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Lecture 8: Generalized Solitary Waves



8.1 Generalized Solitary Waves

We have seen that solitary waves, either of the KdV-type with a
“pulse”-like profile, or as the envelope of a wave packet, play a key role
in nonlinear wave dynamics. However, there are physical situations when
such KdV-type waves may not be genuinely localized. Instead they are
accompanied by co-propagating small oscillations which spread out to
infinity without decay. These are generalized solitary waves and occur
for water waves with surface tension for Bond numbers less than 1/3, for
interfacial waves when there is a free surface, and for all internal waves
with mode numbers n ≥ 2. The underlying reason is that there is a
resonance between a long wave with wavenumber k ≈ 0 and a short wave
with a finite wavenumber. When the amplitude of the central core is
small, O(ε2), the amplitude of the oscillations is exponentially small,
typically O(exp (−C/ε)) where C is a positive constant. Hence they
cannot usually be found by conventional asymptotic expansions, and need
exponential asymptotics.



8.2 Generalized Solitary Waves

Plot of a schematic set dispersion curves for internal waves: mode 1
(blue), mode 2 (red), mode 3 (green) and the surface mode (violet).



8.3 Generalized Solitary Waves

Steady generalized solitary waves are necessarily symmetric. But this
means they cannot be realized physically as then the group velocity of
the small oscillations is the same at both ends, which implies that energy
sources and sinks are needed. In practice, they are generated with a core
and small oscillations only on one side, determined by the group velocity.
Consequently, they are unsteady and slowly decay due to this radiation.



8.4 Generalized Solitary Wave
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FIQURE 2. Acoustical image of internal-wave disturbances generated by stratified flow past a sill 
in the field experiments of Farmer t Smith (1980). The streamlines indicate that the main 
disturbance is a mode-2 solitary-like wave and is followed by a train of smaller-amplitude mode-1 
short waves. 

Recently, Turkington, Eydeland & Wang ( 1991), using a variational formulation 
of the governing equations, proposed a numerical technique for computing solitary- 
wave solutions in a stratified fluid, and presented several examples of mode-1 solitary 
waves ; as expected, these waves are locally confined. In earlier related work, Tung, 
Chan & Kubota (1982) proved analytically and confirmed through numerical 
computations that large-amplitude locally confined mode- 1 and mode-2 solitary 
waves are possible in a stratified fluid of finite depth, under the Boussinesq 
approximation. However, in discussing mode-2 solitary waves, they further assume 
that the density stratification is such that the Brunt-Vaisala frequency is symmetric 
about the fluid-layer centreline. This additional condition precludes the appearance 
of mode-1 oscillatory tails because waves of the first mode are symmetric while waves 
of the second mode are antisymmetric about the centreline. Nevertheless, mode-1 
oscillations are still expected to develop a t  the tails of mode-3 solitary waves, which 
are also symmetric, but Tung et al. (1982) do not report calculations of solitary waves 
of mode-3 or higher. 



8.5 Coupled KdV equations

The technique we use to find the tail oscillations is based on extending
the usual asymptotic expansion into the complex plane, and using Borel
summation. It is similar to the techniques used by Pomeau et al (1988)
and Kruskal and Segur (1991). To exhibit it here, we use the model
system of two coupled KdV equations, which can be shown to describe
the interaction between two weakly nonlinear long internal waves whose
linear long wave speeds are nearly equal.

ut + 6uux + uxxx + (pvxx + quv +
1

2
rv2)x = 0 , (1)

vt + ∆vx + 6vvx + vxxx + λ(puxx + ruv +
1

2
qu2)x = 0 . (2)

This system is Hamiltonian, and conserves the ”mass” u, v , the
“momentum” λu2 + v2, and the Hamiltonian. For stability we choose the
coupling parameter λ > 0. ∆ is the detuning parameter, proportional to
the difference between the two linear long wave speeds; without loss of
generality we take ∆ > 0.



