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1 Introduction

1.1 Dense granular flow

Predicting the dynamics of dense granular flow plays an important role in engineering and
geophysical flow which involve the transport of granular materials such as for instance
cereals, rocks or sand. In the past decade, most of the studies have focused on the flow of
granular material on inclined surface due to the obvious applications in rock avalanches,
landslides and pyroclastics flows [14, 7] (for a review, see e.g. [6]). However, the bulldozing
of granular materials, i.e. the action to push the granular material with a blade on a flat
plane, has not received so much attention. Indeed, it is not straightforward to build an
experimental setup which allows the study of the steady dynamics of bulldozing granular
material in a reproducible way. Moreover, the theoretical description of such flow remains
complicated as the rheology of dense granular flow is difficult to capture and until quite
recently there was no acceptable continuum model for a granular material [9].

In this project, we explore a problem of granular flow on a plane layer: the rotating bull-
dozing of a sandpile. Starting from an initial sandpile, we use a rotating blade to transport
this sandpile and characterize the motion of the granular materials and the shape of the
dune built against the blade. The use of a rotating blade instead of a straight blade with a
rectilinear motion allows the system to be recirculated and thereby observing the dynamics
over long times. In addition, the variation of speed along the blade potentially allows for
richer dynamics. Therefore, the aim of this work is to provide the first experimental results
with a rotating bulldozer and characterize the key features of the dynamics.

1.2 Bulldozer-related problems

Surprisingly, there are relatively few previous experimental modeling studies of problems
of bulldozing sands. The earliest study by Bagnold [2] considers a 2D situation of a plate
immersed in a layer of sand of given thickness. Then the plate is pulled at a given force
and the amount of material in the dune keeps increasing at the same rate (see figure 1.a).
During the build-up of the dune, the velocity of the blade pulled at a given force exhibits
some oscillations due to the episodic avalanching of the dune. From laboratory experiments
Bagnold, [2] provided a qualitative picture of the shape and the flow in the dune during the
build-up (figure 1.b). However, none of these experiments consider the steady regime where
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the amount of granular material in the dune does not change. In addition, no quantitative
measurement of the shape of the dune or the velocity of the sand has been provided. More
recently, some studies focused on the “song of dunes” problem [5, 1]. A possible experimental
setup to measure the loud sound emitted by the motion of an avalanche is based on a rotating
blade pushing a layer of sand. Here, the dynamics is also non-steady and the quantitative
shape of the dune built by the motion of the blade has not been characterized. Another
relevant situation which has been studied over the past few years is a wheel or an inclined
plow blade with a given angle of attack. The wheel or the blade is free to move vertically
in response to the granular material and after few passages on the granular bed a pattern
develops on the road which are called washboard ripples [15, 13]. Note that this situation is
not used to push or drag granular materials contrary to the bulldozer problem and therefore
the dynamics of the sand remains different.

However, none of these studies provide quantitative experimental results of the shape of
the dune carried by a bulldozer and especially in a rotating bulldozer where the rotation is
susceptible to bring an interesting new dynamics because of the difference of normal velocity
along the blade. Here, in addition to our experiments and the quantitative description of
the shape of the dune, we will consider the “µ(I)” rheology to describe the dense granular
flow as an incompressible liquid with no variation of volume fraction during the dense flow
[9]. Such a rheology has been used with success to describe the flow of granular layers on
inclined surfaces [6]. In this paper, we will also use a shallow water model as it may allow
us to describe the dynamics observed.

1.3 Constitutive law for dense granular flow: the µ(I)-rheology

The description of dense granular flow through the conservation of momentum and mass
requires a continuum description of the material. When granular material flows like a liquid,
the local tangential stress τ and the local normal stress p are found to satisfy

τ = µ(I) p with I =
γ̇ d√
p/ρ

(1)

where µ(I) is an analogue to a coefficient of friction, while ρ and d are the particle density
and diameter. Note that I is the inertial number and represents the ratio of an inertial time
scale

√
d2 p/ρ and the shear deformation time scale γ̇−1 [4, 12]. A constitutive relation, the

so-called µ(I)-rheology, has been suggested based on experimental and numerical results
(see e.g. GdR Midi [12]):

µ(I) = µ1 +
(µ2 − µ1) I
I + I0

. (2)

This coefficient interpolates a friction coefficient between µ1 at I = 0 and µ→ µ2 for I →∞.
I0, µ1 and µ2 depend on the material considered (see table 1). Jop et al. have provided
a 3D generalization of this constitutive law and successfully compared it to experiments
on granular flows on a pile between rough sidewalls [8, 9]. The granular material is still
consider as an incompresible fluid with an internal stress tensor σij given by:

σij = −p δij + τij . (3)
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Glass beads Sand

µ1 0.38 0.51
µ2 0.64 0.93
I0 0.279 0.8

Table 1: Typical values from the literature for the coefficients to use in the µ(I)-rheology
[9].

(a) (b)

Figure 1: Schematic of a bulldozed sand heap: (a) shear over a basal shear plane; (b)
internal flow (from [2]).

τ is the shear stress which satisfies:

τij = η(|γ̇|, p) γ̇ij (4)

where γ̇ij is the strain rate tensor given by γ̇ij = ∂ui/∂xj + ∂uj/∂xi and |γ̇| =
√
γ̇ij γ̇ij/2

is the second invariant of γ̇ij . Here p is an isotropic pressure and η(|γ̇|, p) is an effective
viscosity. µ(I) is given by the relation (2).

