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1 Introduction

We are motivated by the following problem: given the heat sources and sinks on the Earth and
a stirring field with certain statistical properties what are the maximum and minimum possible
degrees of temperature variance that must be present? The flow in the Earth’s atmosphere is an
example of a stirring field which acts to redistribute heat. Here we are interested in the optimal
solution to this redistribution problem. We expect any stirring would suppress fluctuations
in the temperature field and lead to a more uniform distribution, but what kind of stirring
minimizes the variance? Can we, given some bulk statistical properties of the stirring field,
derive bounds on the variance? What are the characteristics of a good stirring field and how do
they depend on the source distribution? Can we define and estimate the eddy diffusivity and
mixing efficiency of a stirrer on different length scales? Here we work toward answering these
questions by computing rigorous bounds on multiscale mixing efficiencies.

Bounds on mixing have important implications in both physics and engineering. Thiffeault,
Doering, and Gibbon [5], hereafter TDG, have shown how techniques used to bound bulk dissi-
pation quantities in the Navier-Stokes equation [2] can be applied to the advection-diffusion of a
passive scalar maintained by a steady source. They derived rigorous bounds on the scalar vari-
ance and defined an equivalent diffusivity, the diffusivity required to produce the same amount of
mixing in the absence of stirring. Plasting and Young [4], hereafter PY, enhanced that analysis
by including the variance dissipation as a constraint.

Here we construct bounds on the multiscale mixing efficiency of a sitrring field for a passive
scalar maintained by a time independent but spatially inhomogeneous source. We focus on
the mixing efficiency of a stirring field on different scales by considering the fluctuations of the
variance, gradient variance, and inverse gradient variance. Comparing the three measures (the
variance, gradient variance, and inverse gradient variance) gives a range of information about
the stirring properties of a flow. It has been recognized that Lp norms of the passive scalar
fail to quantify the stirring efficiency of a mixing process because they are insensitive to small
scale structures [1]. We gauge the effectiveness of a stirring field based on its ability to suppress
variance relative to the variance in the absence of stirring. On all scales, a smaller variance
implies the velocity field is a better stirrer. Thus, a velocity field that gives a larger mixing
efficiency than another will be considered more efficient with respect to a particular measure.

Our approach for bounding the multiscale mixing efficiencies follows that of TDG. The
bounds are derived in section 3. In section 4 we show that the bounds for a monochromatic source
on the torus can be saturated. In an effort to distinguish the three measures more convincingly,
in section 5 we investigate the efficiency of a steady shearing flow for a monochromatic source
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using boundary layer asymptotics. Finally, in section 6, we find bounds on the multiscale mixing
efficiencies for a decaying passive scalar maintained by a spatially inhomogeneous source.

2 Advection-diffusion in a space of d-dimensions

The advection-diffusion equation of a passive scalar with a body source s(x) in a d-dimensional
domain (d = 2, 3, ...) is:

∂θ

∂t
+ u · ∇θ = κ∆θ + s(x) (2.1)

where s(x) is a source with spatial mean zero without loss of generality and κ is the molecular
diffusivity. Since the body source has spatial mean zero the passive scalar will also have zero
spatial mean. The velocity field here is a given steady or time-dependent L2 divergence-free
vector field. The velocity field could be a solution of the Navier-Stokes equation or a speci-
fied stochastic process. We will focus on a particular class of stirring fields that are steady,
statistically homogeneous, and isotropic with single point statistical properties characteristic of
Homogeneous Isotropic Turbulence (HIT):

ui(x, ·) = 0, ui(x, ·)uj(x, ·) =
U2

d
δij (2.2)

and

ui(x, ·)∂uj(x, ·)
∂xk

= 0,
∂ui(x, ·)

∂xk

∂uj(x, ·)
∂xk

=
Γ2

d
δij (2.3)

where where U2 := 〈|u|2〉 is the kinetic energy density, λ = U/Γ is the so-called Taylor microscale
for HIT, and the overbar denotes the steady average defined below. Let us define the advection-
diffusion operator and its formal adjoint:

L := ∂t + u · ∇ − κ∆, L† := −∂t − u · ∇ − κ∆. (2.4)

We also define the steady average (assuming it exists),

F (x) := lim
t→∞

1
t

∫ t

0
F (x, t′)dt′, (2.5)

and the space time average,

〈F 〉 :=
1
V

∫
F (x)ddx. (2.6)

From here on our domain will be a periodic box of size L, i.e. x ∈ Td, the d-dimensional torus.
The Fourier decomposition of the spatially dependent variables are written conventionally as

F (x, t) =
∑
k

eik·xF̂ (k) where F̂ (k) =
1
Ld

∫
Td

e−ik·xF (x, t) ddx (2.7)

and k = (2π/L)n for n = (n1, ..., nd). The L2 norms of derivatives of the passive scalar will be
denoted, for example,

〈|∇pθ|2〉 =
∑
k

k2p|θ̂(k)|2. (2.8)
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The conventional non-dimensional number measuring the relative importance of advection to
diffusion is the Péclet number

Pe :=
UL

κ
. (2.9)

A standard measure of the well-mixedness of a scalar field is its variance (presuming spatial
mean zero) [1]. Weighting the variances at different length scales introduces a family of variances
that are sensitive to mixing on different scales. The variances 〈|∇pθ|2〉 for p = 1, 0,−1 measure
mixing on small, intermediate, and large scales respectively. To gauge the effect of stirring, the
variances are compared with variances in the absence of stirring 〈|∇pθ0|2〉 = κ−2〈|∇p∆−1s|2〉
for p = 1, 0,−1.

