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Lecture 4: Internal solitary waves in the ocean

The aim here is to describe internal solitary waves in the coastal ocean,
where the bottom topography may vary from the deep ocean to the
shallow seas of the coastal oceans, and also the background hydrography
can also vary along the path of the wave. Hence the asymptotic models
must incorporate a variable background state. On the assumption that
this is slowly varying relative to the waves, the outcome is a KdV-type
equation, but with variable coefficients, namely the variable-coefficient
extended Korteweg-de Vries (veKdV) equation. This is, in dimensional
un-scaled coordinates,

Aτ + αAAξ + α1A2Aξ + λAξξξ = 0 . (1)

τ =

∫ x dx

c
, ξ = t − τ , (2)

Here the original amplitude A has been replaced by
√

Q A, where Q is
the linear magnification factor, defined so that QA2 is the wave action
flux. The linear long-wave speed c , and the coefficients α, α1, λ depend
on x , and hence on the evolution variable τ . These equations are not
integrable in general, and so we must then seek a combination of
asymptotic and numerical solutions.



4.1 Derivation of the veKdV equation

In the basic state the fluid has density ρ0(z), stably stratified so that
N2 = −gρ0z/ρ0 > 0, a corresponding pressure p0(z) (p0z = −gρ0), and
a horizontal shear flow u0(z) in the x−direction. Here we shall consider
only the case when the bottom is flat, that is h is a constant. Extensions
to variable depth are possible and lead to a variable-coefficient extended
KdV equation.

z
!z=

z=-h



4.2 Linear long waves

Then to describe internal solitary waves we seek solutions whose
horizontal length scales are much greater than h, and whose time scales
are much greater than N−1. We shall also assume that the waves have
small amplitude. Then the dominant balance is linear long wave theory.
We will use the vertical particle displacement ζ as the primary fluid
variable, so that,

ζ = A(x − ct)φ(z) , (3)

Here c is the linear long wave speed, and the modal functions φ(z)
are defined by the boundary-value problem,

{ρ0(c − u0)2φz}z + ρ0N2φ = 0 , for − h < z < 0 , (4)

φ = 0 at z = −h , (c − u0)2φz = gφ at z = 0 , (5)



4.3 Linear long-wave modes

The boundary-value problem (4, 5) defines an infinite sequence of linear
long-wave modes, φn(z), n = 0, 1, 2, . . . , with corresponding speeds cn.
Within the context of linear long wave theory, any localized initial
disturbance will evolve into a set of outwardly propagating modes (3),
each propagating with its own distinctive speed. Hence for large times
we can consider just a single mode, and henceforth omit the index
“n”. Then, as time increases, the hitherto neglected nonlinear terms
begin to have an effect, and cause wave steepening. However, this is
opposed by the terms representing linear wave dispersion, also
neglected in the linear long wave theory. A balance between these two
effects emerges as time increases and the outcome is the Korteweg-de
Vries (KdV) equation for the wave amplitude.



4.4 Asymptotic expansion

The formal derivation of the evolution equation requires the introduction
of two small parameters, α and ε, respectively characterising the wave
amplitude and dispersion. The KdV balance requires α = ε2, with a
corresponding time scale of ε−3. The asymptotic analysis required is
well understood, so we give only the outcome here. Introduce the scaled
variables

T = εαt , X = ε(x − ct) , (6)

and then put
ζ = αA(X ,T )φ(z) + α2ζ2 + . . . , (7)

Since the modal equations are homogeneous, we are free to impose a
normalization condition on φ(z). A commonly used condition is that
φ(zm) = 1 where |φ(z)| achieves a maximum value at z = zm. In this
case the amplitude αA is uniquely defined as the amplitude of ζ (to
0(α)) at the depth zm.



4.5 Asymptotic expansion

Then, at the next order, we obtain a linear inhomogeneous equation for
ζ2, whose homogeneous part is just the modal equation. Hence the
solution requires a compatibility condition, which yields the
Korteweg-de Vries (KdV) equation,

AT + µAAX + δAXXX = 0 , (8)

where the coefficients µ and δ are given by

Iµ = 3

∫ 0

−h

ρ0(c − u0)2φ3
z dz , (9)

I δ =

∫ 0

−h

ρ0(c − u0)2φ2 dz , (10)

where I = 2

∫ 0

−h

ρ0(c − u0)φ2
z dz . (11)



4.6 Korteweg-de Vries equation

The KdV equation (8) is integrable, It is to be solved with the initial
condition A(X ,T = 0) = A0(X ) where A0(X ) is determined from the
linear long wave theory. The outcome is a set of rank-ordered solitary
waves, and dispersive radiation. The solitary waves have polarity
determined by the sign of µδ.