The µ(I)-rheology is purely phenomenological but has shown very good agreement with
experiments and numerical simulations in different configurations. This model has been
implemented in numerical simulations and a good prediction of transient situations such as
the granular column collapse has been found [10, 11]. Thoughout this report, we will thus
use the µ(I)-rheology in the analytical study.

The remainder of this report is organized as follows: in section 2 we describe the exper-
imental apparatus and in section 3 the phenomenology of the problem. Experiments in a
rotating bulldozer exhibits a dynamics which can be separated into two effects: a build-up
of the dune perpendicular to the blade over short time-scales and a non-symmetric lateral
spreading of the dune over longer time scales. Thus, in section 4 we present the experi-
mental results for the shape of the dune at a given radial position and a simple model is
proposed to account for the observed profile. Section 5 is devoted to the lateral spreading
of the dune. The final section 6 contains a general discussion and conclusions.
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Figure 2: (a) Schematic illustration and (b) photo and of the experimental setup.

2 Experimental setup

2.1 The rotating bulldozer

The experimental apparatus, shown in Fig. 2, consists of a rotating table of 2.2 m diameter
which rotates around its axis at an angular velocity Ω. The rotation rate of the table lies
in the range 0.05 to 2 rad.s−1.

The surface of the rotating table is coated with sandpaper to suppress slipping of par-
ticles on the surface of the table. In the absence of sandpaper, the particles slip on the
surface of the table and the structure of the flow is different: the avalanching dune becom-
ing buffered from the upstream static layer by a compressing, sliding layer of grain (see
appendix A). In this report, we only focus on the no-slip boundary conditions.

A blade consisting of a flat vertical board, and fixed in the laboratory frame, is secured
above the rotating table and acts as a rotating bulldozer (see figure 2(a) & 2(b)). The blade
consists of a 1.50 m long and 40 cm height wood plate to which we attach a plywood plate
coated with sandpaper to ensure no-slip boundary conditions on the blade. The blade is
perpendicular to the surface of the rotating table and is held at a given height around 1
cm. It leads to the presence of an underlying layer of granular materials with a constant
thickness. Prior to any experiments, we add granular material on the table which is set in
rotation. The granular material build up a bed atop the table. It fills up the gap and its
surface is smoothed out by the blade. After a sufficiently long time, we obtain a layer of
constant thickness with compaction which does not vary appreciably between two successive
experiments. Then, a sandpile is formed by slowly pouring grains onto a selected point on
the surface of the existing uniform bed, producing a nearly conical mound with a slope
given by the static angle measured previously. We define the initial position of the sandpile
as the coordinate of its center, i.e. the radius r0 from the center of the table where the
height of the sandpile is maximum (see figure 2(a)). In the present study, we have used
r0 = 15, 25 or 35 cm. Typical parameters used in this study are summarized in table 2.
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(a) (b)

Figure 3: (a) Photograph of the four granular materials. From left clockwise; aquarium
sand (d = 0.9 mm), fine glass beads (d = 0.1 mm), coarse grit (d = 3 mm) and spherical
glass beads (d = 1 mm). Only results for aquarium sand and spherical glass beads are
presented in this report. (b) Size distribution of the coarse grit (white) and the aquarium
sand (grey).

Note that in the present bulldozer experiment, because the blade is held at a constant
height, no washboard instability is observed [3, 13, 15].

Rotation rate 0.05− 2 rad.s−1

Radius of the blade 0.7 m

Diameter of the particles 0.1 mm - 3 mm

Mass of the dune 0.1 – 1 kg

Initial position of the dune 15, 25
(radially from the center of the table) & 35 cm

Table 2: Range of parameters used in the experiments.

2.2 Granular materials

In this report we present results of bulldozer experiments for different granular media as
shown in figure 3(a):
(i) Aquarium sand, of irregular shape, but overall mean diameter of approximately 0.9 mm.
(ii) Spherical fine glass beads (ballotini) of mean diameter 0.1 mm.
(ii) Spherical glass beads (ballotini) of mean diameter 1 mm.
(iv) Coarse grit, of irregular shape, but overall mean diameter of approximately 3 mm.
The size of the aquarium sand and coarse grit particles have been estimated by direct
visualization and postprocessing of the picture. Their resulting size distribution is given in
figure 3(b). Assuming that the distribution of the particle size can be fitted by a gaussian
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distribution, we obtain a distribution of the equivalent radius r =
√
A/π given by

N = N0 exp

[
−(r − rmoy)2

2σ2

]
. (5)

For example, for the aquarium sand the mean radius of the particle is rmoy ' 0.46 mm and
the mean deviation around σ ' 0.075 cm (figure 3(b)). The size distribution of the glass
beads were directly obtained from the manufacturer: the size of the fine glass beads1 ranges
in d = 0.09− 0.15 mm and the other glass beads2 (ballotini) have a size d = 0.8− 1.2 mm.

Then, we can characterize, for the two granular media used in this report, the angle of
repose, θr, which measures how layers of the medium slide over one another. To estimate a
static angle of friction, we make a sandpile of a granular material and measure the typical
slope. Rough estimates give an angle of θr = 22 ± 2̊ for the 1 mm glass beads and
θr = 44 ± 4̊ for the aquarium sand . Note that all the experiments were performed in
an air-conditioned laboratory maintained at 21̊ C with humidity controlled. The granular
materials were kept dry as moistening the materials, even by a small amount, may have
lead to different results.

