can now apply the averaging operator to the conservation laws (19)
and so obtain the equations governing the averaged total energy
< T00 > and averaged total momentum < Ti0 >. But these are not
particularly useful as they contain both the mean fields and the waves.



10.8 Pseudoenergy and pseudomomentum

Instead of the total energy and momentum, we define the pseudoenergy
and pseudomomentum (see Andrews and McIntyre (1978)) by putting
ψ = φ̂xs in (18) and then averaging, so that

∂Trs

∂xs
= −∂L̄1

∂xr
, where Trs =< φ̂xr

∂L1

∂φ̂xs

− L1δrs > (20)

Here recall L1 is the ”Lagrangian” (10), defined by L = L0 + L1 where L0

is the ”mean” Lagrangian which depends only on the mean flow. Hence
Trs is an O(a2) wave property. We can identify T00 with pseudoenergy
density, T0i with pseudoenergy flux, Ti0 with pseudomomentum
density, and Tij with pseudomomentum flux. But (20) is not a
conservation law unless L1 is independent of xs , and this inter alia
requires that the mean flow is independent of xs . Note that putting
ψ = φ̂θ yields the wave action equation (6). Thus, if phase averaging
corresponds to averaging over a particular coordinate, θ = xs , then
Ts0 = A and Tsi = Bi , noting that in this case the diagonal term Tss is
then absent from the conservation law (20). Thus the wave action is
pseudoenergy for time averaging, and is pseudomomentum for space
averaging.



10.9 Wave energy

In general wave energy is not as useful a quantity as wave action, as in
general it is not a conserved quantity. Suppose that the mean flow
consists of a mean velocity Ui , and a vector-valued mean field Λ (mean
depth, etc.), which for convenience will be required to satisfy the equation

dλ

dt
+ Λijλ

∂Ui

∂xj
= 0 . (21)

Then, we follow Bretherton and Garrett (1968) and define the wave
energy E as the pseudoenergy in a reference frame moving with the mean
flow.

E = T00 + UiTi0 =<
d φ̂

dt

∂L1

∂φ̂t

− L1 > ,
d

dt
=

∂

∂t
+ Ui

∂

∂xi
. (22)

The corresponding wave energy flux is

Fi =<
d φ̂

dt

∂L1

∂φ̂xi

− UiL1 > (23)

Here L1 = L1(φ̂, φ̂t , φ̂xi ; Ui , λ; xi , t). Further we suppose that the
dependence on φ̂t is only through d φ̂/dt = φ̂t + Ui φ̂xi .



10.10 Radiation Stress

The wave energy equation then becomes

∂E

∂t
+
∂F

∂xi
= −Rij

∂Ui

∂xj
− (

dL̄1

dt
)e , (24)

Rij = −Tij + UjTi0 − Λijλ
∂L̄1

∂λ
, (25)

is the radiation stress tensor. Here the subscript “e” denotes the
explicit derivative with respect to t, xi when the wave field and the mean
fields Ui , λ are held fixed. Finally we need an equation for the mean flow,
which is obtained by variation of the mean fields, subject to the
constraint (21). The mean momentum equation is

∂

∂t
(
∂L0

∂Ui
) +

∂

∂xj
(Uj

∂L0

∂Ui
− Λijλ

∂L0

∂λ
+ L0δij)− (

∂L0

∂xi
)e =

−∂Rij

∂xj
+ (

∂L̄1

∂xi
)e . (26)

When Λij = Mδij is isotropic, there is a mean pressure Q such that

−∂Rij

∂xj
= −∂Ti0

∂t
− ∂(UjTi0)

∂xj
+
∂Q

∂xi
. (27)



10.11 Slowly varying waves

φ̂ ∼ φ̂(S(t, xi ) + θ; t, xi ) , ω = −∂S

∂t
, κi =

∂S

∂xi
.

In this case we get the reductions

Pseudoenergy: T00 ≈ ωA− L̄1 , T0i ≈ ωBi , (28)

Pseudomomemtum: Ti0 ≈ −κiA, , Tij ≈ −κiBj − L̄1δij , (29)

Wave energy: E ≈ ω∗A− L̄1 , F ≈ ω∗(Bi − UiA) , (30)

Radiation Stress: Rij ≈ κi (Bj − UjA) + L̄1δij − Λijλ
∂L̄1

∂λ
. (31)

Recall that ω∗ = ω − Uiκi is the intrinsic frequency.



10.12 Slowly varying linearized waves

Now, we have a dispersion relation (14) so that ω∗ = Ω(κi ;λ; xi , t),
ω = κiUi + ω∗, and the wave action equation is (17)

∂A

∂t
+
∂(cgiA)

∂xi
= 0 ,

where cgi = Ui + ∂Ω/∂κi is the group velocity. For linearized waves
L̄1 = 0 so wave energy E = ω∗A, and the pseudoenergy T00 = ωA.
The wave energy equation (24) and the radiation stress (25) become

∂E

∂t
+

∂

∂xi
([Ui + c∗gi ]E) = −Rij

∂Ui

∂xj
+

E

ω∗
(
dΩ

dt
)e , (32)

Rij = A(κicgj + Λijλ
Ω∗

∂λ
) . (33)



10.13 Extensions

Modal waves: Often waves are confined to waveguides such that there
is propagation in only a reduced set of spatial dimensions, and a modal
structure in the remaining spatial dimensions. Examples are water waves
and internal waves. This general theory can still be used, but we need to
combine the Lagrangian averaging with integration across the waveguide.

Generalized Lagrangian mean (GLM) theory: For applications to
fluid flows we need to identify a suitable Lagrangian. Although these can
sometimes be found in the Eulerian formulation, it is usually best for our
present purposes to use a Lagrangian formulation of the equations of
motion. But to be able to consider finite amplitude waves, we define the
particle displacements from a mean position that moves with the mean
velocity, Ui . This is the GLM theory developed by Andrews and McIntyre
(1978). Thus, xi are Lagrangian variables moving with the Lagrangian
mean velocity Ui , relative to which we define the particle displacements
ξi . The Eulerian variables are then x ′i = xi + ξi , and the Eulerian velocity
is u′i = Ui + dξi/dt (d/dt = ∂/∂t + Ui∂/∂xi ) and < ξi >= 0.
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