We define a non-dimensional mixing efficiency for each scale p

Mp :=
〈|∇pθ0|2〉
〈|∇pθ|2〉

for p = 1, 0,−1 (2.10)

which increases as stirring increases. The mixing efficiency has the advantage of depending only
on the structure of the stirring and source and not on their scales.

The equivalent diffusivity is the equivalent amount of diffusivity required to achieve the
same degree of mixing in the absence of stirring (i.e. a corresponding diffusivity for the diffusion
equation) and is defined as

κeq,p := κ
〈|∇pθ0|2〉1/2

〈|∇pθ|2〉1/2
. (2.11)

Equivalent diffusivity should not be confused with effective diffusivity defined in homogenization
theory. The effective diffusivity is defined in terms of large-scale transport, i.e. in the presence
of large scale gradients of the concentration (G. Papanicolaou lectures) [6]. The equivalent
diffusivity is specific to the source and stirring. Lower bounds on the variances provide upper
bounds on the mixing efficiencies. These bounds depend on details of the source and stirring as
shown in the next section.

3 Bounds on the multiscale mixing efficiencies

Following the method developed by TDG we derive bounds on the multiscale mixing efficiencies.

3.1 Bounds on variance

Multiplying (1) by a smooth, time independent, spatially periodic projector function ϕ(x),
taking the space-time average and integrating by parts we obtain

〈θ(u · ∇+ κ∆)ϕ〉 = −〈ϕs〉. (3.1)

A lower bound on the variance is achieved via the variational principle

〈θ2〉 ≥ max
ϕ

min
θ̃

{〈θ̃2〉 | 〈θ̃(u · ∇ϕ + κ∆ϕ)〉 = −〈ϕs〉}. (3.2)

We note that TDG derived bounds on the mixing efficiency without optimizing over ϕ. The
optimization over θ̃ is equivalent to applying the Cauchy-Schwarz inequality

〈θ2〉 ≥ max
ϕ

〈ϕs〉2

〈(u · ∇ϕ + κ∆ϕ)2〉
=

〈ϕs〉2

〈ϕLL†ϕ〉
. (3.3)
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Maximizing over ϕ is equivalent to minimizing the denominator over ϕ. We constrain ϕ to have
a unit projection onto the source. The corresponding variational problem is:

1
〈θ2〉

≤ min
ϕ

{〈ϕLL†ϕ〉 | 〈ϕs〉 = 1}. (3.4)

Thus we must minimize the functional F :=
〈

1
2ϕLL†ϕ− µ(ϕs− 1)

〉
, whose Euler-Lagrange

equation is

δF
δϕ

= LL†ϕ− µs = 0 (3.5)

where µ is a Lagrange multiplier to enforce the constraint. The minimizer is (after some algebra)

ϕ =
M0s

〈sM0s〉
(3.6)

where M0 := (LL†)−1 and

〈sM0s〉 = 〈s{κ2∆2 −∇ · (uu) + κ(2∇u : ∇∇+ ∆u · ∇)}−1s〉. (3.7)

Thus we obtain the lower bound

〈θ2〉 ≥ 〈sM0s〉 (3.8)

which depends only on the mean and quadratic correlations of the stirring field. For flows
satisfying HIT this simplifies to the quadratic form

〈sM0s〉 = 〈s{κ2∆2 − (U2/d)∆}−1s〉. (3.9)

This lower bound on the variance depends on the source function and on the stirring. In
Fourier space it is expressed as

〈θ2〉 ≥
∑
k

|ŝ(k)|2

κk4 + U2k2/d
. (3.10)

An upper bound on the variance may be obtained from simple application of the Cauchy-
Schwarz and Poincaré inequalities to the bulk variance dissipation constraint:

〈θ2〉 ≤ L2

4π2

〈|∇−1s|2〉
κ2

. (3.11)

The variance in the absence of stirring is

〈θ2
0〉 =

1
κ2
〈(∆−1s)2〉 (3.12)

and thus we obtain bounds on the mixing efficiency from bounds on the variance

4π2

L2

〈|∆−1s|2〉
〈|∇−1s|2〉

≤ M2
0 ≤

(∑
k

|ŝ(k)|2

k4

)(∑
k

|ŝ(k)|2

k4 + Pe2k2/d

)−1

. (3.13)
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One might expect the variance efficiency to have a lower bound of 1, implying that stirring
always decreases the variance. We can search for a sharper lower bound by actually optimizing
the variance subject to the variance dissipation constraint

〈θ2〉 ≥ min
θ̃

{〈θ̃2〉 | κ〈|∇θ̃|2〉 = 〈sθ̃〉}. (3.14)

That is, we can seek the minimum possible variance subject only to the entropy production
balance. The solution of the optimization problem in Fourier space is