3 Initial conditions and phenomenology

The initial sandpile is set on the table as described in section 2.1. For each granular material,
different initial mass in the sandpile had been considered which leads to different radius and
height of the initial sandpile. In addition, the slope of the sandpile is given by a static angle
of friction estimated previoulsy. Thus, knowing r0 the initial radial position of the center of
the sandpile and m the mass of granular material in the sandpile allow us to define entirely
the system.

The table is then set in rotation, accelerating to a prescribed rotation rate, Ω, or rotation
period, Trot, in typically less than 2 seconds (well before the sandpile hits the blade). Thus,
the collision of the sandpile and the subsequent dynamics take place at constant rotation
velocity. The collision forces a rearrangement of the sandpile into an avalanching dune that
is pushed forwards by the blade (figure 4.b). The rearrangement typically takes place in
two phases. First, there is a relatively rapid phase (spanning times of order 0.1Trot) in
which the dune builds up perpendicular to the blade and adjusts into a quasi-steady shape
in that direction (figure 4.c). Thereafter, a slower phase ensues (lasting times of order Trot)
in which the dune spreads laterally and shifts radially outwards (figure 4.d).

In the following, we define our system using the coordinate system (x, y, z) (see figure
5.a). The plane (xz) is the plane perpendicular to the blade (see figures 5.a and b). The
plane (yz) denotes the plane defined by the blade (see figures 5.a and c). When the table
is set in rotation, the center of the sandpile r0 will hit the blade at the coordinate r0 = y0.
Thus in the following we only refer to y0 which is the location along the blade where the
center of the sandpile hits the blade. In all experiments presented in this report, the height
measurement of the dune were done at a distance y which corresponds to the location where
the maximum of the dune hits the blade, i.e. y = y0. Experimental observations show that

1#8 from Kramer Industries
2A-100 from Potters Industries

6



Figure 4: Four successive pictures of the bulldozing sandpile (a) Initial sandpile showing
the direction of the underlying layer (red arrow) while the blade is fixed in the laboratory
frame. (b) Collision of the sandpile against the blade and quick organization of the dune.
(c) Build-up of a quasi-steady structure at a given radius in a short timescale and lateral
spreading of the dune (direction indicated by the blue arrow). (d) The slope of the dune
at a given radius remains similar but the dune is still subject to lateral spreading. In all
pictures, the red laser line is at a constant radius and shows the topography of the dune at
this radius.
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the time scale Tx ∼ 0.1Trot to build-up the dune perpendicularly to the blade, i.e. in the
plane (xz), is shorter than the typical time scale Ty ∼ Trot for the lateral spreading of the
dune in the (yz) plane. Therefore, we split our discussion of the dynamics into two parts.
In the next section, we will consider the build-up of a dune perpendicular to the plane and
study the typical profile of the dune in the quasi-steady regime that results. Then, we will
consider the lateral spreading of the dune using an approximate model for the slope of the
dune.
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Figure 5: (a) Schematic of the bulldozed dune with the system of coordinates (x, y, z). (b)
2D perpendicular slice in the (xz) plane at a given y-value defining the height h(x, y, t),
which reaches a maximum H(y, t) near the bulldozer blade. (c) Front view of the dune in
the plane (yz), showing a typical profile of the dune height on the bulldozer blade H(y, t).
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4 Dynamics of the dune perpendiculary to the blade

In this section, we consider the profile of the dune in a (xz) plane perpendicular to the
bulldozer blade. The non-intrusive method to measure the profile of the dune as a function
of the distance to the blade is described in appendix B.

4.1 Experimental observations

Prior to any systematic study, we verify that our experiments are fairly reproducible. Us-
ing the aquarium sand, we run two experiments with the same initial conditions, y0 = 25,
m = 1 kg and the same rotation rate Ω = 0.05 rad/s. Then, we measure the profile of
the dune every 5 seconds at a given radial position. The results for two different experi-
ments are illustrated in figure 6 and confirm that the shape of the dune at a given time
is fairly reproducible even if the agreement is not perfect. There are two main sources of

!"#$

Figure 6: Profile of the dune in a (xz) plane perpendicular to the blade at y = 25 cm
for y0 = 25, m = 1 kg, Ω = 0.05 rad/s. The profiles are taken every 5 seconds (and the
direction of time is given by the arrow). The red line and the blue square are two different
experiments.

disagreement: the measurement method presented in appendix B has uncertainties around
±2 mm which already leads to a slight mismatch. In addition to this uncertainties, other
disagreement arise because of direct experimental error. For example, the mass of particles
to build an initial sandpile is fixed, but the way the particles are packed into the sandpile
can be different. Furthermore, the exact position of the initial sandpile can also slightly
vary by a few millimeters. Nervertheless, the comparison of two experiments shows that
the errors measuring the profile at a given time is much smaller than the profile itself. For a
dune against the blade of typical size between 5 and 10 cm, an estimate of the uncertainties
would be of the order of a few millimeters. However, we have to notice that the measure-
ment of the profile of the dune for the first few millimeters against the blade is difficult to
achieve and therefore the description of the shape of the dune is better along the slope and
in the junction with the underlying layer.

