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1 Introduction

Helioseismology has revealed a lot of information about the structure and dynamics of the
solar interior, and we expect astroseismology from the Kepler probe to soon reveal similar
information about other solar-type stars. The Sun and solar-type stars have two regions:
a convective outer zone and a radiative inner zone [3, 10]. The radiative zone is stably
stratified and energy transport is dominated by photon radiation.

Helioseismology has revealed that the convection zone is differentially rotating, as shown
in Figure 1. At the equator, the rotation is fast with a period of about 25 days. The period
increases with latitude, reaching about 30 days near the poles. The reason for this differen-
tial rotation is not yet completely understood. It is known that the turbulence in rotating
convection is strongly anisotropic and causes a net flux of angular momentum towards
the equator, but there are also many other processes involved in driving the differential
rotation [8].

The radiative zone, by contrast, is in uniform rotation, as shown in Figure 1, with a
period of about 27 days (the same as at approximately 30 degrees latitude in the convec-
tion zone). The two regions are separated by a rotational shear layer, which is called the
tachocline [13]. Observations (for example, see Figure 1) reveal that the tachocline is very
thin. This is surprising, because (as shown by [13]) the rotational shear should propagate
into the interior on a relatively fast timescale, advected by meridional flows associated with
the so-called ‘thermal-spreading’ process.

1.1 Thermal spreading

To understand thermal spreading, let’s consider a thought-experiment in which, at time
t = 0, the outer convection zone is differentially rotating and the inner radiative zone is
uniformly rotating. Isobars in the uniformly rotating radiative zone are approximately
spherical at first. As the differential rotation propagates into the top of the radiative zone,
the Coriolis force due to the perturbation of the angular velocity must be compensated by
a pressure perturbation, P̂ (see Figure 2(a)). In hydrostatic equilibrium, the latter must
be compensated by a change in the local density, and ultimately induces a temperature
perturbation T̂ . The sign of the Coriolis force is such that the polar tachocline becomes
somewhat hotter than the regions below, while the equatorial tachocline is somewhat cooler.

If the system is also in thermal equilibrium, advective and diffusive heat transport must
compensate each other. As the temperature perturbation diffuses outwards, inward flows are
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Figure 1: A graph of the angular velocity in the solar interior, from [3]. The outer convective
zone is differentially rotating, and the inner radiative zone is uniformly rotating. The dashed
line indicates the boundary between the convection zone and the radiative zone.

Figure 2: A schematic of the thermal spreading process. (a) Isobars are perturbed by
the propagation of the differential rotation into the radiative zone (colour shows angular
velocity and grey lines show isobars). (b) This pressure perturbation causes a temperature
perturbation, and the diffusion of this temperature perturbation is balanced by inward flows
to maintain thermal equilibrium (colour shows temperature perturbation and grey arrows
show flows). (c) These inward flows advect the differential rotation further into the interior
(third picture).
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generated to balance the thermal diffusion (see Figure 2(b)). The latter transport angular
momentum, so the differential rotation spreads into the radiative zone (see Figure 2(c)).
Spiegel and Zahn [13] studied this process in detail. They found that the depth h of the
tachocline grows via thermal spreading as

h ≈ r0

(
t

tES

)1/4

, (1)

where r0 is the radius of the radiative zone, t is time and

tES =

(
N

2Ω

)2 r2
0

κ
(2)

is the global Eddington-Sweet timescale. It is important to note here that viscosity plays no
role in the process. By thermal spreading alone, Spiegel and Zahn argued that the thickness
of the tachocline by now should be about a third of the total depth of the radiative zone.
This is clearly at odds with observations from helioseismology (Figure 1). They concluded
that there must be some other mechanism to stop the growth of the tachocline and the
propagation of meridional flows into the interior.

1.2 The effect of an interior magnetic field: the Gough and McIntyre
model

One mechanism that could impose a uniform rotation in the radiative zone is a primordial
magnetic field, confined to the radiative zone [7]. The induction equation for a magnetic
field is

∂B

∂t
= ∇× (u×B− η∇×B), (3)

where u is the velocity of the flow, B is the magnetic field and η is the magnetic diffusivity.
For a steady axisymmetric magnetic field with negligible meridional flows and magnetic
diffusivity, (3) simply becomes

∇× (u×B) = (B.∇)u− (u.∇)B = 0, (4)

using the solenoidal condition ∇.B = 0. If we rewrite u as

u = (0, 0, r sin θΩ), (5)

in spherical coordinates (where Ω is the rotation rate), (4) yields Ferraro’s law of isorota-
tion [4],

B.∇Ω = 0, (6)

which states that angular velocity is constant on magnetic field lines. Hence, as long as the
magnetic field is confined to the radiative zone then (6) can enforce a uniform rotation in
the interior. If the magnetic field lines are anchored in the convection zone, by contrast,
(6) would promote the propagation of the differential rotation into the interior.

Unfortunately, by (3), magnetic fields diffuse over long timescales, so that any initially
confined field slowly expands into the convection zone. Thus, differential rotation in the
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Figure 3: A schematic of the current tachocline paradigm, from [6]. The purple region
is the magnetically dominated interior, with magnetic field lines shown in red. The blue
region is the tachopause (thickness exaggerated by a factor of 50) and the green region is
the tachocline (thickness exaggerated by a factor of 5). The arrows represent meridional
flows in the tachocline. The yellow region is the convection zone.

radiative zone is expected unless there is a mechanism to keep the field actively confined
against diffusion [2, 14]. Gough and McIntyre [6] showed that one way of keeping the field
confined within the radiative zone is for the downwelling flows associated with the tachocline
thermal spreading to balance the outward diffusion of the magnetic field.

A schematic of the current tachocline paradigm is shown in Figure 3, from [6]. In
this model, the interior is magnetically dominated and in rigid rotation. Between this
interior and the outer convection zone, there is a magnetic-free, stably stratified tachocline
with thermally driven downwelling flows which confine the magnetic field. A thin magnetic
boundary layer, called the tachopause, separates the tachocline from the rest of the interior.

1.3 The effect of spin down

The Gough and McIntyre model assumes that the system is in a steady state. However,
there are several different possible sources of time-dependence in the problem, including the
very slow (and complicated) timescale of the stellar evolution, the time for the diffusion of
the magnetic field, the timescale of the decrease in rotation rate, and many others. We will
focus on the effect of the decreasing rotation rate.