8.6 Resonance between long waves and short waves

First examine the linear spectrum, for waves of wavenumber k and phase
speed c ,

c =
∆

2
− k2 ± {λp2k4 +

∆2

4
}1/2 (3)

If we let the coupling parameter λ→ 0 these linear modes uncouple into
a u-mode with spectrum c = −k2 and a v -mode with spectrum
c = ∆− k2. This situation persists for λ > 0, and there is a resonance
between the long wave (u-mode) and a short wave (v -mode), with a
resonant wavenumber k0 = (∆/1− λp2)1/2 provided that λp2 < 1. A
typical plot is for ∆ = 1, p = 0.5, λ = 0.2



8.6 Steady travelling waves

We seek solutions of the form

u = u(x − ct) , v = v(x − ct) , (4)

so that the coupled KdV system (1, 2) becomes

−cu + 3u2 + uxx + pvxx + quv +
1

2
rv2 = 0 , (5)

−cv + ∆v + 3v2 + vxx + λ(puxx + ruv +
1

2
qu2) = 0 . (6)

The two constants of integration have been set to zero, essentially by
imposing solitary wave boundary conditions, or better, by translating u, v
by constants. Equations (5, 6) form a fourth order ODE system. We
shall show that they have symmetric generalized solitary wave solutions,
with co-propagating oscillatory tails of small amplitude. This amplitude
will be found using either exponential asymptotics, or more directly by
expanding in λ.



8.7 Asymptotic expansion for small waves

First, expand around k = 0 for the long (u-mode) wave. Thus, we
introduce a small parameter ε << 1, and seek a solution as an
asymptotic expansion,

us(εx) =
∞∑

n=1

ε2nun , vs(εx) =
∞∑

n=1

ε2nvn , c =
∞∑

n=1

ε2ncn . (7)

Substitution into (5, 6 ) yields

u1 = 2γ2sech2(εγx) , v1 = 0 , c1 = 4γ2 , (8)

u2 =
λ

∆
{(20p2 + q2 − 8pq)c1u1 − (q − 6p)(q − 10p)u2

1} , (9)

v2 = − λ
∆
{pc1u1 +

1

2
(q − 6p)u2

1} , (10)

c2 = − λ
∆

p2c2
1 . (11)

This expansion can be continued to all orders in ε2 without any
oscillatory tail being detected.



8.8 Exponential asymptotics

To find the tail oscillations, we observe that un, vn are singular in the
complex plane at x = ±iπ/2εγ,±3iπ/2εγ, · · · . This motivates us to
examine this singularity by the change of variables

x =
iπ

2εγ
+ z , (12)

Then as εz → 0, sech2(εγx) ∼ −1/ε2γ2z2, and so

us ∼ −
2

z2
− λ

2∆z4
(q − 6p)(q − 10p) + · · ·+ O(ε2) , (13)

vs ∼ −
2λ

∆z4
(q − 6p) + · · ·+ O(ε2) . (14)

Next, we consider the inner problem in which we seek solutions of (5, 6)
in the form u = u(z), v = v(z), for which the expressions (13, 14) form
an outer boundary condition. The outcome is just the same system
(5, 6) with x replaced by z . Note that c = O(ε2), and can be omitted at
the leading order.



8.9 Borel summation

We seek a solution as a Laplace transform

[u, v ] =

∫
Γ

exp (−zs)[U(s),V (s)] ds , (15)

where the contour Γ runs from 0 to ∞ in the half-plane Re(sz) > 0. We
seek a power series solution

[U(s),V (s)] =
∞∑

n=1

[an, bn]s2n−1 , (16)

where a1 = −2 , b1 = 0, a2 = −λ(q − 6p)(q − 10p)/12∆, b2 =
−λ(q − 6p)/3∆. In general, substitution of (16) into the Laplace
transform (15) generates the asymptotic series

[u, v ] ∼
∞∑

n=1

[αn, βn]z−2n , [αn, βn] = (2n − 1)![an, bn] . (17)

This agrees with the asymptotic series (13, 14), and in effect the Laplace
transform is a Borel summation of the asymptotic series.



8.10 Recurrence relation

Substitution of the Laplace transform (15) and the series (16) into the
differential equation system (5, 6) yields a recurrence relation for [an, bn].
Putting ∆[An,Bn)] = (−k2

0 )n[an, bn], we get

(n + 1)(2n + 5)

(n − 1)(2n − 1)
An−1 + {p − q

(n − 1)(2n − 1)
}Bn−1 = Fn , (18)

(1− λp2)Bn − Bn−1 − λpAn−1 + λ
rBn−1 + qAn−1

(n − 1)(2n − 1)
= Gn , (19)

where Fn,Gn are quadratic convolution expressions in A2, · · ·An−2,
B2 · · · ,Bn−2. As n→∞, these nonlinear terms can be neglected, and
we find that