Experiments varying the initial mass of aquarium sand in the sandpile for a given initial
position y0 = 25 and rotation rate Ω = 0.05 rad/s are shown in figures 7(a), (b), (c) &
(d). The size of the initial sandpile depends on the amount of granular material. After a
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sufficiently long time to obtain a quasi-steady regime, the dune has a shape similar to a
triangle. The size of the dunes are different between all these experiments but their shape
seem to remain the same for all mass. It is confirmed by a rescaling of the profile: for all
experiments (figure 7(a), (b), (c) & (d)) we rescale the distance by the maximum height
H(y, t) (for given y) of the dune at the time considered (which height naturally changes with
time). It leads to a nice collapse on a single curve at long time (see figure 7(e)). Therefore,
the shape of the dune in the (xz) plane, for low rotation rates seems to be independent of
the size of the dune at the scale of our experimental setup.

Note that the results presented in figure 6 and 7 are typical of all the granular material
considered in this study. In addition, the gap thicknesses or the low rotation rate does not
have a noticeable influence on this shape.

From the rescaled profile, one can consider that the slope will be well fitted by a straight
line with an angle equals to the dynamic angle. However figure 7(f) shows that although
the shape looks like a dune with a straight slope, there is a slight deviation at the tip (i.e.
the furthest distance from the bulldozer blade) of the dune.

4.2 Simple model

4.2.1 Mathematical formulation

We consider granular flow in a slice perpendicular to the bulldozer blade at a given radial
position y (see figure 5(b)). Because the time-scale of the motion in the x and in the
y directions are different, we assume that in a quasi-steady regime the flow remains two-
dimensional in the x direction. We denote (u(x, z, t), w(x, z, t)) as the velocity field, p(x, z, t)
is the isotropic pressure and τ is the deviatoric stress tensor. The fluid is assumed to be
incompressible. The conservation of mass and momentum leads to the governing equations
in cartesian coordinates:

ux + wz = 0, (6)

ρ (ut + uux + w uz) = −px + ∂x τxx + ∂z τxz, (7)

ρ (wt + uwx + wwz) = −pz − ρ g + ∂x τxz + ∂z τzz. (8)

We use the µ(I) rheology [9] as a constitutive law for the granular material. For the present
2D situation it writes:

τ = p µ(I)
γ̇

|γ̇|
, γ̇ =

(
2ux uz + wx

uz + wx 2wz

)
, |γ̇| =

√
4ux2 + (uz + wx)2, (9)

with

µ(I) = µ1 +
(µ2 − µ1) I
I + I0

, I =
|γ̇| d√
p/ρ

(10)

In addition, the granular material has to satisfy a no-slip condition on the bottom, at z = 0:

u(x, 0, t) = w(x, 0, t) = 0, (11)
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Figure 7: Topography of the bulldozed dune at the radial position y = 25 cm for Ω = 0.05
rad/s, y0 = 25 cm and (a) m = 1000 g; (b) m = 750 g; (c) m = 500 g; (d) m = 250 g; (e)
Rescaled topography of the dune for all the mass considered in (a), (b), (c) and (d). (f)
Close-up view of the shape of the dune; the black dotted-line is a straight line. Time go
from the right to the left and are taken every 10 seconds.

and is stress-free at its surface, z = h(x, t), leading to:

1√
1 + hx

2

(
τxx − p τxz
τxz τzz − p

) (
−hx

1

)
=

(
0
0

)
. (12)

Note that the continuity equation (16) can be averaged over the depth of the dune to obtain

ht +
∂

∂x

(∫ h

0
udz

)
= 0. (13)
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4.2.2 Dimensionless equations

Considering the different variables of the problem, we can make the equations dimensionless
by introducing the new variables:

x = L x̂, z = H ẑ, h = H ĥ, u = U û, w =
H

L
Uŵ, t =

L

U
t̂, (14)

p = ρ g H p̂, τij = ρ g
H2

L
τ̂ij (15)

where L and H denote the characteristic fluid extension and depths respectively (see figure
5(b)). U is a velocity scale, typically the speed of the bulldozer. Then, dropping the hat,
the previous equations (6)-(8) can be rewritten as

ux + wz = 0, (16)

ε F 2 (ut + uux + w uz) = −ε px + ε2 ∂x τxx + ε ∂z τxz, (17)

ε2 F 2 (wt + uwx + wwz) = −pz − 1 + ε2 ∂x τxz + ε ∂z τzz, (18)

where ε = H/L is the aspect ratio of the dune and F = U/
√
g H is the Froude number.

The constitutive model of the granular material is given by

τ = p µ(I)
γ̇

|γ̇|
, γ̇ =

(
2 ε ux uz + ε2wx

uz + ε2wx 2 εwz

)
, |γ̇| =

√
4 ε2 ux2 + (uz + ε2wx)2 (19)

with

µ(I) = µ1 +
(µ2 − µ1)

1 + I
, I =

|γ̇|
√
p
U , U =

U d

I0H
√
g H

. (20)

Note also that µ1 and µ2 which are directly related to the slope of the dune are also of order
ε:

µ̂j =
µj
ε

j = 1, 2. (21)

The boundary conditions now writes:

u(x, 0, t) = w(x, 0, t) = 0 (22)

and
(1 + ε2 hx

2) τxz − 2 ε hx τxx = (1 + ε2 hx
2) p− (1− ε2 hx2) ε τzz, (23)

4.2.3 Long-wave model

To be able to obtain a simple qualitative shape of the dune, we need to introduce a shallow-
slope approximation. In this approximation, the ratio of the vertical and horizontal scale
of the dune is ε = H/L � 1. This assumption is quite strong regarding the experimental
shape of the dune where ε ∼ 0.2 − 0.5, however it constitutes a simple way to provide a
qualitative shape from analytical studies.
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4.3 Quasi-steady case without inertia