θ̂(k) =
1
2

ŝ(k)
κk2 + λ

(3.15)

where λ = −1/2µ and µ is the Lagrange multiplier. Enforcing the constraint,

κ
∑
k

k2|θ̂(k)|2 =
∑
k

θ̂(k)ŝ∗(k) ⇒ κ
∑
k

k2|ŝ(k)|2

(κk2 + λ)2
= 2

∑
k

|ŝ(k)|2

κk2 + λ
. (3.16)

where ∗ denotes the complex conjugate.
In the case of a monochromatic source this simplifies to

κ
k2

(κk2 + λ)2
= 2

1
κk2 + λ

⇒ κk2 = 2(κk2 + λ) ⇒ λ = −κk2

2
(3.17)

and hence

θ̂(k) =
ŝ

κk2
= θ̂0(k) (3.18)

which implies M0 ≥ 1.
In the case of a dichromatic source (k1 with amplitude s1, k2 with amplitude s2), the con-

straint requires one to solve a cubic equation for ξ = λ/k1

(1 + α)ξ3 +
1
2
(1 + αβ + 4β + 4α)ξ2 + (β + αβ + β2 + α)ξ +

1
2
(β2 + αβ) = 0 (3.19)

where α = c1/c2, β = µ1/µ2, c1 = s2
1, c2 = s2

2, µ1 = κk2
1, and µ2 = κk2

2. Then the mixing
efficiency is

|θ̂0(k)|2

|θ̂(k)|2
=

4(1 + α
β2 )

1
(1+ξ)2

+ α
(β+ξ)2

. (3.20)

The efficiency goes to 1 in the monochromatic limit α → 0 (ξ → −1/2) as expected. But the
minimum value the efficiency bound is less than 1 for ∀ ξ implying that the variance dissipation
constraint is not sufficient to guarantee that there are no stirring flows that could possibly
increase the scalar variance. So this analysis does not rule out the existence of ineffective
stirring fields.

3.1.1 Delta function source

Here we consider a δ-function point source (measure valued) with Fourier coefficients |ŝ(k)| = 1
as |k| → ∞. We note this includes white noise sources. As we are interested in the high-Pe
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limit we approximate the sums in (3.16) by integrals. The asymptotic form of the upper bound
is

M2
0 .

(∫ ∞

2π/L

kd−1dk

k4

)(∫ ∞

2π/L

kd−1dk

k4 + U2

dκ2 k2

)−1

. (3.21)

Letting ξ = kL : 2π →∞ we obtain

M2
0 .

(∫ ∞

2π
ξd−5ddξ

)(∫ ∞

2π

ξd−1dξ

ξ4 + Pe2ξ2/d

)−1

. (3.22)

For d = 2 the integrals become∫ ∞

2π
ξ−3dξ =

1
8π2

,

∫ ∞

2π

ξdξ

ξ4 + Pe2ξ2/2
∼ log Pe

Pe2
(3.23)

resulting in the asymptotic bound

M0 .
Pe√
log Pe

. (3.24)

In d=3 ∫ ∞

2π
ξ−2dξ =

1
2π

,

∫ ∞

2π

dξ

ξ4 + Pe2ξ2/2
∼ 1

Pe
(3.25)

resulting in the asymptotic bound

M0 .
√

Pe. (3.26)

An efficiency scaling of Pe leads to an eddy diffusivity proportional to UL from (3.2). For d = 3
there is a dramatic modification to the scaling that implies the eddy diffusivity is proportional
to
√

κ.

3.2 Bounds on the gradient variance

Beginning with the first step in the TDG procedure

〈θ(u · ∇+ κ∆)ϕ〉 = −〈ϕs〉 (3.27)

we integrate by parts and apply the Cauchy-Schwarz inequality to obtain

〈ϕs〉2 = 〈(uϕ + κ∇ϕ) · ∇θ〉2 ≤ 〈|uϕ + κ∇ϕ|2〉〈|∇θ|2〉. (3.28)

The sharpness of this bound is discussed at the end of this section. Continuing as usual, we
construct a variational principle to obtain a lower bound on the gradient variance

〈|∇θ|2〉 ≥ max
ϕ

〈ϕs〉2

〈|uϕ + κ∇ϕ|2〉
. (3.29)

Thus we minimize the denominator subject to the constraint of ϕ having a unit projection on
the source. Under the homogeneity and isotropy assumptions of HIT the variational problem
becomes one of evaluating

min
ϕ

{〈κ|∇ϕ|2 + U2ϕ2〉 | 〈ϕs〉 = 1}. (3.30)
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We want to minimize the functional F :=
〈

1
2(κ|∇ϕ|2 + U2ϕ2)− µ(sϕ− 1)

〉
. The solution of the

optimization problem is (after some algebra)

〈|∇θ|2〉 ≥ 〈sM1s〉 (3.31)

where M1 = (−κ2∆ + U2)−1.
A sharp lower bound on the gradient variance is easily proven. Upon taking the inner product

of θ with the advection-diffusion equation we obtain the variance dissipation constraint

κ〈|∇θ|2〉 = 〈sθ〉. (3.32)

Inserting ∇−1∇ = 1 on the right hand side, integrating by parts and applying the Cauchy-
Schwarz inequality, we deduce

κ2〈|∇θ|2〉 ≤ 〈|∇−1s|2〉 = κ2〈|∇θ0|2〉 ⇒ M1 ≥ 1. (3.33)

Hence stirring always reduces the gradient variance which was not proven for the variance
(previous section).