In addition to the internal primordial field, solar-type stars also host a distinct ‘dynamo
field’ generated in the convection zone by turbulent fluid motions. In the Gough and McIn-
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Figure 4: A photograph of the solar wind during the 11 July 2010 Solar eclipse, from [9].

tyre model, this magnetic field is assumed to be spatially separated from the primordial field
by the magnetic-free tachocline. This dynamo field emerges at the surface and eventually
becomes part of the solar wind. Figure 4 shows a photo of the solar wind during a solar
eclipse. Charged particles travel along the field lines out from the star, and their angular
velocity slows down by conservation of angular momentum. However, by Ferraro’s law of
isorotation, the angular velocity must be constant along field lines. This exerts a magnetic
torque on the outer layers of the star, causing them to slow down.

Skumanich [11] looked at the rotation rates of several clusters of solar-type stars, and
found that the mean stellar rotation rate decays as a power law with time, as

Ω ∼ t−1/2. (7)

This project aims to look at the effect of spin down on the model by [6]. In what
follows, we first study how spin down propagates into a non-magnetic interior, and then
look at what happens if a magnetic field is included in the radiative zone.

2 Stratified, non-magnetic spin down

We first consider the spin down of a stratified, non-magnetic star. We build upon the work
of Bretherton and Spiegel [1], which is now discussed for clarity and completeness.

2.1 Spin-down of an unstratified, non-magnetic star

Bretherton and Spiegel [1] were the first to study the spin down of an unstratified star.
They consider a star with an outer convection zone and an inner radiative zone, and model
it as an unstratified sphere of fluid (which represents the radiative zone) surrounded by a
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spherical shell of porous medium (the convection zone). The interior region has radius a,
and the total radius of the star is b. Since Pr � 1, the viscosity is negligible.

The porous medium is rotating with an angular velocity Ω(t), which slows down over
time as

Ω(t) = Ω0 exp(−kt), (8)

where Ω0 is the initial rotation rate and k is the spin down rate. The spin down is assumed
to be slow, so that k � Ω0. Bretherton and Spiegel look for a ‘steady state’, where the
Du/Dt term is negligible in the momentum equation expressed in a frame rotating with
angular velocity Ω(t). The ‘steady state’ equations of motion in the porous medium are
Darcy’s law and the incompressibility condition:

1

τ
u = −1

ρ
∇P̂ , ∇.u = 0, (9)

where τ is the Darcy friction timescale and P̂ is the pressure perturbation away from
hydrostatic equilibrium. The equations of motion in the interior are

2Ω× u− kΩ× r = −1

ρ
∇P̂ , ∇.u = 0. (10)

The first term in (10) is the Coriolis force, and the second is Euler’s force which is due to
the deceleration of the frame. Solving these equations, then matching P̂ and the normal
velocity at the interface between the interior and the porous medium, r = a, yields for
instance the angular velocity perturbation Ω̂(r, θ, t) everywhere in the star. The angular
velocity in the interior turns out to be uniform, with value

Ω̂c =
3a5 + 2b5

b5 − a5

k

4Ωτ
, (11)

in the rotating frame. Since Ω̂c > 0, there is a constant lag in the propagation of the spin
down into the interior.

In short, the porous medium and the interior are each uniformly rotating, but the interior
is always rotating faster, since Ω̂c is always positive. The lag depends on the rate of spin
down, k, the rotation rate of the porous medium, Ω, and the Darcy relaxation time scale of
the porous medium, τ .

2.2 Spin down of a stratified non-magnetic star (cylindrical model)

2.2.1 The model

We now consider a similar model to [1], but with a stratified interior and with differential
rotation in the convection zone. Because of the added complexity, we have to model a
cylinder instead of a full sphere, with gravity parallel to the rotation axis. This adds a
geometrical error, but on the other hand allows for a fully analytical solution. This cylinder
can be viewed as the polar regions of the star. The lower part is filled with stratified fluid,
with constant buoyancy frequency N and negligible viscosity ν, from z = 0 to z = zcz, and
with a porous medium from z = zcz to z = 1. Figure 5 is a diagram of the model set up.
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Figure 5: A diagram of the cylindrical model set up. The region from z = 0 to z = zcz is
filled with a stably stratified fluid, with constant buoyancy frequency N , and the viscosity ν
is negligible. The region from z = zcz to z = 1 (yellow) is filled with a differentially rotating
porous medium.

The porous medium is rotating with angular velocity Ω(t), and following [1] we work in a
frame rotating with angular velocity Ω(t). The cylinder has radius R and unit height. We
use cylindrical coordinates (s, φ, z) in the rotating frame, and assume axisymmetry with
respect to the axis of rotation (which is in the vertical z direction) so that ∂/∂φ = 0. In
these coordinates, we write the velocity relative to the rotating frame as u = (u, v, w).

The real dynamics of a stellar convection zone are very complicated. Our main goal here
is to model rapid momentum transport from the surface down to the top of the radiative
zone. The simplest possible model that has such a property is one with a Darcy friction
term, as in [1, 5]. We replace the effect of the Reynolds stresses with a Darcy forcing term
in the convection zone (z > zcz), so that in this region the velocity of the fluid relaxes to
the assumed velocity of the porous medium on a timescale τ . In the rotating frame, we
consider that the porous medium may be also differentially rotating, with velocity vcz(s)êφ.
We require the net angular momentum of the porous medium in the rotating frame to be
zero, so the differential rotation does not apply any torque to the system. The porous
medium represents the convection zone, where N ≈ 0, and (for simplicity) we also take its
thermal diffusivity to be effectively infinite1, so that the temperature perturbation T̂ = 0
for z > zcz. The momentum equation for the fluid in the porous medium is then

∂u

∂t
+ 2Ω× u + Ω̇× r +

u− vcz(s)eφ
τ

= −1

ρ
∇P̂ . (12)

In the ‘bulk’ of the fluid (z < zcz) we make several assumptions to simplify the equa-
tions (as in, for example, [1], [6] and [13]). We use the Boussinesq approximation (for

1This assumption gives the solution to lowest order in κb/κp, where κp and κb are the thermal diffusivities
in the porous medium and the plug, respectively, and κp � κb
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example, [12]) and assume that the fluid is incompressible everywhere. We assume that
the Rossby number, which is the ratio of the Coriolis acceleration to the advective term,
is small. Under this assumption, flows are sufficiently slow that we can neglect the non-
linear advective term in the momentum equation. We assume the flow is hydrostatic and
geostrophic, so viscous forces are much less important than Coriolis forces. We also assume
that the flows are sufficiently steady and slow for the system to be in thermal equilibrium,
with heat diffusion being balanced by the advection of the background entropy.