In the experiments shown in figure 7, the Froude number is typically of order F ∼ 0.02.
Thus, a first step is to assume that the deviation from a straight slope can be understood
assuming that F � 1 in the equations (17) and (18). Physically, it means that we neglect
the inertia of the granular material. This assumption leads to the governing equations:

ux + wz = 0, (24)

−ε px + ε2 ∂x τxx + ε ∂z τxz = 0, (25)

−pz − 1 + ε2 ∂x τxz + ε ∂z τzz = 0. (26)

Equations (25-26) at the leading-order give:

p = (h− z), (27)

τxz = −hx (h− z). (28)

Then, from the constitutive equation given by the µ(I)-rheology (20), we can write

τxz = pµ(I)
uz
|uz|

(29)

which leads to
hx = −µ(I). (30)

Then, using the constitutive relation given by (20), we obtain

hx = −µ1 −
(µ2 − µ1)

1 + I
with I =

|γ̇| d√
p/ρ
U =

uz√
(h− z)

U . (31)

This relation leads to an expression for the z-derivative of u:

uz =

√
h− z
U

(
µ1 − hx
hx − µ2

)
. (32)

Then, integration of the relation (32) with the boundary condition u(z = 0) = 0 leads to a
Bagnold-like profile (see for instance [11]):

u =
2

3U

(
µ1 − hx
hx − µ2

)
[h3/2 − (h− z)3/2], (33)

We use the continuity equation averaged over the height of the dune (13) for the steady
state (∂t = 0) to evaluate the height of the dune h(x):

∂

∂x

(∫ h

0
udz

)
= 0. (34)

We integrate this relation with respect to x with the boundary condition u(x = 0) = ÛB

where ÛB = UB/U is the dimensionless velocity of the blade with respect to the underlying
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layer. Because the table is rotating, this velocity at a given radial position y is UB = Ω y.
It leads to ∫ h

0
udz = h ÛB. (35)

Then with the expression (33) we finally obtain

ÛB =
1

h

∫ h

0
udz =

2

5U

(
µ1 − hx
hx − µ2

)
h3/2, (36)

From this relation, we obtain an equation for the height of the dune at a given distance
from the blade h(x) in the limit where the inertial effects are neglected, i.e. at F � 1:

hx =
µ1 h

3/2 + F2 µ2

h3/2 + F2
, (37)

where F2 is defined by

F2 =
5

2
ÛB U . (38)

Coming back to the dimensional expression, the coefficient F2 writes:

F2 =
5

2

UB d

I0H
√
g H

. (39)

We consider the aquarium sand with typical experimental parameters Ω = 0.05 rad/s,
y = y0 = 25 cm, UB = Ω y, H = 5 cm, d = 1 mm, and for I0, µ1 and µ2 the value
provided by Jop et al. [9]. The resulting profiles are plotted in figure 8. We can see that
the shape of the dune shows some qualitative agreement with the experiments. The profile
of the dune is close to a straight slope except when the dune meet the underlying layer
where the profile becomes concave as observed in the experiments. However, the analytical
theory depends on F2 which is inversly proportional to H3/2. Thus, when the dune becomes
smaller, the value of F2 increases and the profile should change. However, the experiments
seem to show the same profile all the time. It may be due that experiments were typically
performed with a height of the dune in the range H ∼ 3− 10 cm. For smaller height of the
dune, the experimental measurements are not sufficiently accurate. Thus, the range of F2

performed for a given rotation rate does not allow to see a huge variation of F2. The only
way to increase its value is a larger value of the velocity of the blade which will be the point
of the next section.

4.4 Influence of the different parameters

The shape observed for aquarium sand, i.e. a straight slope and a curvature near the tip
of the dune should be valid for different granular materials in the limit F → 0. Indeed,
the analytical model presented in the previous section relies on the µ(I) rheology which is
valid for sand as well as for glass beads. Figure 9(a) illustrates the profile of the dune for
1 mm spherical glass beads and the same parameters as shown in figure 6 after the initial
build-up of the dune in the (xz) plane (i.e. approximately after 0.1Trot). Again we can
see that the shape of the dune exhibits a curvature near the tip explained by our simple
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Figure 8: Analytical profile of the dune. The blue continuous line is for the experimental
parameters: H = 6 cm, Ω = 0.05 rad/s, y = y0 = 25 cm, UB = Ω y, d = 1 mm leading to
F2 = 8.5 × 10−4. The red dashed lines indicate the slope given by µ1 and µ2.

model. We can also study the influence of the different parameters: the mass (figure 9(b))
or various initial position (figure 9(c)) always in the limit of vanishing Froude number. The
profile of the dune seems not to change with these different parameters. Note that with the
glass beads the profiles look slightly more curved everywhere. It may be due the shape of
the particles which are spherical contrary to the aquarium sand. In this case the p article
will be likely incline to roll and the speeds at the surface will increase. This effect is not
yet totally understood.

4.5 What about inertia?

We have previously focused on the shape of the dune in the limit where the inertial effects are
neglected, i.e. for a Froude number F � 1. However, experimental observations suggests
that the shape of the dune can be modified by inertial effects as illustrated in figure (10)
when we increase the rotation rate of the bulldozer. Instead of having an inclined and nearly-
flat profile as observed in the previous section, we have a transition to a profile where a
significant curvature appears. The profile observed when increasing the Froude number is
similar to the “S-shape” observed in rotating drums (see for instance [16]). In figure (10) the
Froude number ranges from 0.4 to 1 and its influence has now to be considered to account
for the curvature of the profile.