Given the upper and lower bounds on the gradient variance we can bound the small scale
mixing efficiency according to

1 ≤ M2
1 ≤

1
κ2

〈|∇−1s|2〉
〈sM1s〉

. (3.34)

In Fourier space this is

1 ≤ M2
1 ≤

(∑
k

|ŝ(k)|2

k2

)(∑
k

|ŝ(k)|2

k2 + U2

κ2

)−1

. (3.35)

These bounds only make sense when the sums on the right hand side converge.
Note that if κ → 0 and if s(x) ∈ L2 then

M2
1 →

U2

κ2

(∑
k

|ŝ(k)|2

k2

)(∑
k

|ŝ(k)|2
)−1

=
〈|∇−1s|2〉
〈s2〉

U2

κ2
=

U2`2
s

κ2
. (3.36)

where `s = 〈|∇−1s|2〉1/2/〈s2〉1/2. So if s ∈ L2 then M1 ≤ Pes, but if s /∈ L2 then M1 = 1 i.e.
there is only suppression of gradient variance if U〈|∇−1s|2〉1/2/κ〈s2〉1/2 � 1.

Here we re-examine our application of the Cauchy-Schwarz inequality which was the first step
when deriving an upper bound on the gradient variance. In fact the analysis can be improved a
bit. We expect the bound to involve only the curl-free part of the field uϕ + κ∇ϕ. This can be
seen by first evaluating

min
θ̃

{〈|∇θ̃|2〉 | 〈ϕs〉 = 〈(uϕ + κ∇ϕ) · ∇θ̃〉} (3.37)

with functional F := 〈12 |∇θ̃|2 + λ(v · ∇θ̃ − ϕs)〉 where v = uϕ + κ∇ϕ. The solution to the
variational problem is (after some algebra):

〈|∇θ|2〉 =
〈ϕs〉2

〈(∇ · v)(−∆−1)∇ · v〉
≥ 〈ϕs〉2

〈|v|2〉
. (3.38)
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The inequality follows immediately from examining the Fourier representation of the denomina-
tor. Note that we can decompose v as follows

v = v−∇∆−1∇ · v︸ ︷︷ ︸+∇∆−1∇ · v︸ ︷︷ ︸ . (3.39)

divergence− free curl− free

The denominator above is

〈(∇ · v(−∆−1)(∇ · v)〉 = 〈[∆∆−1(∇ · v)](−∆−1)(∇ · v)〉
= 〈∇(∆−1(∇ · v) · ∇(∆−1(∇ · v)〉
= 〈|∇∆−1∇ · v|2〉. (3.40)

From this it is clear that the explicit optimization over θ̃ yields a sharper bound by picking out
the component of v which is curl-free.

Interestingly, this new bound depends on the two point correlation and involves a non-local
integral operator i.e. for d = 2

〈(∇ · v)(−∆−1)∇ · v〉 =
1
Ld

∫
dx
∫

dy∇x · v(x)G(x− y)∇y · v(y) (3.41)

where G(x− y) is the Green’s function of −∆. After integrating by parts

〈(∇ · v)(−∆−1)∇ · v〉 =
1
Ld

∫
dx
∫

dy(−∇∇G) : vv (3.42)

where under the homogeneity assumption,

vv = ϕ(x)ϕ(y)u(x)u(y) + κ2∇ϕ(x)∇ϕ(y). (3.43)

It is the first term that prevents the expression from collapsing to |v|2 (the second term
becomes κ2(∆ϕ)2 after integrating by parts). The first term depends on the two-point correlation
of the velocity field. Under the assumptions of HIT, the velocity field has single-point statistical
properties and hence the first term collapses to U2ϕ2/d which implies that for HIT a strict
application of Cauchy-Schwarz (without minimizing over θ̃) yields a sharp bound. In turbulence
theory, the two-point correlation for Homogeneous Isotropic Turbulence is written as

ui(x, ·)uj(y, ·) = δijg(|x− y|) +
(xi − yi)(xj − yj)

|x− y|2
(f − g). (3.44)

Incompressibility implies that g(r) = f(r) + rf ′(r)/(d − 1). This new bound introduces de-
pendence on the two-point correlation property of the velocity field. The implication of such
two-point statistical properties on the scaling of the bound will be the subject of future inves-
tigation. We note that the Cauchy-Schwarz bound cannot be improved for both the variance,
because it is a scalar field, and the inverse gradient variance (next section) because it manifestly
involves a curl-free field. We will revisit the implications of the two-point statistical properties
when we examine the bounds including scalar decay (section 6).