Iµ = 3

∫ 0

−h

ρ0(c − u0)2φ3
z dz , I δ =

∫ 0

−h

ρ0(c − u0)2φ2 dz ,

I = 2

∫ 0

−h

ρ0(c − u0)φ2
z dz .

For waves propagating to the right, c > uM = max u0(z), so that I > 0
and δ > 0. For the surface mode, µ > 0. The internal modes are
normalized so that φ(zm) = 1 where zm is an extremal point. Then it is
readily shown that for a near-surface pycnocline, µ is negative for
the first internal mode. However, in general µ can take either sign.



4.7 Extended Korteweg-de Vries equation

Proceeding to the next highest order yields a higher-order KdV equation,

AT + µAAX + δAXXX +

α{δ1AXXXXX + µ1A2AX + σ1AAXXX + σ2AX AXX} = 0 . (12)

Explicit expressions for the coefficients are available. A particularly
important special case of the higher-order KdV equation (12) arises when
the nonlinear coefficient µ (8) in the KdV equation is close to zero. In
this situation, the cubic nonlinear term in the higher-order KdV equation
is the most important higher-order term. The KdV equation (8) may
then be replaced by the extended KdV (Gardner) equation,

AT + µAAX + αµ1A2AX + δAXXX = 0 . (13)

For µ ≈ 0, a rescaling is needed and the optimal choice is to assume that
µ is 0(ε), and then replace A with A/ε. In effect the amplitude parameter
is ε in place of ε2. Henceforth we assume that this rescaling has been
done. Like the KdV equation, (13) is integrable, and has solitary wave
solutions. There are two independent forms of the eKdV equation (13),
depending on the sign of δµ1.



4.8 Solitary waves of the eKdV equation

A =
H

1 + B cosh K (X − VT )
, (14)

where V =
µH

6
= δK 2 , B2 = 1 +

6δµ1K 2

µ2
, (15)

with a single parameter B. For δµ1 < 0, 0 < B < 1, and the family
ranges from small-amplitude waves of KdV-type (“sech2”-profile) (
B → 1) to a limiting flat-topped wave of amplitude −µ/µ1 (B → 0)
(“table-top” wave). For δµ1 > 0 there are two branches; one has
1 < B <∞ and ranges from small-amplitude KdV-type waves (B → 1),
to large waves with a “sech”-profile (B →∞). The other branch,
−∞ < B < 1, has the opposite polarity and ranges from large waves with
a “sech”-profile to a limiting algebraic wave of amplitude −2µ/µ1. Waves
with smaller amplitudes do not exist, and are replaced by breathers .



4.9 Solitary waves of the eKdV equation
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4.10 Variable coefficients

The derivation sketched so far is for a waveguide with constant properties
in the horizontal direction. But, in the ocean there is varying depth, and
variations in the basic state hydrology and background currents.
These effects can be formally incorporated into the theory by supposing
that the basic state is a function of the slow variable χ = ε3x . That is,
h = h(χ), u0 = u0(χ, z) with a corresponding vertical velocity field
ε3w0(z , χ), a density field ρ0(z , χ) a corresponding pressure field p0(χ, z)
and a free surface displacement η0(χ). With this scaling, the slow
background variability enters the asymptotic analysis at the same order
as the weakly nonlinear and weakly dispersive effects. An asymptotic
analysis analogous to that described above then produces a variable
coefficient extended KdV equation. The modal system is again defined
by (4, 5), but now c = c(χ) and φ = φ(z , χ), where the χ-dependence is
parametric. We find that Q = C 2I where I is defined by (11) Note also
that this expression for Q can also be simply determined by requiring
that QA2 should be the wave action flux in the linear long wave limit.



4.11 Variable-coefficient extended KdV equation

With all small parameters removed, this is

Aτ + αAAξ + α1A2Aξ + λAξξξ = 0 . (16)

τ =

∫ x dx

c
, ξ = t − τ , (17)

where the original amplitude A has been replaced by
√

Q A. Q is the
linear magnification factor, defined so that QA2 is the wave action flux.
The coefficients α(τ), α1(τ), δ(τ) and Q(τ) are given by

α =
µ

cQ1/2
, α1 =

µ1

cQ
, λ =

δ

c3
, Q = c2I . (18)



4.12 Slowly-varying solitary waves

The evKdV equation (16) possesses two relevant conservation laws,∫ ∞
−∞

A dx = constant , (19)∫ ∞
−∞

A2 dx = constant , (20)

representing conservation of “mass” and “momentum” respectively
(more strictly an approximate representation of the physical mass and
wave action flux).

The slowly-varying solitary wave is then given as before, but its
parameters B(τ) etc. now vary slowly in a manner determined by
conservation of momentum (20). Mass is conserved by the generation
of a trailing shelf.