[An,Bn]→ [−p, 1]K as n→∞ , (20)

where K is a constant whose value depends on λ, p, q, r . It now follows
that the series (16) converges for |s| < k0, k2

0 = ∆/(1− λp2). The
result (20) shows that as |s| → k0 there is a pole singularity given by

[U(s),V (s)] ≈ ∆
[p,−1]K

2(s − ik0)
. (21)



8.11 Singularity

We have now established that the solution in the z-variable is given by

[u, v ] =

∫
Γ

exp (−zs)[U(s),V (s)] ds ,

where [U(s),V (s)] has a pole singularity at s = ik0, also at the complex
conjugate point s = −ik0 and at all their harmonics s = ±ink0 , n = 2, 3
etc. Hence the contour Γ should be chosen to avoid the imaginary s-axis,
and to be explicit we choose it to lie in Re s > 0. But we seek a
symmetric solution, which in the z-variable requires that Im [u.v ] = 0
when Re z = 0. But the presence of the pole prevents (15) from satisfying
this condition, and so we must correct it by adding a subdominant term

[u, v ] =

∫
Γ

exp (−zs)[U(s),V (s)] ds +
ib

2
[p,−1] exp (−ik0z + iδ). (22)

Here b, δ are real constants, and note that | exp (−ik0z)| is smaller than
any power of |z |−1 as z →∞ in Re z > 0 , Im z < 0, recalling that
x = (iπ/2εγ) + z . The symmetry condition is now applied by bringing
the contour Γ onto Re s = 0 and deforming around the pole at s = ik0.



8.12 Singularity

The outcome is
b cos δ = πK . (23)

which is substituted into

[u, v ] =

∫
Γ

exp (−zs)[U(s),V (s)] ds +
ib

2
[p,−1] exp (−ik0z + iδ).

The final step is to bring this solution (22) back to the real axis, using
x = (iπ/2εγ) + z . Taking account of the corresponding singularity at
s = −ik0, we finally get that

[u, v ] ∼ [us , vs ] + b∆[−p,−1]) exp(−πk0/2εγ) sin(k0|x | − δ) . (24)

This is a two-parameter family, the parameters being γ, δ, 0 < δ < π/2.
The minimum tail amplitude occurs at δ = 0. Note that the constant in
the exponential term is determined by the location of the singularity, but
the amplitude needs the exponential asymptotics.



8.13 Embedded solitons

The constant K is determined by the recurrence relations (18, 19). It is a
function of the system parameters λ, p, q, r and in general is found
numerically. But K = 0 for q = 6p (see (8, 9)), and in general we found
many parameter combinations where K = 0. In particular

K ≈ λ(6p − q)

3∆
as λ→ 0 . (25)

These special values imply that the solitary wave decays to zero at
infinity, even although its speed lies inside the linear spectrum, at least in
this asymptotic limit. These are called embedded solitons. They are
usually not stable, but are then metastable, or are said to exhibit
semi-stability. Nevertheless they are found useful in several applications,
such as nonlinear optics and solid state physics. For water waves with
surface tension, generalized solitary waves exist for Bond numbers
0 < B < 1/3, but from numerical simulations it seems there are no
embedded solitons.



8.14 One-sided generalized solitary waves

These symmetric solitary waves cannot be realized in practice, since they
require an energy source and sink at infinity. Instead, they are replaced
by solitary waves with radiating tails on one side only, determined by
the group velocity. That is, in x > 0 for cg > c , or in x < 0 for cg < c ,
where cg is the group velocity at the resonant wavenumber. For the
present case, the linear dispersion relation is (3) and so for the relevant
u-mode, cg = ∆− 3k2 < c = ∆− k2. Hence there are no oscillations in
x > 0, but they will appear in x < 0.
Hence in x > 0, or more generally in Re z > 0, the solution is completely
defined by the Laplace transform integral (15), with the contour Γ lying
in Re s > 0. Then for x < 0, or Re z < 0, the contour Γ must be moved
to Re z < 0 across the axis Re s = 0. In this process the solution collects
a contribution from the pole at s = ik0, which generates the tail
oscillation. The final outcome is that (24) is replaced by

[u, v ] ∼ [us , vs ]− H(−x)2πK∆[−p,−1]) exp(−πk0/2εγ) sin(k0x) (26)

where H(·) is the Heaviside function. That is, in effect the phase shift
δ = 0, there are no oscillations in x > 0 and the amplitude in x < 0 is
exactly twice the amplitude of the symmetric solution.