The momentum equation in the bulk is then

∂u

∂t
+ 2Ω× u + Ω̇× r = −1

ρ
∇P̂ +

g

T
T̂ êz, (13)

where T is the mean temperature and ρ is the mean density.
We choose the boundary conditions to have zero temperature perturbation, T̂ , and

vertical velocity, w, at z = 0 and z = 1. We solve the equations separately for z > zcz and
z < zcz, and match T̂ , w and pressure perturbation P̂ at the radiative-convective interface
zcz. In short,

T̂ = 0 at z = 0, z = 1, (14)

w = 0 at z = 0, z = 1, (15)

T̂ (z = z−cz) = T̂ (z = z+
cz), (16)

P̂ (z = z−cz) = P̂ (z = z+
cz), (17)

w(z = z−cz) = w(z = z+
cz). (18)

Boundary conditions at the side wall s = R are more difficult to choose, as we want them
to have as little influence as possible on the flow inside the cylinder. We choose

T̂ = 0 at s = R. (19)

This boundary condition allows a radial flow across the side wall, which by conservation of
mass must be zero overall. We assume that the flow into and out of the cylinder through
the side walls has negligible influence on the flow in the cylinder. From (13) the radial and
vertical momentum equations in the bulk are

1

ρ

∂P̂

∂z
=
g

T
T̂ , (20)

2Ωv =
1

ρ

∂P̂

∂s
. (21)

Using the side wall boundary condition (19) in (20) gives P̂ = 0 at s = R. Combining (20)
and (21) yields the thermal wind equation

2Ω
∂v

∂z
=
g

T

∂T̂

∂s
. (22)

We also have the equations for thermal equilibrium,

N2T

g
w = κ∇2T̂ , (23)
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where κ is the thermal diffusivity in the bulk, and incompressibility

1

s

∂

∂s
(su) +

∂w

∂z
= 0. (24)

Combining (22), (23) and (24) gives an equation relating u and v

−N2 ∂

∂s

(
1

s

∂

∂s
(su)

)
= 2Ωκ

(
∂4v

∂z4
+

∂

∂z

∂

∂s

(
1

s

∂

∂s
(sv)

))
. (25)

The first term on the right hand side is equivalent to the thermal spreading term found
in [13], and indicates that there is transport of angular momentum by downwelling merid-
ional flows. A second equation for u and v comes from the φ-component of the angular
momentum equation (13),

∂v

∂t
+ 2Ωu+ Ω̇s = 0. (26)

We then combine (25) and (26) to find v.

2.2.2 ‘Steady state’ solution

Following [1] we first look for a ‘steady state’ solution, where (26) becomes

2Ωu+ Ω̇s = 0. (27)

This immediately gives

u = −s
2

Ω̇

Ω
, (28)

and conservation of mass, with the boundary condition (15), gives

w =
Ω̇

Ω
z. (29)

Note that the frame is slowing down, so Ω̇ < 0. Solving (23) with boundary conditions (19)
then gives

T̂ =
∑
n

J0

(
λn

s

R

)[
αn sinhλn

z

R
− CnzR

2

λ2
n

]
, (30)

with λn the zeros of the Bessel function J0(x) and

Cn =
N2T

gκ

Ω̇

Ω

2

λnJ1(λn)
. (31)

The unknown coefficients αn can be related to Cn using the boundary condition (16). Since
T̂ = 0 in the porous medium:

αn =
CnzczR

2

λ2
n

1

sinhλn
zcz
R

. (32)
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Equations (20) and (21) then give P̂ and v, up to the unknown set of integration constant
{pn}:

1

ρ
P̂ =

g

T

∑
n

J0(λn
s

R
)

[
αnR

λn
coshλn

z

R
− Cnz

2R2

2λ2
n

+ pn

]
, (33)

v =
g

2ΩT

∑
n

dJ0(λn
s
R)

ds

[
αnR

λn
coshλn

z

R
− Cnz

2R2

2λ2
n

+ pn

]
. (34)

To find v, by finding pn, we also need to solve the equations in the porous medium.
In the porous medium, T̂ = 0, and the φ-component of the momentum equation (12) in

steady state reduces to

2Ωu+ Ω̇s = −v − vcz(s)
τ

, (35)

where τ is the time scale of the Darcy force. For ease of algebra, we assume that τ is
sufficiently small that, to the lowest order2 in τ , and

v u vcz(s). (36)

From (12), the radial and vertical momentum equations are

1

ρ

∂P̂

∂z
= −w

τ
, (37)

1

ρ

∂P̂

∂s
= −u

τ
+ 2Ωvcz(s). (38)

Combining these with incompressibility ∇.u = 0 gives

∇2w = 0. (39)

Using the boundary condition (15), we can write w as

w =
∑
n

Bn sinh

[
λn

(
z

R
− 1

R

)]
J0

(
λn

s

R

)
, (40)

for some constants Bn and λn. Equation (37) then gives

1

ρ
P̂ =

∑
n

J0

(
λn

s

R

)[
−Bn
τ

R

λn
cosh

[
λn

(
z

R
− 1

R

)]
+ Pn

]
, (41)

and using the boundary condition (17) at s = R gives that λn are the zeros of J0(x) as in
the bulk solution. Incompressibility also gives

u =
∑
n

dJ0(λn
s
R)

ds

R

λn
Bn cosh

[
λn

(
z

R
− 1

R

)]
, (42)

2This expansion is not necessary, and the calculation can be done without it. However, the solutions are
not as simple and lose clarity.
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so that (38) becomes

1

ρ

∂P̂

∂s
+
u

τ
=
∑
n

dJ0(λn
s
R)

ds
Pn = 2Ω(t)vcz(s), (43)

which uniquely defines Pn,

Pn = − 4Ω(t)

λnJ2
1 (λn)

∫ R

0

s

R
vcz(s)λnJ1

(
λn

s

R

)
ds. (44)

Matching w and P̂ at z = zcz gives

Bn =
Ω̇

Ω

2zcz

λnJ1(λn) sinhλn
(
zcz
R −

1
R

) , (45)

and

pn =
T

g
Pn −

T

g

BnR

τλn
cosh

[
λn

(
zcz
R
− 1

R

)]
− αnR

λn
cosh

(
λn
zcz
R

)
+
Cnz

2R2

2λ2
n

, (46)

so that the azimuthal velocity (34) becomes

v =− 1

Ω

∑
n

J1(λn
s
R)