To study the effect of inertia, we consider the leading-order version of (17) with F =
O(1). We depth-integrated this equation and use the first order profile (33) obtained pre-
viously. It leads to:

F 2

[
∂

∂t
(hU) +

∂

∂x

(∫ h

0
u2 dz

)]
= −hx − τxz(x, 0, t) (40)

where

U =
1

h

∫ h

0
udz (41)
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Figure 9: Profile of the dune for the 1 mm spherical glass beads (a) Ω = 0.05 rad/s, m = 1
kg, y = 25 cm; (b) for the same parameters and various mass: m=1000 g (red), m=750 g
(blue), m=500 g (green), m=250 g (black); (c) for various initial radial position: y0 = 15
cm (red), y0 = 25 cm (blue), y0 = 35 cm (green). In all these figures, the time is taken
every 10 seconds after the build-up of the dune is achieved.

is the vertical average of the velocity u. To evaluate the inertial terms on the left of this
equation and the basal drag, we consider the steady state with constant flux, (hU)x = 0,
and exploit the velocity profile of the inertia-less problem, namely

u =
5U

3h3/2
[h3/2 − (h− z)3/2] (42)

After a little algebra, we arrive at

hx

(
1 +

5U2

4 g h

)
= −µ(Ib). (43)

where

Ib =
5U d

2H
√
gH

(44)
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Figure 10: Profile of the dune for different rotation rates Ω = 0.8 rad/s (red), Ω = 1 rad/s
(blue), Ω = 1.25 rad/s (green), Ω = 1.5 rad/s (cyan), Ω = 1.75 rad/s (magenta) and Ω = 2
rad/s (black) with m = 1000 g, y0 = y = 35 cm and the granular material is the aquarium
sand of diameter d = 0.9 mm. Profiles are taken at arbitrary times after the build-up of
the dune.
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Figure 11: (a) Analytical profile of the dune for the aquarium sand, y0 = y = 25 cm, d = 1
mm, H0 = 5 cm and Ω = 0.05 rad/s. (b) Analytical profile of the dune for the aquarium
sand, y0 = y = 40 cm, d = 1 mm, H0 = 5 cm and Ω = 1 rad/s leading to a larger Froude
number. In both figures the black continuous line are obtained with the relation (43) and
the black dotted-line are obtained with the relation (37).

Note that this relation is exactly the relation (31) in the limit of vanishing Froude
number, i.e. for vanishing velocity U . The term 5U2/(4 g h) accounts for the inertial
effects. Resulting profiles calculated with this model are shown in figure 11(a) and (b).
Figure 11(a) is plotted for a small rotation rate, Ω = 0.05 rad/s. In this case, we see that
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Figure 12: 2D profile of the dune in the plane (yz) for Ω = 0.05 rad/s, y0 = 25 cm, m = 1000
g. The granular material used is the 0.9 mm aquarium sand. The red line corresponds to
an initial condition where the sand is initially put against the blade whereas the black line
indicates the initial condition where a sandpile is set at a distance y0 = 25 cm from the
center. The arrows indicate the time-direction.

the profile is similar to the results of the previous section: the Froude number is small.
However, for larger velocity, i.e. larger Froude number, the tail of the dune is modified as
illustrated by the figure 11(b). The curvature of the profile is more important, as observed
experimentally. However, even if the shape of the tail is captured qualitatively, the profile
of the dune closer to the blade remains straight in our analytical model whereas in the
experiments the curvature is also important in this region.

5 Lateral spreading of the dune

In section 3, we have seen that the motion of the dune can be decomposed into a build-up
of the dune perpendicular to the blade and a lateral spreading of the dune along the blade.
This lateral spreading effect is present for a rotating blade where the normal velocity to the
blade depends on the distance to the center y through the relation U⊥ = yΩ. Furthermore,
because the front of the blade is position slightly ahead of the centre of the rotating table,
there is a tangential velocity along the blade, U‖, that advects the dune radially outwards
(see below in 5.1.1).

Figure 12 illustrates the two-dimensional dynamics against the blade. Starting from
a symmetric sandpile, the dune spreads along the blade and breaks its symmetry: the
spreading is faster in this direction where the velocity of the blade is larger.

5.1 Mathematical modelling

5.1.1 Velocity of the bulldozer

First, we calculate the velocity induced by the rotating table at the velocity Ω in the frame
of the blade. We use cartesian coordinates where the axis of rotation is at the position
(x = −δ, y = 0) (see figure 13). Introducing r, the distance from the rotating axis, and θ,
the angle between the y-axis and (OBM), one can write the coordinates of a point M as
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Figure 13: Schematic and coordinates in the (xy) plane. δ is the thickness of the blade.
x = 0 is taken at the surface of the blade.

(xM = r sin θ − δ, yM = r cos θ). Thus the velocity field (U, V ) is given by

U = −Ω r cos θ = −Ω y, (45a)

V = Ω r sin θ = Ω (x+ δ). (45b)

5.1.2 Conservation of mass

Let us express the conservation of mass averaged over z:

∂h

∂t
+

∂

∂x

(∫ h

0
udz

)
+

∂

∂y

(∫ h

0
vdz

)
= 0, (46)

which can be rewritten as

∂h

∂t
+

∂

∂x
(hU + Fx) +

∂

∂y
(hV + Fy) = 0, (47)

where U (resp. V ) accounts for the x-velocity (resp. y-velocity) of the underlying layer in
the reference frame of the blade and Fx (resp. Fy) is the flux along the x-direction (resp.
y-direction).