3.2.1 Delta function source

It is clear that a δ-function or white noise source (|ŝ(k)| ∼ 1) will cause the sums in (3.37) to
diverge in both d = 2 and 3. Thus, in the case of δ-like sources or sinks the mixing efficiency
bound is sharp and equal to 1.
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3.3 Bounds on the inverse gradient variance

Beginning again with the first step of the TDG procedure

〈ϕs〉 = −〈(u · ∇ϕ + κ∆ϕ)θ〉
= 〈∇(u · ∇ϕ + κ∆ϕ) · ∇∆−1θ〉
≤ 〈|∇(u · ∇ϕ + κ∆ϕ)|2〉

1
2 〈|∇−1θ|2〉

1
2 . (3.45)

Continuing as usual, we construct a variational principle to obtain a lower bound on the inverse
gradient variance

〈|∇−1θ|2〉 ≥ max
ϕ

〈ϕs〉2

〈|∇(u · ∇ϕ + κ∆ϕ|2〉
(3.46)

Thus we minimize the denominator subject to the constraint of ϕ having a unit projection on
the source, i.e. we evaluate

min
ϕ

{〈|(∇u) · ∇ϕ + u · ∇∇ϕ + κ∇∆ϕ|2〉 | 〈ϕs〉 = 1}. (3.47)

The assumptions of HIT simplify the problem:

|(∇u) · ∇ϕ + u · ∇∇ϕ + κ∇∆ϕ|2 = (∇ϕ,i) · uu · (∇ϕ,i) +∇ϕ · [(∇u)tr(∇u)] · ∇ϕ + κ2|∆∇ϕ|2

= κ2|∆∇ϕ|2 + (Γ2/d)|∇ϕ|2 + (U2/d)(∆ϕ)2. (3.48)

Thus the variational problem reduces to evaluating

min
ϕ

{
〈κ2|∇∆ϕ|2 + (Γ2/d)|∇ϕ|2 + (U2/d)(∆ϕ)2〉 | 〈ϕs〉 = 1

}
. (3.49)

The solution of the variational problem is (after some algebra)

〈|∇−1θ|2〉 = 〈sM−1s〉 (3.50)

M−1 := (κ2∆3 − (Γ2/d)∆ + (U2/d)∆2)−1. A lower bound on the inverse gradient variance is
obtained from simple application of the Cauchy-Schwarz and Poincaré inequalities to the bulk
variance dissipation constraint:

〈|∇−1θ|2〉 ≤ L8

256π8κ2
〈|∇s|2〉. (3.51)

Because it uses the Poincaré inequality the lower bound is only sharp if the source is monochro-
matic at the lowest wavenumber, 2π/L.

Given the upper and lower bound on the inverse gradient variance and the value in the
absence of stirring, 〈|∇−1∆−1s|2〉, we obtain bounds on the mixing efficiency on large scales

256π8

L8

〈∇−1∆−1s|2〉
〈|∇s|2〉

≤ M−1 ≤
〈|∇−1∆−1s|2〉
〈sM−1s〉

. (3.52)

In Fourier space,

256π8

L8

(∑
k

|ŝ(k)|2

k6

)(∑
k

k2|ŝ(k)|2
)−1

≤ M2
−1 ≤

(∑
k

|ŝ(k)|2

k6

)(∑
k

|ŝ(k)|2

k6 + U2

dκ2 k4 + Γ2

dκ2 k2

)−1

.(3.53)
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For a monochromatic source the upper bound is

M2
−1 ≤ 1 +

U2

dκ2k2
+

Γ2

dκ2k4
= 1 +

U2

dκ2k2

(
1 +

Γ2

U2k2

)
= 1 +

Pe2

d

(
1 +

1
λ2k2

)
(3.54)

where we define Pe = U/κk. Note that the efficiency depends on the shear in the flow directly
through Γ. Interestingly, Γ allows for an increase in the mixing efficiency on large scales via
stirring on small scales (coupling the different scales). We investigate this potential effect for a
steady shearing wind in section 5.

3.3.1 Delta function source

Consider a δ-function source (measure valued). Suppose κ → 0 while U2 and Γ2 are fixed then
the asymptotic form of the upper bound is

M2
−1 .

(∫ ∞

2π/L

kd−1dk

k6

)(∫ ∞

2π/L

kd−1dk

k6 + U2

dκ2 k4 + Γ2

dκ2 k2

)−1

. (3.55)

Letting ξ = kL/2π : 1 →∞ we obtain

M−1 .

(∫ ∞

1
ξd−7dξ

)(∫ ∞

1

ξd−3dξ

ξ4 + U2L2

4π2dκ2 ξ2 + Γ2L4

16π4dκ2

)−1

(3.56)

In d=2, letting η = ξ2∫ ∞

1
ξ−5dξ =

1
4
,

∫ ∞

1

ξ−1dξ

ξ4 + Pe2

d ξ2 + L2

λ2
Pe2

d

=
1
2

∫ ∞

1

dη

η(η2 + αη + β)
, (3.57)

where α = Pe2/d and β = L2Pe2/λ2d. In the limit Pe →∞∫ ∞

1

ξ−1dξ

ξ4 + Pe2

d ξ2 + L2

λ2
Pe2

d

=
1
2

∫ ∞

1

dη

η(αη + β)
. (3.58)

After some algebra we find∫ ∞

1

ξ−1dξ

ξ4 + Pe2

d ξ2 + L2

λ2
Pe2

d

∼=
1
2β

ln
(

1 +
β

α

)
(3.59)

note that β/α = L2/λ2. The efficiency bound becomes (as Pe →∞)

M2
−1 .