λnJ1(λn)

Ω̇

Ω

[
N2

κ

zczR
2

λ2
n

(
coshλn

z
R − coshλn

zcz
R

sinhλn
zcz
R

− λn
2zczR

(z2 − z2
cz)

)

−1

τ

zcz

tanhλn( zczR −
1
R)

]
+ vcz(s). (47)

2.2.3 Physical interpretation of the ‘steady-state’ solution

In order to understand this solution more physically, let’s define the different time scales in
this problem as

tsd = −Ω

Ω̇
, tES =

(
N

2Ω

)2 R2

κ
, tΩ =

1

Ω
, tτ = τ, (48)

where tsd is the spin down timescale, tES is the global Eddington-Sweet timescale, which
is the timescale for thermal spreading [13], tΩ is the rotation timescale and tτ is the Darcy
friction timescale. We re-write (47) in terms of these timescales,

v =
1

tsd

∑
n

J1(λn
s
R)

λnJ1(λn)

[
tES
tΩ

4zcz
λ2
n

(
coshλn

z
R − coshλn

zcz
R

sinhλn
zcz
R

− λn
2zczR

(
z2 − z2

cz

))

− tΩ
tτ

zcz

tanhλn( zczR −
1
R)

]
+ vcz(s). (49)

This expression shows that v has two separate parts, one which depends on the spin
down and one which depends on the differential rotation. We first consider the case with no
differential rotation, vcz(s) = 0, to isolate the effect of the spin down. Equation (49) shows
that v depends on tsd as well as ratios of the other three timescales, tES/tΩ and tΩ/tτ .
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(a) (b)

Figure 6: Contour plots of Ω̂ in the ‘steady state’ solution. (a) Unstratified case. Ω̂ is
constant with depth and strictly positive everywhere. (b) Stratified case. Ω̂ is strictly
positive everywhere, and increases with depth and cylindrical radius.

If there is no stratification in the bulk, tES = 0 and v(s, z = 0) = v(s, z = zcz) =
v(s) > 0. This implies that the azimuthal velocity is independent of depth, as expected
from the Taylor-Proudman constraint, and that there is a lag in the interior with respect
to the porous medium. The angular velocity perturbation, Ω̂ = v/s, is

Ω̂ =
tΩ
tτ tsd

∑
n

J1(λn
s
R)

sλnJ1(λn)

zcz

tanhλn( 1
R −

zcz
R )

, (50)

which is similar to the result from [1]. Indeed, Ω̂ contains the same ratio of timescales as
in [1] but with a different geometrical factor, which is naturally expected since we are using
a cylinder rather than a sphere.

If the bulk is stratified, tES > 0, then v(s, z = 0) > v(s, z = zcz) > 0, showing that the
lag increases with depth. This can be interpreted in two ways. On the one hand, one may
view that the spin down is propagated more quickly to the top of the bulk, near the porous
medium, than to the bottom which is further away. Alternatively one may also consider
that as the stratification increases, the thermal wind (22) can support more vertical shear,
so the lag at the bottom increases. Figure 6 shows contour plots of Ω̂ in the bulk for
tES = 0 and tES > 0. For tES = 0, Figure 6(a) shows an approximately uniform lag, which
is constant with depth. For tES > 0, Figure 6(b) shows that the lag increases with both
depth and with s.

2.2.4 Time-dependent solution

Having found the ‘steady state’ solution, we now return to the time-dependent equations
to find when this ‘steady state’ is valid. We expand v again on the same basis of Bessel
functions, as

v =
∑
n

dJ0(λn
s
R)

ds
ṽn(z, t). (51)
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Combining (25) and (26) with this ansatz gives

∂ṽn
∂t

+

(
2Ω(t)R

Nλn

)2

κ
∂4ṽn
∂z4

−
(

2Ω(t)

N

)2

κ
∂2ṽn
∂z2

=
Ω̇R2

λ2
n

4

λnJ1(λn)
. (52)

The first and second terms on the left hand side recover the equation found by [13] for
the thermal spreading of differential rotation into the interior using a boundary layer ap-
proximation, and the third term on the right hand side completes the full expression for
thermal spreading in the absence of a boundary layer approximation. The right hand side
contains the global forcing term arising from Euler’s force. Thus the evolution of the angu-
lar momentum in the bulk has two contributions: a transport by meridional flows, which is
the thermal spreading found by [13], and a global extraction of angular momentum by the
spinning down of the frame.

To solve (52), we need to express all boundary conditions in terms of vn(z). The bound-
ary conditions at z = 0 are

T̂ = 0⇒ ∂ṽn
∂z

= 0, (53)

w = 0⇒ ∂3ṽn
∂z3

= 0. (54)

In the porous medium, by contrast, we assume that the dynamics always relax to the steady
state on a very rapid timescale. Hence (40), (41) and (42) hold. The boundary conditions
at z = zcz are then

T̂ continuous⇒ T̂ = 0⇒ ∂ṽn
∂z

= 0, (55)

P̂ continuous⇒ ∂P̂

∂s
continuous⇒ 2Ωṽn = −BnR

τλn
cosh

[
λn

(
zcz
R
− 1

R

)]
+ Pn, (56)

w continuous⇒ 2Ωκ

N2

∂3ṽn
∂z3

= Bn sinh

[
λn

(
zcz
R
− 1

R

)]
, (57)

using (55). Equations (56) and (57) combine to give

ṽn +
R

τλn

1

tanh[λn( zczR −
1
R)]

κ

N2

∂3ṽn
∂z3

=
Pn

2Ω(t)
, (58)

where the right hand side is independent of time if vcz(s) is independent of time in the
spinning down frame, from (41). The true steady state solution with these inhomogeneous
boundary conditions is

v = vcz(s), (59)

so that, if the differential rotation remains constant while the rotation rate of the frame
decays, eventually the forcing from the spin down is negligible compared to the forcing from
the differential rotation, and the angular velocity in the bulk is the same as in the porous
medium. We write

v =
∑
n

dJ0(λn
s
R)

ds
ṽn(z, t) =

∑
n

dJ0(λn
s
R)

ds
v̂n(z, t) + vcz(s), (60)
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where v̂n obeys (52) with homogeneous boundary conditions

∂v̂n
∂z

= 0 at z = 0, z = zcz, (61)