5.1.3 Modelling the shape of the dune perpendicularly to the blade

We want to build a simple model of evolution of the shape of the bulldozed dune in the (yz)
plane (Fig. 14(a)), thus we need an estimation of the shape of the dune in the direction
perpendicular to the blade. From the experimental observations, at low rotation rate, we
can assume that for all positions y the slope can be approximated as straight line slope µ
which is a parameter of the granular material and height H(y, t) (see Fig. 14(b)). Thus,
the equation of the dune in the xz plane can be written as

h(x, y, t) = H(y, t)− µx (48)

This is a rough estimation of the shape but largely simplifies the problem from three di-
mensions to two dimensions.
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Figure 14: Schematic of the approximated shape of the 2D profile in the plane (xz).

5.1.4 Advection-diffusion equation

Following the experimental observations, our main idea is that adjustments to the granular
flow in the x-direction take place relatively quickly, and so the dune is in a quasi-steady
state in this direction. This demands that the net horizontal flux in (47), namely hU +Fx,
must be small, with any residual matching the slow time variation of h and weak flux along
the blade. That is, Fx ∼ −hU . To explore the slower lateral spreading and time evolution,
we integrate (47) over the x-direction to obtain the relation:

∂

∂t

(∫ X

0
hdx

)
+ [hU + Fx]X0 +

∂

∂y

(∫ X

0
hV + Fy dx

)
= 0. (49)

We evaluate all the terms of this relation with X = H(y, t)/µ. The first term leads to

∂

∂t

(∫ X

0
hdx

)
=

∂

∂t

(
H2

2µ

)
(50)

Then, due to the presence of the blade, there is a no-normal flow condition at x = 0 which
implies that H(y, t)U(x = 0) + Fx(x = 0) = 0. At the end of the dune, at X = H(y, t)/µ,
by definition the flux drops to zero, i.e. Fx(x = X) = 0 and the height of the dune h(x=X)
also vanishes. This, the second term of the relation (49) vanishes:

[hU + Fx]X0 = 0. (51)

We can separate the last term of the relation (49), and we have:

∂

∂y

(∫ X

0
hV dx

)
=

∂

∂y

(∫ X

0
hΩ (x+ δ)dx

)
,

=
∂

∂y

(
Ω δ H2

2µ2
+

ΩH3

6µ2

)
.

For a free-surface gravity-driven flow, one expects that the flux, F = (Fx, Fy), is proportional
to the surface slope. That is, F ≈ −Γ∇h, where the factor Γ encapsulates the detailed
physics of the granular flow. For example, for the shallow, inertia-less flow described by the
µ(I) law in section 4, one can generalize the analysis and find

Γ =
2 I0
√
g

5 d

h5/2

|∇h|

µ2 −
√
hx

2 + hy
2√

hx
2 + hy

2 − µ1

 (52)
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Hence,

Fy ≈ Fx
hy
hx
≈ −hU Hy

µ
(53)

given our assumptions on the quasi-steady profile in x (Fx ≈ −hU and (48)). After inte-
gration we obtain

∂

∂y

(∫ X

0
Fy dx

)
=

∂

∂y

(
H2Hy

2µ2
Ω y

)
. (54)

In conclusion, the relation (49) leads finally to the evolution equation for H(y, t):

∂H2

∂t
+

∂

∂y

(
Ω δ H2 +

ΩH3

3µ

)
+

∂

∂y

(
H2Hy

µ
Ω y

)
= 0. (55)

Note that this equation is an advection-diffusion equation which can be solved using a
defined initial condition. The initial height will be choosen to fit with the initial sandpile.

5.2 Time-evolution of the dune

We can solve the partial differential equation (55) numerically. An example of the profile
obtained is plotted in figure (15.a). This profile is plotted for the parameter used in the
experimental results shown in figure (15.b). First, the thickness of the blade, δ = 1 cm, is
directly measure on the experimental setup. The slope of the dune perpendicularly to the
blade is obtained from experiments done in section 4: µ ' tan(40π/180) for the aquarium
sand. In addition, note that the diffusivity in (55) vanishes in the limit H → 0. To avoid
the implied singularity, the computation also includes a pre-wetted layer everywhere, i.e.
the initial condition are:

H(y, t = 0) = max(H0 − µ |y − y0|) + γ0, (56)

where γ0 is the thickness of the pre-wetted layer and max(H0 − µ |y − y0|) is a triangular
function centered in y0 of height H0. H0 is chosen as an adjustement parameter.

We can see that the spreading of the dune is non-symmetric and the maximum height of
the dune travels outward with time. Although the agreement is not quantitative, the quali-
tative feature of the lateral spreading is well captured by our simple toy-model. In addition
this maximum height decreases during the spreading in a qualitative good agreement.

6 Conclusion

In this project, we have studied the dynamics of bulldozed sand using experimental charac-
terizations and some qualitative modelling with granular rheology. The experiments were
performed with a rotating bulldozer which allows us to demonstrate that the dynamics of
the dune built against the blade can be split into two phases. A first adjustment takes
place transverse to the blade, with the dune adopting a quasi-steady profile with almost
constant slope. The profile can be qualitatively reproduced with a shallow 2D flow model
incorporating the so-called µ(I)-rheology. The transverse adjustment is followed by a second
phase of lateral spreading. A crude model of this second phase reproduces the asymmetrical
spreading of the dune along the blade and its gradual outward migration.
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Figure 15: (a) Analytical profile with Ω = 0.05 rad/s, y0 = 20 cm, µ = tan(40π/180), δ = 1
cm, H0 = 9 cm, γ0 = 0.01 cm. (b) Experimental profile obtained with the aquarium sand
for Ω = 0.05 rad/s, y = y0 = 20 cm. The profiles are taken every 5 seconds.

