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Lecture 5: Whitham Modulation Theory

Morning Glory Waves

An atmospheric internal gravity wave train in Northern Australia



Satellite view of a Morning Glory wave

Morning Glory  Clouds - Australia



Atmospheric solitary waves near Mozambique



Undular Bore on the Dordogne river



5.1 Modulated periodic wave trains

The aim of the Whitham modulation theory is to provide an asymptotic
theory to describe slowly varying periodic waves, essentially a nonlinear
WKB theory. The equations describing the slow evolution of the
parameters of nonlinear periodic waves (such as the amplitude,
wavelength, frequency, etc.) are called the modulation (or Whitham)
equations. It transpires that the Whitham equations have a remarkably
rich mathematical structure, and at the same time are a powerful analytic
tool for the description of nonlinear waves in a wide variety of physical
contexts.

One of the most important aspects of the Whitham theory is the analytic
description of the formation and evolution of dispersive shock waves,
or undular bores. These are coherent nonlinear wave structures which
resolve a wave-breaking singularity when it is dominated by dispersion
rather than the dissipation.

There are also a number of important connections between the Whitham
theory, the inverse scattering transform (IST ) and the general theory of
integrable hydrodynamic type systems.



5.2 KdV Cnoidal waves

We shall describe the Whitham modulation theory for the KdV equation

ut + 6uux + uxxx = 0 . (1)

The one-phase periodic travelling wave solution (cnoidal wave) of the
KdV equation (1) is

u(x , t) = r2 − r1 − r3 + 2(r3 − r2)cn2(
√

r3 − r1 θ; m) , (2)

where cn(y ; m) is the Jacobi elliptic cosine function. Here r1 ≤ r2 ≤ r3
are the three parameters, and the phase variable θ and the modulus m,
(0 < m < 1), are given by

θ = x − Vt , V = −2(r1 + r2 + r3) , (3)

m =
r3 − r2
r3 − r1

, and L =

∮
dθ =

2K (m)√
r3 − r1

, (4)

where K (m) is the complete elliptic integral of the first kind, and L is the
“wavelength” along the x-axis. As m→ 1, cn(y ; m)→ sech(y) and (2)
becomes a solitary wave, while as m→ 0 it reduces to a sinusoidal wave.



5.3 KdV Cnoidal waves

It is advantageous to use these parameters r1,2,3 instead of the more
“physical” parameters such as the amplitude, speed, wavelength etc., as
they arise from the basic ordinary differential equation for the KdV
travelling wave solution (2). Thus is we substitute (2) into the KdV
equation (1) we get

u2
θ = −2u3 + Vu2 + Cu + D , (5)

where C ,D are constants. This is transformed to

w2
θ = −4P(w), (6)

where w =
u

2
− V

4
, and P(w) =

3∏
i=1

(w − ri ) . (7)

That is, the cnoidal wave (2) is parameterized by the zeros r1, r2, r3 of
the cubic polynomial P(w).

In a modulated periodic wave, the parameters r1, r2, r3 are slowly varying
functions of x , t, described by the Whitham modulation equations.
These can be obtained either by a multi-scale asymptotic expansion, or
more conveniently by averaging conservation laws.



5.4 Averaged conservation laws

Introduce averaging over the period of the cnoidal wave (2) by

〈F〉 =
1

L

∮
Fdθ =

1

L

∫ r3

r2

Fdµ√
−P(µ)

. (8)

In particular,

〈u〉 = 2(r3 − r1)
E (m)

K (m)
+ r1 − r2 − r3 , (9)

〈u2〉 =
2

3
[V (r3 − r1)

E (m)

K (m)
+ 2Vr1 + 2(r2

1 − r2r3)] +
V 2

4
, (10)

where E (m) is the complete elliptic integral of the second kind. Next,
consider a set of three conservation laws for the KdV equation,

Pt + Qx = 0 , j = 1, 2, 3 , (11)

Then apply the averaging (8) to the system (11) to obtain

〈Pj〉t + 〈Qj〉x = 0, j = 1, 2, 3 . (12)

This system (12) describes the slow evolution of the parameters rj for the
cnoidal wave (2).



5.5 Averaged conservation laws

For the KdV equation (1) two conservation laws are

ut + (3u2 + uxx)x = 0 , (13)

(u2)t + (4u3 + 2uuxx − u2
x )x = 0 . (14)

These are just the first two conservation laws, for respectively “mass”
and “momentum”, in an infinite set of conservation laws. The next
would be that for “energy”. But here only two are needed, because after
averaging, we can replace the third equation by the law for the
conservation of waves

kt + ωx = 0 , where k =
2π

L
, ω = kV . (15)

This must be consistent with the modulation system (12), and can be
introduced instead of any of three averaged conservation laws (12).
Indeed any three independent conservation laws can be used, and will
lead to equivalent modulation systems. Here, the Whitham modulation
equations for the KdV equation are obtained by averaging (13, 14) and
combining with (15).



5.6 Whitham modulation equations

In general the Whitham modulation equations have the structure

bt + A(b)bx = 0 . (16)

Here b = (r1, r2, r3)t , and the coefficient matrix A(b) = P−1Q where the
matrices P,Q have the entries Pij = 〈Pi 〉rj and Qij = 〈Qi 〉rj for
i , j = 1, 2, 3. The eigenvalues of the coefficient matrix A are called the
characteristic velocities. If all the eigenvalues vj(b) of A(b) are
real-valued, then the system is nonlinear hyperbolic and the underlying
travelling wave is modulationally stable. Otherwise the travelling wave
is modulationally unstable.