∂3v̂n
∂z3

= 0 at z = 0, (62)

∂3v̂n
∂z3

= −N
2

κ

τλn
R

tanh

[
λn

(
zcz
R
− 1

R

)]
v̂n at z = zcz, (63)

from (53), (54), (55) and (58).
Equation (52) is separable, so we can write

v̂n =
∑
m

Tnm(t)Znm(z), (64)

where the eigenfunctions Znm(z) satisfy

∂2

∂z2

((
λn
R

)2

− ∂2

∂z2

)
Znm(z) = −

(µnm
R2

)2
Znm(z) (65)

for some constants µnm. The operator on the left hand side is self-adjoint with the boundary
conditions (61) - (63). As with the horizontal modes, we can project onto the vertical modes
to find an evolution equation for Tnm(t). Since (65) is an equation with constant coefficients,
we seek solutions of the form

Znm(z) = eσnmz, (66)

and find four solutions for σnm: ±σ1,nm and ±iσ2,nm, where

σ1,nm =
1

R

[
λ2
n

2
+

√
µ2
nm +

λ4
n

4

]1/2

, σ2,nm =
1

R

[√
µ2
nm +

λ4
n

4
− λ2

n

2

]1/2

, (67)

and where µnm can be determined using (63). Applying the boundary conditions (61) -
(63) we finally find

Znm(z) =

[
σ2,nm

σ1,nm

sinσ2,nmzcz
sinhσ1,nmzcz

coshσ1,nmz + cosσ2,nmz

]
. (68)

Projecting (52) onto these eigenfunctions Znm(z) gives

Ṫnm(t) +

(
2Ω(t)µnm
NRλn

)2

κTnm(t) =
Ω̇R2

λ2
n

4

λnJn(λn)

∫ zcz
0 Znm(z)dz∫ zcz
0 Z2

nm(z)dz
≡ Gnm(t), (69)

where Gnm(t) is the projection of the global forcing term in (52) onto the vertical modes.
Equation (69) can be solved using an integrating factor method to give

Tnm(t) = exp

(
−
(

2µnm
NRλn

)2

κ

∫ t

Ω2(t′)dt′

)
× (70)[∫ t

t0

Gnm(t′) exp

((
2µnm
NRλn

)2

κ

∫ t′

Ω2(t′′)dt′′

)
dt′ + T0,nm

]
, (71)
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with

T0,nm = exp

((
2µnm
NRλn

)2

κ

∫ t0

Ω2(t)dt

) ∫ zcz
0 v(t = t0)Zn(z)dz∫ zcz

0 Z2
n(z)dz

. (72)

2.2.5 Physical interpretation of the solutions

As discussed in section 1, there is strong observational and theoretical evidence suggesting
that Ω(t) decays as a power law, with Ω(t) = Ω0(t/t0)−α for some α > 0. In this case,∫ t

Ω2(t′)dt′ =

{
Ω2(t)t
1−2α (α 6= 1

2),

Ω2(t)t log(t) (α = 1
2),

(73)

so we expect fundamentally different behaviour for α 6= 1/2 and α = 1/2. As in (48), the
spin down timescale and the global Eddington-Sweet timescale are

tsd(t) = −Ω(t)

Ω̇(t)
=

t

α
, tES(t) =

(
NR

2Ω(t)

)2 1

κ
=

(
NR

2Ω0

)2 t2α

κt2α0
, (74)

where each of them now explicitly depends on time. We also define the local Eddington-
Sweet time of each mode as

tnmES (t) =

(
NR

2Ω(t)

)2 λ2
n

µ2
nmκ

. (75)

Writing Tnm(t) in terms of these timescales yields,

Tnm(t) =


exp

(
− α

1−2α
tsd
tnm
ES

)[
Gnm(t)tα+1

∫ t
t0
t′−α−1 exp

(
α

1−2α

(
tsd
tnm
ES

)′)
+ T0,nm

]
(α 6= 1

2),

t−tsd/2t
nm
ES

[
Gnm(t)t3/2

∫ t
t0
t′(tsd/2t

nm
ES )

′−3/2 + T0,nm

]
(α = 1

2).

(76)
We see that the behaviour of each mode Tnm(t) depends on both α and the ratio of

timescales
tsd(t)

tnmES (t)
=

1

α

(
2Ω0

NR

)2 µ2
nmκ

λ2
n

t2α0 t1−2α, (77)

which itself changes over time for α 6= 1/2.
If α > 1/2, which corresponds to rapid spin down, (76) shows that the effect of the initial

conditions exponentially increases on a timescale of tsd/t
nm
ES . Although the latter decreases

over time, it remains strictly positive so the solution always blows up. This suggests that
our original assumptions, for example that u.∇u is negligible, must break down in the case
of rapid spin down, and our solution is not valid. If α < 1/2, which corresponds to slow
spin down, the initial conditions always decay exponentially and the system relaxes to a
‘steady’ state, where only the global forcing term and the differential rotation influence the
system.

Finally, if α = 1/2, as suggested by Skumanich’s law [11], we can write

Tnm(t) =
gnmΩ(t)

tsd/2t
nm
ES − 1/2

+ t−tsd/2t
nm
ES

[
T0,nm −

gnmΩ0

tsd/2t
nm
ES − 1/2

t
tsd/2t

nm
ES

0

]
, (78)
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with gnm defined as

gnm ≡
Gnm(t)t

Ω(t)
, (79)

which is independent of time. In this case, tsd/t
nm
ES is also independent of time as seen

from (77), so the initial ratio of these two timescales determines the behaviour. The initial
conditions decay on a timescale of tsd/2t

nm
ES for each mode. Since

tnmES < tES ∀n,m, (80)

then if
tsd
tES
� 1, (81)

we also have
tsd
tnmES
� 1 ∀µnm, λn. (82)

In other words, if tsd � tES then the time dependent solution decays to our previous ‘steady
state’ solution, which is equivalent to

Tnm(t) =
gnmΩ(t)

tsd/2t
nm
ES

. (83)

If, on the other hand, tsd/tES � 1 then there are two classes of modes: small-scale modes
for which tsd/t

nm
ES > 1 and large-scale modes for which tsd/t

nm
ES < 1. When tsd/t

nm
ES > 1,

(78) shows that the initial conditions decay faster than the global forcing term, so that
after some time these small-scale modes are governed only by the global forcing and the
differential rotation. However, when tsd/t

nm
ES < 1, the global forcing term in (78) decays

faster than the initial conditions, so the initial conditions continue to influence the system
even after a long time and the ‘steady state’ solution found in 2.2.2 is not as relevant.