We have outlined in this report results based on experiments and suggested analytical
modeling of the observed flow. However, one can notice that it exists some discrepancies
between the theory and experiments. It may be due to some strong assumptions: the flow
perpendicular to the blade was assumed to be shallow which is not totally satisfied. In
addition, we used a quasi-steady assumption to split the dynamics into two phases and
study them separately, but there may be some interplay between the 2D dynamic and the
lateral spreading.

To further understand the dynamic of bulldozed material, extensions of the theory can
be done by considering a fully 2D modeling of fluid with a µ(I)-rheology, i.e. without
shallow-water approximations. We will carry 2D particle dyamics with a DEM code to
study the flow without lateral spreading. Numerical simulations allow us to have access
to various physical quantities such as the velocity inside the dune or the transient shape
during the build-up of the dune. Numerical simulation with a µ(I) rheology [11] can also be
compared to DEM simulation to study if the dynamic of the dune can be indeed captured
by the µ(I) rheology.

We will also extend the experiments by performing PIV measurement to obtain the
velocity field at the surface of the dune. Some experiments to see if there is any particle
exchange between the dune and underlying bed are also needed. We outlined that the
sandpaper allow no-slip boundary condition, but examining effects of slip by removing
sandpaper would also be interesting as well as studying slower speeds and other materials
to look for unsteady avalanching.
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Figure 16: Photo and schematic of bulldozed sand by a blade at velocity UB for no-slip (a,b)
and slip (c,d) boundary conditions at the bottom. I, II and III denotes the three distinct
regions which are visible: (I) a dune, (II) a horizontal layer of sand far from the blade, (III)
a region where the granular materials is squeezed in a wrinkled layer before being bulldozed.

A Slipping or not slipping?

Depending on the coating of the rotating table, two different regimes can be observed for
the bulldozed sand (see figure 16). If the table is coated with sandpaper, the boundary
condition at the bottom are no-slip boundary condition. In this case, we observed two
different zones: a zone where the sand is bulldozed and a zone far from the blade where
the granular material is stationary (see figure 16a.b). This is this situation we study in this
report.

However, in the absence of sandpaper on the bottom, the boundary condition on the
table is less obvious. There is likely a sliding layer of grain. In this case, the avalanching
dune is buffered from the upstream static bed by a compressing, sliding layer of grains.
In some exploratory experiments, this layer appeared to lose stability towards a type of
buckling instability, rendering the free surface into a wavy pattern (region III on figure
16c.d). This situation is more complicated to describe as the characteristic of the surface
becomes really important. This new situation would deserved a proper study in the future
but is beyond the scope of this report.
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Figure 17: Laser sheet projected on the table (red line). (a) For a flat topography the line
remains straight, the height is equal to h = 0. (b) When the dune is present, the deviation
of the line from a straight line leads to the value of h(x) after initial calibration.

B Diagnostic method: calibration and topography of the
dune

In addition to the qualitative visualization of the bulldozing phenomenon, we need to have
access to quantitative features. Here, we want to obtain the shape of the dune at an arbitrary
radius. However, we need a non intrusive method. We have used a method developed during
the summer which relies on the deformation of a laser line projected on a topography. For
this method, we project a sheet at a given radius. In the absence of topography, a straight
line is observed (see figure 17(a)). However, as soon as a topography is present, the sheet
is deformed (see figure 17(b)) and we can measure the distance between the deformed and
non-deformed line to have access to the height.

Note that the movie has to be recorded by a camera located in a position such that we
can see the whole topography of the dune. Figures 17(a) & 17(b) show a typical example
of view to study the entire topography of the dune. However, as can be seen on these two
figures, it leads to some problems to describe the topography of the dune as a function of the
variables (x, y, z). Indeed the view is 3D, thus the axis (Ox) and (Oz) are not perpendicular,
in addition the length scales change with the position. Therefore, before postprocessing the
movies, we need to calibrate the position of the camera to obtain a direct correspondence
between the location of a pixel (xp, zp) and the physical values (x, y, z).

We use a squared board at a given radial position y. One calibration will be valid only
for a given value of y which will be the position of our laser sheet (note that in figure 18, y
is known from the scale on the top of the blade). Then, we obtain the direction of the axis
(Ox) and (Oz) from the edges of the board. Because the axis are not perpendicular, we need
to determine the vanishing points which allow us to correct the effects of the perspective.
It corresponds to the intersection of the red dashed line in figure 18). Then, we determine
the length scales along y and z with the graduation on the grid. In a first approximation,
direct measurements show that the correspondence between the measured distance on the

24



z

x

y

(0,0)

(x,y,z)

Figure 18: Photo of the calibration process. The board is used to define the direction of
the axis, the vanishing points and the lengthscales.

picture and the real distance is linear. After this calibration, we consider a pixel at a known
location (xp, zp) in our movie, then we project this point on the (Ox) and (Oz). Using the
length scales determine during the calibration process, we obtain the location (x, z) for a
given y.
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