For this KdV case all the eigenvalues are real and so the cnoidal wave is
modulationally stable. It can be shown that

vj = −2
∑

rj +
2L

∂L/∂rj
, j = 1, 2, 3, (17)



5.7 Whitham modulation equations

The parameters rj have been chosen because they are the Riemann
invariants of the system (16) for the present case of the KdV equation.
Thus this system has the diagonal form

rjt + vj rjx = 0 , j = 1, 2, 3, (18)

where we recall that vj(r1, r2, r3) are the characteristic velocities (17)

v1 = −2
∑

rj + 4(r3 − r1)(1−m)K/E ,

v2 = −2
∑

rj − 4(r3 − r2)(1−m)K/(E − (1−m)K ) ,

v3 = −2
∑

rj + 4(r3 − r2)K/(E − K ) .

(19)

where K (m),E (m) are the elliptic integral so the first and second kind.
This system is integrable, and the complete solution can be found.



5.8 Limiting cases of Whitham modulation equations

Sinusoidal waves limit: m→ 0: A solution of (18) is r2 = r3,m = 0,
v1 = −6r1, v2 = v3 = 6r1 − 12r3 so that the system collapses to

r1t − 6r1r1x = 0 , r3t + (6r1 − 12r3)r3x = 0 .

or dt + 6ddx = 0 , kt + ωx = 0 .
(20)

Here −r1 = d is the mean level, and r3 − r1 = k2/4 is the wavenumber,
and the dispersion relation is ω = 6dk − k3. An expansion for small m is
needed to recover the wave action equation.
Solitary wave limit: m→ 1: A solution of (18) is r1 = r2,m = 1,
v1 = v2 = −4r1 − 2r3, v3 = −6r3, so that the system collapses to

r1t + (−4r1 − 2r3)r1x = 0 , r3t − 6r3r3x = 0 .

or dt + 6ddx = 0 , at + Vax = 0 .
(21)

Now −r3 = d is the background level and 2(r3 − r1) = a is the solitary
wave amplitude, and −4r1 − 2r3 = 6d + 2a = V is its speed.



5.9 Shocks

Next we consider the similarity solution of the modulation system (18)
which describes an undular bore developing from an initial discontinuity

u(x , 0) = ∆ for x < 0 , and u(x , 0) for x > 0 , (22)

where ∆ > 0 is a constant. It is now useful to consider the solution when
the dispersive term in the KdV equation (1) is omitted, so that it
becomes the Hopf equation

ut + 6uux = 0 . (23)

This is readily solve by characteristics and the solution is multivalued,
u = ∆ for −∞ < x < 6∆t and u = 0 for 0 < x <∞. Hence a shock is
needed, whose speed is 3∆, shown for ∆ = 1, t = 3.



5.10 Undular bore

The aim here is to replace the shock with a modulated wave train,
generating a dispersive shock wave or undular bore .
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Behind the undular bore u = ∆ or in terms of the Riemann invariants
r1 = −∆, r2 = r3, and ahead u = 0, r1 = r2, r3 = 0. Because of the
absence of a length scale in this problem, the corresponding solution of
the Whitham modulation system must depend on the self-similar variable
τ = x/t alone, which reduces the system (18) to

(vj − τ)
drj
dτ

= 0 , i = 1, 2, 3 . (24)

Hence two Riemann invariants must be constant, namely r1 = −∆,
r3 = 0 and then r2 varies in the range −∆ < r2 < 0, given by v2 = τ .



5.11 Undular bore

Thus, using the expressions (2, 3, 4) for the cnoidal wave, we finally get
the solution for the undular bore, expressed in terms of the modulus m,

x

∆t
= 2(1 + m)− 4m(1−m)K (m)

E (m)− (1−m)K (m)
, (25)

u

∆
= 1−m + 2m cn2(∆1/2(x − Vt); m) ,

V

∆
= −2(1 + m) . (26)

The leading and trailing edges of the undular bore are determined from
(25) by putting m = 1 and m = 0, so that it exists in the zone

−6 <
x

∆t
< 4 . (27)

Thus this solution is an unsteady undular bore, and spreads out with
time. A steady undular bore requires some friction. The leading solitary
wave amplitude is 2∆, exactly twice the height of the initial jump. Also
the wavenumber is constant. For each wave in the wave train, m→ 1 as
t →∞, so each wave tends to a solitary wave.



5.12 Rarefraction wave

When ∆ < 0, the resolution of the initial discontinuity (22) is the
rarefraction wave

u = 0 , for x > 0 ,

u =
x

6t
, for 6∆t < x < 0 ,

u = ∆ , for x < 6∆t .

(28)

This is a solution of the full KdV equation (1), but needs smoothing at
the corners with a weak modulated periodic wave.



5.13 Further developments

1 : The Whitham can be applied to any nonlinear wave equation which
has a (known) periodic travelling wave solution. These include the NLS
equations, Boussinesq equations, Su-Gardner equations.

2: For a broad class of integrable nonlinear wave equations, a simple
universal method has been developed by Kamchatnov (2000), enabling
the construction of periodic solutions and the Whitham modulation
equations directly in terms of Riemann invariants.

3: The “undular bore” solution can be extended to the long-time
evolution from arbitrary localized initial conditions, described by Gurevich
and Pitaevskii (1974) (and many subsequent works), and by Lax and
Levermore (1983).

4: There have been applications in many physical areas, including surface
and internal undular bores, collisionless shocks in rarefied plasmas (e. g.
Earth’s magnetosphere bow shock), nonlinear diffraction patterns in laser
optics, and in Bose-Einstein condensates.
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