β

2
1

ln
(
1 + β

α

) = Pe2 L2

λ2

1

ln
(
1 + L2

λ2

) (3.60)

Interestingly, the prefactor can be larger for smaller scale flow.
In d = 3∫ ∞

1
ξ−4dξ =

1
4
,

∫ ∞

1

dξ

ξ4 + Pe2

d ξ2 + (pL
2π )2 Pe2

d

→
∫ ∞

1

dξ

Pe(ξ2 + L2

λ2 )
(3.61)

after a change of variables η = λ
Lξ : λ

L →∞∫ ∞

1

dξ

ξ4 + Pe2

d ξ2 + (pL
2π )2 Pe2

d

∼=
1

Pe

λ

L

∫ ∞

λ
L

dη

η2 + 1
=

1
Pe

λ

L

(
π

2
− arctan

λ

L

)
(3.62)

hence

M2
−1 .

L

λ
Pe2 1(

π
2 − arctan λ

L

) . (3.63)
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4 Saturating the multiscale mixing efficiency bounds

The HIT bounds on the multiscale mixing efficiencies derived in the previous section simplify in
the case of a monochromatic source

M1 ≤
√

1 + Pe2/k2
s , (4.1a)

M0 ≤
√

1 + Pe2/k2
sd, (4.1b)

M−1 ≤
√

1 + Pe2/k2
sd + L2Pe2/λ2k4

sd (4.1c)

where we have rescaled [0, L]d to [0, 1]d so that ks is a multiple of 2π. We note that each
efficiency scales as Pe which corresponds to replacing the molecular diffusivity by an eddy
diffusivity proportional to UL. An anomalous scaling results if the efficiencies are not linear
in Pe. Figure 2 from TDG showed the mixing efficiency M0 versus Péclet number from direct
numerical simulations (DNS) of the advection-diffusion equation for a monochromatic source
sin ksx and the Zeldovich sine flow [3]. TDG discussed the possibility of saturating the upper
bound for the sin ksx source; however it was clear from the DNS calculations that the sine flow
was not the optimal stirrer and no other stirring field was put forth.

Here we show that the TDG upper bound on the variance for s(x) = sin ksx1 and x ∈ Td

i.e., x ∈ [0, L]d, is saturated by the sweeping flow suggested by W. R. Young. Consider the
steady advection-diffusion equation with source s(x) =

√
2S sin ksx1 and uniform stirring field

u(x) = (U/
√

d)
∑d

n=1 ı̂n:

U√
d

d∑
n=1

∂θ

∂xn
= κ

d∑
n=1

∂2θ

∂x2
n

+
√

2S sin(ksx1). (4.2)

We sweep on an angle for a long time (to kill the transients) and then switch the sweeping by
an appropriate angle (repeating appropriately) as to satisfy the HIT assumptions.

Letting θ(x) =
∑d

n=1 Fn(xn), we end up with a system of constant coefficient ODEs

d2F1

dx2
1

− U√
dκ

dF1

dx1
+
√

2S

κ
sin(ksx1) = 0 (4.3a)

d2Fn

dx2
n

− U√
dκ

dFn

dxn
= 0 for 2 ≤ n ≤ d (4.3b)

with periodic boundary conditions Fn(0) = Fn(L) whose solution is

F1 =
√

2SL2

(4π2κ2 + U2

d L2)

[
κ sin(ksx1)−

UL

2
√

dπ
cos(ksx1)

]
(4.4a)

Fn = 0 for 2 ≤ n ≤ d . (4.4b)

The variance is

〈θ2〉 =
S2L4

(4π2κ2 + U2

d L2)2

[
κ2 +

U2L2

4π2d

]
(4.5)

and since 〈θ2
0〉 = S2L4/16π4κ2 the mixing efficiency is

M0 =

√
1 +

U2L2

4π2dκ2
=

√
1 +

Pe2

4π2d
(4.6)
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which is the bound derived by TDG. Given the steady solution we can compute the other two
mixing efficiencies. After some straight-forward algebra we find

M1 = M−1 =

√
1 +

Pe2

4π2d
= M0. (4.7)

Interestingly, M0 and M−1 are precisely saturated but M1 is off by a d factor. Since the uniform
flow lacks shear the large scale mixing efficiency, M−1, is identical to the others.

The result is fairly intuitive: to reduce the variance (on any length scale) one should simply
blow the source onto the sink and vice versa — if one can do this simply. We note that this type
of sweeping flow is somewhat pathological in the sense that it simply transports the source onto
the sink which can be done simply on the torus. There is no dependence on diffusion. However,
such sweeping flows are not allowed on the sphere or in bounded domains. Furthermore, the
sweeping flow is not optimal for non-1D sources. This makes it clear that the optimal stirrer is
a function of both the source shape and the domain. Formulating the optimization problem for
the optimal stirring field is a subject of current and future investigation. It is a nasty non-linear
problem.