Up to this point in our model, the radiative interior has played no role in the angular
momentum transport, and shear propagates to the centre of the star. However, in the
magnetized model of a stellar interior by [6] (see Figure 3), the shear only propagates
through the tachocline as far as the tachopause, and there interacts with the magnetic
field which keeps the interior in solid body rotation. We now want to incorporate the
angular momentum transport between the tachocline and the interior into our model, to
find out how spin down affects the rotation of the interior below the tachocline. We return
to our cylindrical model of a stellar interior, where the porous medium at the top of the
cylinder still corresponds to the convection zone, where the ‘bulk of the fluid’ corresponds
to the stably stratified, non-magnetic tachocline only, and where we now add an additional
‘ingredient’ to model the interior.

3 Unstratified Ekman layer spin down

In the model by [6], angular momentum transport between the tachocline and the interior
is caused by magnetic stresses within a thin boundary layer (the tachopause). There, the
primordial magnetic field interacts with the flows in the tachocline, and helps transmit
the spin-down information from the outer layers downward. Since magnetic torques are
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w = 0
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Ω(t)

s = R

z = 0

z = zcz

z = 1

N = 0, κ = ∞

N = 0
ν = 0

Porous
v = 0

z

z = z0δE

Ωb(t) Ωb(t)

Figure 7: A diagram of the adjusted cylindrical model set up. The region from z = 0 to
z = z0 (light blue) is a solid base which is free to rotate at angular velocity Ω̂b(t) in the
rotating frame. The region from z = z0 to z = zcz is filled with unstratified fluid, and
the viscosity ν is negligible except for near the base. There is a thin boundary layer above
the base, with thickness δE , where the viscous forces become dominant. The region from
z = zcz to z = 1 (yellow) is filled with a porous medium which has zero angular velocity in
the rotating frame.

intrinsically nonlinear, to aid our conceptual understanding, we first consider the case of
viscous torques.

Our model set up is very similar to the model investigated in the previous section. The
bottom of the cylinder now hosts a solid inner cylinder of radius R and thickness z0, see
Figure 7, shaped like a hockey-puck. The density of the ‘hockey-puck’ is same as the density
of the fluid, and it is free to rotate at an angular velocity Ω̂b(t) in the rotating frame. Our
goal is to find Ω̂b(t).

We consider as a first simplified system the unstratified case, where the bulk (from
z = z0 to z = zcz) is filled with unstratified fluid. For simplicity we assume that there
is no differential rotation of the porous medium, although the differential rotation can be
included without altering the steps of the calculation significantly. The torque between
the fluid and the hockey-puck is communicated through a thin (Ekman) boundary layer of
thickness δE at z = z0. In this layer viscosity becomes important, and we can no longer
neglect the viscous terms in the momentum equation.

In the bulk (z0 < z < zcz), we look for a ‘steady state’ solution as in section 2.2.2,
which is now known to be a valid approximate solution as long as the spin down rate is slow
enough. For z > z0 + δE , the equations of motion are the same as in section 2.2.2, setting
T̂ = 0 since the bulk is unstratified. Equation (20) becomes

∂P̂

∂z
= 0⇒ P̂ = P̂0(s)⇒ v = v0(s), (84)
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and, as in the previous ‘steady state’ solution,

u = − Ω̇

2Ω
s⇒ w = w0(s) +

Ω̇

Ω
(z − (z0 + δE)), (85)

where w0(s) is the vertical velocity at the top of the viscous boundary layer (at z = z0 +δE).
To find an evolution equation for Ω̂b(t), we begin by writing the complete angular

momentum conservation equation as

∂

∂t
(sv + s2Ω) +∇.(uΩs2 + viscous terms) = 0. (86)

Assuming that the tachocline (i.e. the bulk) is in ‘steady’ state while retaining the time
dependence of the interior implies that the thermal spreading across the bulk is faster than
angular momentum transport across the interior, which we will check a posteriori.

We then integrate (86) over the volume of the hockey-puck and the boundary layer. The
viscous terms are negligible at the top of the boundary layer, and we assume that they are
also negligible at the side wall in the boundary layer:∫ 2π

0

∫ z0+δE

0

∫ R

0

∂

∂t
(sv + s2Ω) +∇.(uΩs2 + viscous terms)dV = 0, (87)

⇒ z0
R4

4

(
dΩ̂b

dt
+ Ω̇

)
+

∫ R

0
w0(s)Ωs3ds+R

∫ z0+δE

z0

u(s = R)ΩR2dz = 0, (88)

using the fact that δE � z0 (see section 3.1).
There is no flow into the hockey-puck, so the amount of fluid going into the boundary

layer through the surface z = z0 + δE must be the same as the amount of fluid coming out
through the side, by conservation of mass

2π

∫ R

0
w0(s)sds = −2πR

∫ z0+δE

z0

u(s = R)dz. (89)

Combining this with (88) gives

dΩ̂b

dt
= −Ω̇ +

4Ω

R4z0

(
R2

∫ R

0
w0(s)sds−

∫ R

0
w0(s)s3ds

)
. (90)

In order to proceed, we need to determine w0(s). In order to do this, we now investigate
the dynamics of the boundary layer in more detail.

3.1 Boundary layer thickness

In the boundary layer, the viscous term cannot be neglected and becomes an integral part
of the momentum balance. Assuming that the boundary layer is thin, so that ∂/∂z � ∂/∂s,
and assuming a ‘steady state’, we have

2Ω× u + Ω̇× r = −1

ρ
∇P̂ + ν

∂2u

∂z2
. (91)
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The three components of the momentum equation (91) are

−2Ωv = −1

ρ

∂P̂

∂s
+ ν

∂2u

∂z2
, (92)

2Ωu+ Ω̇s = ν
∂2v

∂z2
, (93)

0 = −1

ρ

∂P̂

∂z
+ ν

∂2w

∂z2
. (94)

Combining these three equations with conservation of mass gives

−∂v
∂z

=
ν2

4Ω2

∂5v

∂z5
. (95)

Let δE =
√
ν/2Ω and Z = (z − z0)/δE = O(1) in the boundary layer. Then

∂v

∂Z
+
∂5v

∂Z5
= 0 (96)