8.14 Weak coupling

−cu + 3u2 + uxx + pvxx + quv +
1

2
rv2 = 0 ,

−cv + ∆v + 3v2 + vxx + λ(puxx + ruv +
1

2
qu2) = 0 .

Let us suppose that 0 << λ < 1 and expand,

[u, v ] ∼
∞∑

n=0

λn[un, vn] , c ∼
∞∑

n=0

λncn . (27)

u0 = 2β2sech2(βx) , v0 = 0 , c0 = 4β2 . (28)

This leading term is a u-mode solitary wave. Note that in comparison
with the previous expansion (7) β = εγ, but now the amplitude can be
order unity. At the next order

−c0u1 + 6u0u1 + u1xx + pv1xx + qu0v1 − c1u0 = 0 , (29)

(∆− c0)v1 + v1xx + pu0xx +
q

2
u2

0 = 0 . (30)



8.15 Weak coupling

(∆− c0)v1 + v1xx = f (x) = −pc0u0 + (6p − q)
u2

0

2
. (31)

Note that in this limit λ→ 0, the resonant wavenumber k0 ≈
(∆− c0)1/2 and takes account of the finite speed of the wave. We must
now take c0 < ∆ to get tail oscillations, and for c0 > ∆ the expansion
yields a genuine solitary wave. The general solution of (31) is

v1 = A sin k0x + B cos k0x +
1

2k0

∫ ∞
−∞

f (x ′) sin (k0|x − x ′|)dx ′ . (32)

To determine the constants A,B we impose a symmetry condition on v1,
so that A = 0, and then

v1 ∼ b1 sin (k0|x | − δ) as |x | → ∞ , (33)

b1 cos δ = L =
1

2k0

∫ ∞
−∞

f (x) cos (k0x)dx . (34)

With v1 known, we can find u1 from (29), and

u1 ∼ −p
(∆− c0)

c0
b1 sin (k0|x | − δ) , as |x | → ∞ , (35)



8.16 Weak coupling

[u1, v1] ∼ [−p
(∆− c0)

c0
, 1] b1 sin (k0|x | − δ) , as |x | → ∞ ,

b1 cos δ = L =
1

2k0

∫ ∞
−∞

f (x) cos (k0x)dx ,

f (x) = −pc0u0 + (6p − q)
u2

0

2
.

We find that

L = −6k0

β2
{k2

0 (q − 6p) + 4β2q}
∫ ∞
−∞

sech2(βx) cos (k0x)dx . (36)

Then as β = εγ → 0, this reduces to

L ∼ πk2
0

3
(6p − q) exp (−πk0/2εγ) , (37)

which agrees with the previous result (25) from the exponential
asymptotics, since L = πK . The one-sided solutions are obtained by
setting δ = 0, and replacing b1 in (33, 35) by 0, 2b1 for x > 0, x < 0.



Lecture 8: References

Structural Stability of Korteweg de Vries solitons under a singular
perturbation Pomeau, Y., Ramani, A. and Grammaticos, B. 1988
Physica D, 31, 127-134.

Asymptotics beyond all orders in a model of crystal growth
Kruskal, M. D. and Segur, H. 1991 Stud. Appl. Math., 85 , 129181.

Solitary internal waves with oscillatory tails Akylas, T.R. and
Grimshaw, R.H.J. 1992 J.Fluid Mech., 242, 279-298.

Weakly non-local solitary waves in a singularly perturbed
Korteweg-de Vries equation Grimshaw, R. and Joshi, N. 1995
SIAM J. Appl. Math., 55, 124-135.

Solitary waves with oscillatory tails Grimshaw, R. and Cook, P.
1996 Proceedings of Second International Conference on Hydrodynamics,
Hong Kong, 1996, ”Hydrodynamics: Theory and Applications”, Vol. 1,
ed. A.T. Chwang, J.H.W. Lee and D.Y.C. Leung A.A. Balkema,
Rotterdam, 327-336.

Weakly Nonlocal Solitary Waves and Beyond-All-Orders
Asymptotics J. P. Boyd 1998, Kluwer, Amsterdam.