To emphasize the relationship between the source and the stirring field which saturates the
bound we perform an analogous calculation to the previous one (for d = 2, 3) however we impose
a δ-function source distribution. Taking the Fourier transform of the steady advection-diffusion
equation with s = δ(x) we obtain∑

k

θ̂(k) =
∑

k

ŝ(k)
κk2 + iUkd

(4.8)

where kd is the dth component of the horizontal wavenumber. Approximating the integrals by
sums (we are only interested in the asymptotic behaviour)

d = 2 : 〈|∇pθ|2〉 =
∫ 2π

0
dφ

∫ ∞

2π/L

k2p+1dk

κ2k4 + U2k2 cos2 θ
(4.9a)

d = 3 : 〈|∇pθ|2〉 =
∫ 2π

0
dφ

∫ π

0
sin θdθ

∫ ∞

2π/L

k2(p+1)dk

κ2k4 + U2k2 cos2 θ
. (4.9b)

The variances in the absence of stirring are found by calculating the above integrals with U = 0.
Straight-forward evaluation of the integrals yields

d = 2 : M1 = 1, M0 ∼
√

Pe

4π
, M−1 ∼

3
√

Pe

8π
(4.10)

d = 3 : M1 = 1, M0 ∼
√

Pe√
2π

1√
log(Pe/2)

, M−1 ∼
2
√

Pe√
3π

. (4.11)

The anomalous scaling in Pe suggests that the uniform flow is far from the optimal allowed by
the bound for the δ-function source in both d = 2 and 3. This emphasizes the source-dependent
nature of the optimal stirrer.

Given that the the optimal HIT stirrer for s = sin ksx was at an angle, the calculations from
TDG were repeated for a tilted source and the Zeldovich sine flow to see if we could get closer
to the bound. Tilting the source is equivalent to tilting the stirring. Figure 1 shows the results
of the DNS calculation for p = 1, 0,−1. The plot of M0 includes the PY bound. What is clear
from this figure is that for a non-optimal flow the three bounds scale differently in Pe. In the
next section we investigate the bounds for a simple steady shear flow in an effort to understand
the scaling in Pe as well as to explore the dependence of M−1 on the Taylor microscale.
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Figure 1: From left to right, mixing efficiencies Mp p = 1, 0,−1 for the Zeldovich sine flow with
source sin k(x + y). The solid lines are the respective upper bounds from section 3. The dotted
line is the PY variance bound and the dashed lines are the result of direct numerical simulations
with U fixed.

5 Steady Shear Flows

From the previous section it is clear that the most efficient stirring for monochromatic sources
on the torus is the sweeping flow. Here we investigate the effect of shear on the mixing efficiency
on different scales to understand the scaling behaviour at large Pe (i.e. the scaling when we do
not saturate the bound). The results would directly apply to HIT stirring analogous to blowing
for a very long time (the sine flow having a long period). From the analysis of section 3 we
would expect to see a large difference between the three norms for such sheared stirring. We
treat the simplest problem by considering the long time behaviour of a passive tracer goverened
by the advection-diffusion equation

u · ∇θ = κ∆θ + s(x) (5.1)

with a stirring field u =
√

2U sin kuŷi and source s(x) =
√

2S sin ksx (
√

2 for normalization).
Here the domain is the 2-dimensional torus x ∈ T2. The non-dimensional number governing the
amount of shear is r = ku/ks. We are particularily interested in the limits Pe � 1 with r fixed
and r � 1 with Pe fixed. The solution takes the form

θ(x) = f(y) sin(ksx) + g(y) cos(ksx) (5.2)

which results in a system of ODEs:

−
√

2Uks sin(kuy)g(y) = κ

[
−k2

s +
d2

dy2

]
f(y) +

√
2S (5.3a)

√
2Uks sin(kuy)f(y) = κ

[
−k2

s +
d2

dy2

]
g(y). (5.3b)

The stirring field is an odd function of y and hence from (5.4a) we deduce that g(y) is also
odd in y and hence that f(y) is even in y. This can also be seen by integrating (5.4a) over a
period. Since the functions f(y) and g(y) are periodic we consider the domain y ∈ [0, l/2] where
l = 2π/p. We infer boundary conditions given the even-oddness of the functions f and g:

g(0) = g(l/2) = 0, f ′(0) = f ′(l/2) = 0. (5.4)
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Upon setting ỹ = ksy, f̂ = fUks/S, ĝ = gUks/S, r = ku/ks, and Pe =
√

2U/κks we obtain the
non-dimensional ODEs

1
Pe

[
−1 +

d2

dỹ2

]
f̂(ỹ) + 1 = − sin(rỹ)ĝ(ỹ) (5.5a)

1
Pe

[
−1 +

d2

dỹ2

]
ĝ(ỹ) = sin(rỹ)f̂(ỹ). (5.5b)

The next sections outline the boundary layer analysis (since the solution is slowly varying except
in isolated boundary layers) and regular perturbation theory which were used to investigate the
limits mentioned above.