⇒ v = v0(s) +

3∑
n=0

bn(s)eλnZ , λn = e(2n+1)iπ/4. (97)

v → v0(s) as Z →∞, where v0(s) is the azimuthal velocity in the bulk, so b3 = b4 = 0, and
v ∈ R, so b1 = b2. Finally, at Z = 0, which is the top of the hockey-puck, v = sΩ̂b(t). Using
all this information uniquely specifies the boundary layer solution to be:

v(s, Z) = v0(s) + (Ω̂bs− v0(s))e−Z/
√

2 cos

(
Z√
2

)
. (98)

3.2 Jump condition

The hockey-puck rotates with angular velocity Ω̂b(t) in the rotating frame, which is as yet
unknown. Integrating the angular momentum equation (93) across the viscous boundary
layer gives∫ z0+δE

z0

sudz +
Ω̇

2Ω
s2δE =

ν

2Ω

[
∂v

∂z

]z0+δE

z0

=
ν

2Ω

1

δE

[
∂v

∂Z

]Z→∞
Z=0

=
δE√

2
(Ωbs− v0(s)). (99)

Using conservation of mass and the boundary condition w = 0 at z = z0, we find

1

s

∂

∂s

∫ z0+δE

z0

sudz = −
∫ z0+δE

z0

∂w

∂z
dz = −w(z0 + δE) ≡ −w0(s), (100)

so that, combining (99) and (100),

w0(s) =
Ω̇

Ω
δE −

δE√
2

1

s

∂

∂s
(Ωbs

2 − sv0(s)). (101)

We now know the vertical velocity profile w0(s) in terms of the differential rotation v0(s)
in the bulk of the fluid. The latter still remains to be determined, by matching the bulk
solution to the porous medium.
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The solutions in the porous medium are found exactly as in section 2, and we consider
the case where vcz(s) = 0,

w =
∑
n

J0

(
λn

s

R

)
Bn sinh

[
λn

(
z

R
− 1

R

)]
, (102)

u =
∑
n

dJ0(λn
s
R)

ds

BnR

λn
cosh

[
λn

(
z

R
− 1

R

)]
, (103)

1

ρ
P̂ =

∑
n

J0

(
λn

s

R

)[
−BnR
τλn

cosh

[
λn

(
z

R
− 1

R

)]]
. (104)

We can then match w and P̂ at z = zcz to find the solutions for w0(s), P̂0(s) and v0(s) in
the bulk:

1

ρ
P̂0(s) =

∑
n

J0

(
λn

s

R

)[
−BnR
τλn

cosh

[
λn

(
zcz
R
− 1

R

)]]
(105)

⇒ v0(s) =
1

2Ω

∑
n

dJ0(λn
s
R)

ds

[
−BnR
τλn

cosh

[
λn

(
zcz
R
− 1

R

)]]
, (106)

∑
n

J0

(
λn

s

R

)
Bn sinh

[
λn

(
zcz
R
− 1

R

)]
= w0(s) +

Ω̇

Ω
(zcz − (z0 + δE)), (107)

from (85). Combining these equations with the jump condition (101) gives an equation for
v0(s),

v0(s) =
∑
n

2J1(λn
s
R)

λnJ1(λn)

[
2δEΩ̂b −

√
2 Ω̇

Ω(zcz − z0)

2
√

2Ωτ tanhλn( 1
R −

zcz
R ) + δE

R λn

]
, (108)

which is similar to (47) in section 2, with no stratification (N = 0), but now with two extra
terms which depend on δE and Ω̂b. Using (108) in (101) to find w0(s), (90) finally yields
the desired evolution equation for Ω̂b(t):

dΩ̂b

dt
= −Ω̇

zcz
z0
− 32

∑
n

1

λ4
n

−Ω̇
(
zcz
z0
− 1
)

+
√

2δE
Ω̂bΩ
z0

1 + δEλn
2
√

2RΩτ tanhλn( 1
R
− zcz

R
)

 , (109)

Note that if there is no viscous boundary layer, so δE = 0, it can be shown using the
identity 32

∑
n 1/λ4

n = 1 that dΩ̂b/dt = −Ω̇. In other words, the hockey-puck continues to
rotate at its initial angular velocity as the frame slows down, since the fluid cannot exert
any torque on it. However, if δE > 0 then the evolution of Ω̂b is affected by the boundary
layer. Figure 8 shows a plot of Ω̂b/Ω with time for arbitrary parameters, starting with initial
condition Ω̂b(t0) = 0 and assuming that the frame is spinning down as Ω(t) = Ω0

√
t0/t.

The ‘steady’ solution, where dΩ̂b/dt is neglected, is also plotted. We see that Ω̂b relaxes to
the ‘steady’ solution on the Ekman timescale across the thickness of the hockey-puck,

tν =
z0√
νΩ

. (110)

This is consistent with assuming a ‘steady’ state for both the hockey-puck and the bulk, so
in fact we did not need to consider the time-dependence of the interior in (86)-(88). The
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Figure 8: A plot of Ω̂b with time (blue solid line) and the corresponding ‘steady’ solution
(red dashed line), for arbitrary parameters, with initial condition Ω̂b(t0) = 0 and with a
spin-down rate of the frame Ω(t) = Ω0

√
t0/t. Ω̂b relaxes to the ‘steady’ state on the Ekman

timescale.

‘steady’ solution decays with time so that the rotation rate of the base (relative to that of
the frame) decreases with time as Ω(t) decreases. In other words, the lag between the two,
given by Ω̂b, also decreases over time.

4 Unstratified magnetic spin down

4.1 Solution in the tachocline and tachopause

In a solar-type star, we expect that the torque acting on the interior is due to magnetic
stresses rather than viscous friction. We now consider a similar set up to that of section 3
where the hockey-puck is replaced by a fluid held in rigid rotation by a confined large-scale
magnetic field, in the region from z = 0 to z = z0, and where the Ekman boundary layer is
replaced by a magnetic ‘tachopause’ at z = z0. Assuming that the magnetic field does not
exert a torque at the side wall of the cylinder in the boundary layer and that the thickness of
the magnetic boundary layer δ is small compared with zcz−z0 or z0, the evolution equation
for Ω̂b is the same as with the viscous boundary layer (90). The difference between the
magnetic and the viscous cases comes from the angular momentum transport across the
boundary layer, which we now discuss.