4.13 Slowly-varying solitary waves

G (B) = constant| α
3
1

λα2
|1/2 , (21)

where G (B) = |B2 − 1|3/2
∫ ∞
−∞

du

(1 + B cosh u)2
.

The integral term in G (B) can be explicitly evaluated, and so these
expressions provide explicit formulas for the variation of B(τ) as the
environmental parameters vary.

But since the conservation of momentum completely defines the
slowly-varying solitary wave, total mass (19) is conserved by a trailing
shelf (linear long wave) whose amplitude Ashelf at the rear of the solitary
wave is

VAshelf = −∂Msol

∂τ
, Msol =

∫ ∞
∞

Asol dξ , (22)

and where Asol is the solitary wave solution.



4.14 Critical point α = 0, α1 < 0

The adiabatic expressions (21, 22) show that the critical points where
α = 0 (or where α1 = 0) are sites where we may expect a dramatic
change in the wave structure. First, as α passes through zero, assume
that α1 < 0, 0 < B < 1 at the critical point τ = 0 where α = 0. Then as
α→ 0, it follows from (21) that B → 0 and the wave profile approaches
the limiting “table-top” wave. But in this limit, K ∼ |α|, and so the
amplitude approaches the limiting value −α/α1. Thus the wave
amplitude decreases to zero, the mass M0 of the solitary wave grows as
|α|−1 and the amplitude A1 of the trailing shelf grows as 1/|α|4.
Essentially the trailing shelf passes through the critical point as a
disturbance of the opposite polarity to that of the original solitary wave,
which then being in an environment with the opposite sign of α, can
generate a train of solitary waves of the opposite polarity, riding on
a pedestal of the same polarity as the original wave.



4.15 Critical point α = 0, α1 = 0: KdV case

δ = 1, α1 = 0 and α varies from −1 to 1 (that is the variable-coefficient
KdV equation). The upper panel is when α = 0 and the lower panel is
when α = 1. This is conversion of a depression wave into a train of
elevation waves riding on a negative pedestal.
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4.16 Critical point α = 0, α1 < 0: eKdV case

δ = 1, α1 = −0.083 and α varies from 1 to −1, that is, the variable
coefficient eKdV equation, with a negative cubic nonlinear coefficient.
This shows the conversion of an elevation “table-top” wave into a
depression “table-top” wave, riding on a positive pedestal.
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4.17 Critical point α = 0, α1 > 0: eKdV case

Next, let us suppose that at the critical point where α = 0, α1 > 0. In
this case, 1 < |B| <∞ and there are the two sub-cases to consider,
B > 1 or B < −1, when the the solitary wave has the same or opposite
polarity to α. Then, as α→ 0, |B| → ∞ as |B| ∼ 1/|α|. It follows from
(15) that then K ∼ 1, H ∼ 1/|α|, a ∼ 1,M0 ∼ 1. It follows that the wave
adopts the “sech”-profile, but has finite amplitude, and so can pass
through the critical point α = 0 without destruction. But the wave
changes branches from B > 1 to B < −1 as |B| → ∞, or vice versa.
An interesting situation then arises when the wave belongs to the branch
with −∞ < B < −1 and the amplitude is reducing. If the limiting
amplitude of −2α/α1 is reached, then there can be no further reduction
in amplitude for a solitary wave, and instead a breather will form.



4.18 Critical point α = 0, α1 > 0: eKdV case

δ = 1, α1 = 0.3 and α varies from 1 to −1 for −T < τ < T , that is, the
variable coefficient eKdV equation, with a positive cubic nonlinear
coefficient. This shows the adiabatic evolution of an elevation wave from
τ = −T to τ = T , where its amplitude is too small, and so the wave
becomes a breather.
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4.19 Wave propagation, deformation and disintegration

Simulation of veKdV (16) of the passage of an initial solitary wave of
depression across the North West Shelf of Australia.



4.20 Wave propagation, deformation and disintegration:
NWS, initial depression wave of 15m amplitude



4.21 Wave propagation, deformation and disintegration

Simulation using (16) of the passage of an initial solitary wave of
depression across the Malin shelf off west coast of Scotland.



4.22 Wave propagation, deformation and disintegration:
Malin Shelf, fission, initial amplitude of 21m



4.23 Wave propagation, deformation and disintegration

Simulation using (16) of the passage of an initial solitary wave of
depression across the Arctic shelf off north coast of Russia .



4.24 Wave propagation, deformation and disintegration:
Arctic Shelf, adiabatic, initial amplitude of 13m



4.25 World map of eKdV coefficients

 
a) speed of propagation, c (m/s) 
 

 
b) dispersion coefficient, δ (m3/s) 
 



4.26 World map of eKdV coefficients

 
c) coefficient of quadratic nonlinearity, μ (s-1) 
 

 
d) coefficient of cubic nonlinearity, μ1 (m-1s-1) 
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