Wood et al. [15] studied a system very similar to the Gough and McIntyre model [6], but
in Cartesian coordinates. They found that the thickness of the magnetic boundary layer is
given by

δ =

√
2πρηΩR2

B2
0

, (111)

assuming a horizontal magnetic field with strength B0 at the bottom of the magnetic bound-
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ary layer. They also found a jump condition relating the vertical and ‘azimuthal’ velocities
in the tachocline. This jump condition takes exactly the same form as the Ekman jump
condition in Cartesian coordinates, namely:

w0(x) =
1√
2
δE
∂v0(x)

∂x
(Ekman) and w0(x) =

π

4
δ
∂v0(x)

∂x
(magnetic), (112)

where x is the latitudinal direction and v0 is the azimuthal velocity, and where Ω̇ = Ω̂b = 0
in the Wood et al. model. Hence, by analogy with the way the Cartesian Ekman jump con-
dition can be transformed into cylindrical coordinates, it can be shown that, in cylindrical
coordinates, the tachopause jump conditions including the effect of spin-down are:

w0(s) =
Ω̇

Ω
δ +

π

4
δ

1

s

∂

∂s

(
sv0(s)− Ω̂bs

2
)
. (113)

From section 3, we have the solutions in the bulk and in the porous medium, and using this
jump condition, we now find

v0(s) =
∑
n

2J1(λn
s
R)

λnJ1(λn)

[
2πδΩ̂b − 4 Ω̇

Ω(zcz − z0)

8Ωτ tanhλn( 1
R −

zcz
R ) + π δ

Rλn

]
, (114)

which, as in the case with a viscous boundary layer, is similar to (47) with N = 0, but now
with two extra terms which depend on δ and Ω̂b. Equation (90) becomes

dΩ̂b

dt
= −Ω̇

zcz
z0
− 32

∑
n

1

λ4
n

−Ω̇
(
zcz
z0
− 1
)

+ π
2 δ

Ω̂bΩ
z0

1 + πδλn
8RΩτ tanhλn( 1

R
− zcz

R
)

 . (115)

This evolution equation for Ω̂b depends on δ, z0 and B0. If we assume that z0 and B0 are
known, we get δ from (111) and can then evolve Ω̂b(t) as in section 3.

4.2 Where is the tachopause?

Unfortunately, by contrast with section 3, z0 is not actually known a priori - it results from
the nonlinear interaction of the field and the downwelling flows. However, while the full
solution needs fully nonlinear calculations, we can make an order of magnitude estimate
using the magnetic induction equation as in [6] and [15].

The steady magnetic induction equation is, from (3),

0 = ∇× (u×B− η∇×B), (116)

where B is the magnetic field and η is the magnetic diffusivity. We need the vertical velocity
at the top of the magnetic boundary layer to balance the magnetic field diffusion for the
magnetic field to remain confined. This implies w ≈ η/δ. We cannot choose w0(s) = η/δ ∀ s,
as the s-dependence of w0(s) is determined by the solutions above the boundary layer.
Instead, we set the average of w to be η/δ, so that∫ R

0
sw0(s)ds =

R2

2

η

δ
. (117)
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(a) (b)

Figure 9: (a) A plot of Ω̂b with time and (b) a plot of z0 with time, with ρ = 1 and
B2

0 = 100π.

Equation (113) becomes

η

δ
= − Ω̇

Ω
(zcz − (z0 + δ)) +

∑
n

32

λ2
n

 Ω̇(zcz − z0)− π
2 δΩ̂bΩ

8Ω + πδλn
Rτ tanhλn( 1

R
− zcz

R
)

 . (118)

Equations (115) and (118) are two equations for the two unknowns, Ω̂b and z0, so the
system is now fully determined in terms of the internal field strength B0. Figure 9(a) shows
a plot of Ω̂b with time, assuming a constant B0. As in Figure 8, Ω̂b initially increases
rapidly from zero, as in section 3, then starts to decrease with time, so that the lag in
the angular velocity between the magnetically dominated region (z < z0) and the porous
medium decreases over time. The corresponding depth of the magnetically dominated
region, z0 (shown in Figure 9(b)), increases with time as Ω̂b and Ω decrease. However, to
find the long-time behaviour of Ω̂b and z0, we would also need to consider how B0 changes
with time, as this will also affect how z0 and δ, and therefore also Ω̂b, change with time.

5 Summary and future work

We have proposed a solution for the spin down of a stratified star. Although we have
modelled it as a cylinder with a porous medium at the top, we now discuss our results in
the context of real stellar interiors. We first looked at non-magnetic stellar radiative zones.
We found that there exists a ‘steady state’ solution. As in Bretherton and Spiegel, these
solutions exhibit a lag in the angular velocity between the convection zone and radiative
zone below, with the latter always rotating faster than the former. If stratification is very
weak, this lag is uniform with depth and agrees with the result from the spherical model
found by [1], up to a geometrical factor. When the radiative zone is strongly stratified, the
lag increases with depth because the thermal wind can maintain a larger vertical shear.

We have also found time-dependent solutions. The evolution of the angular momentum
in the radiative zone has contributions from both transport by meridional flows, through the
thermal spreading found by [13] for the propagation of differential rotation into the interior

23



of a star, and global angular momentum extraction by the spin down of the frame. We have
found that Ω(t) ∼ t−1/2, which is the case for solar-type stars (see [11]), is a special case
for the time-dependent solution. A more rapid spin-down rate cannot be accommodated
by a laminar solution, while a slower spin-down rate implies that the system can rapidly
converge to the ‘steady state’ solution described above. For Ω ∼ t−1/2, the initial conditions
decay with time as a power law, rather than the exponential decay found for Ω(t) ∼ t−α

with α < 1/2.
We then studied the spin down of an unstratified magnetic star. We assume that the

radiative interior is held in rigid rotation by a large-scale magnetic field, separated by a
non-magnetic tachocline. We found that the spin-down of the frame is transmitted to
the magnetically dominated region due to magnetic friction in a magnetic boundary layer
separating the tachocline from the interior. The lag between the convection zone and the
interior decreases with time, and our solutions are consistent with a ‘steady’ state in both
the bulk of the fluid and the interior.

The next step is to combine the stratified and magnetic solutions to find a solution,
in our cylindrical model, for the spin down of a stratified, magnetic star. In addition, we
need to model the interior magnetic field in more detail and to look at how the magnetic
field decays with time, and how this affects and is affected by the depths of the tachocline
and magnetic boundary layer. It would also be interesting to solve an equivalent spherical
model (as in [1] but with a stratified interior) numerically, which would represent the whole
star, and compare this solution to our solution for a cylinder which represents the polar
regions of the star.
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