5.1 Boundary layer solution

This is the limit Pe � 1 and r fixed. Proceeding as usual, we construct an inner and outer
solution. The outer solution is obtained by expanding in powers of Pe−1:

f̂out =
∞∑

n=0

Pe−nf̂n, ĝout =
∞∑

n=0

Pe−nĝn. (5.6)

Thus, in the outer region the solution is approximated to leading order by

f̂out = 0, ĝout = − 1
sin(kuy)

. (5.7)

The boundary layer scaling was determined from a dominant balance argument. The left hand
side of (5.6a) is O(1), ∀ ε thus we choose ε = Pe−1/3 and rescale y: η = ỹ/ε to achieve a
self-consistent scaling of the leading order terms. Expanding in ε according to

f̂in =
∞∑

n=−1

εnf̂n, ĝin =
∞∑

n=−1

εnĝn (5.8)

(note that the leading term is O(1/ε)) yields at order O(1/ε):

d2f̂−1

dη2
+ rηĝ−1 + 1 = 0,

d2ĝ−1

dη2
− rηĝ−1 = 0. (5.9)

Letting ξ = r1/3η, F = r2/3f̂−1, and G = r2/3ĝ−1 this simplifies the system of ODEs to

F
′′

+ ξG + 1 = 0, G
′′ − ξF = 0. (5.10)

with boundary conditions

F ′(0) = 0, G(0) = 0. (5.11)

The other boundary conditions come from the requirement of matching to the outer solution:
F (ξ) → 0 and G(ξ) → −1/ξ as ξ →∞.

We note that this system of ODEs can be cast into the Airy equation with a complex
argument φ(z) = F + iG but we resorted instead to shooting to get the solution numerically.
The solution was obtained by shooting backward (which was the more stable direction) from
the ξ →∞ solution whose asymptotic behavior may be deduced from (5.10)

F ≈ − 2
ξ4

+
β

ξ10
, G ≈ −1

ξ
+

α

ξ7
(5.12)
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Figure 2: Comparison of the direct numerical solution (solid) and the boundary layer solution
(dashed) for Pe = 1000.

where α and β were adjusted numerically to obtain a solution which satisfied the boundary
conditions at ξ = 0. Before calculating higher order terms, we compared the boundary layer
solution against the solution from a direct numerical simulation of the advection-diffusion equa-
tion. Figure 2 shows a plot of the two solutions for Pe = 1000. The agreement suggests that
leading terms do indeed capture the asymptotic behaviour. The inner solution is thus well
described by

f̂in =
r−2/3

ε
F (ξ), ĝin =

r−2/3

ε
G(ξ). (5.13)

The final approximate solution to the coupled ODEs to leading order is the composite of the
inner and outer solutions (recovering all the scalings and letting δ = ε/r1/3ks)

f(y) =
S

Uks
f̂in =

S

Uks

r−2/3

ε
F

(
r1/3ks

ε
y

)
=

S

Uks

1
kuδ

F
(y

δ

)
(5.14a)

g(y) =
S

Uks
kuy ĝin ĝout =

S

Uks

r−2/3

ε
G

(
r1/3ks

ε
y

)
kuy

sin(kuy)

=
S

Uks

1
kuδ

G
(y

δ

) kuy

sin(kuy)
. (5.14b)

Armed with this we can compute the multiscale mixing measures 〈|∇pθ|2〉 for p = 0, 1,−1.

5.1.1 Variance

The variance is (N.B. only computing over 1/4 period)

〈θ2〉 =
1
2
(
〈f2〉+ 〈g2〉

)
=

1
2

4
l

(∫ l/4

0
f2(y)dy +

∫ l/4

0
g2(y)dy

)
(5.15)

letting η = y/δ : 0 → π/2kuδ

〈θ2〉 =
1
π

S2

U2k2
s

1
kuδ

(∫ π
2kuδ

0
F 2(η)dη +

∫ π
2kuδ

0
G2(η)

k2
uη2δ2

sin2(kuηδ)
dη

)
. (5.16)
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Figure 3: Mixing efficiencies for p = 1 denoted by x, p = 0 denoted by *, and p = −1 denoted
by + for the steady shearing flow with r = 1 from direct numerical simulations with U fixed.
The solid lines are the asymptotic scalings.

Here we are interested in the scaling as δ → 0. In that case we are justified in replacing the
upper limit of the integral of F 2(η) by infinity since the outer solution is zero. More care must
be taken with the integral involving G2(η). We note that k2

uη2δ2/ sin2(kuηδ) is bounded by 0
and π/2 and hence we can apply Lebesgue’s dominated convergence theorem to obtain

〈θ2〉 ≈ 1
π

S2

U2k2
s

1
kuδ

(∫ ∞

0
F 2(η)dη +

∫ ∞

0
G2(η)dη

)
. (5.17)

Recall from section 2 that 〈θ2
0〉 = S2/κ2k4

s and hence the mixing efficiency is

M0 ∼ Cr1/3Pe5/6, C =
√

π

2
1√∫∞

0 F 2(η)dη +
∫∞
0 G2(η)dη

. (5.18)

Figure 3 shows M0 as a function of Pe from direct numerical simulations. The scaling fits
Pe5/6. There is only a 5% difference between the prefactor calculated from the boundary layer
solution and that calculated from the direct numerical simulation for Pe = 1000 (after rescaling
Pe to Pe). Remarkably, the Pe5/6 scaling is also observed for the HIT stirring (figure 1). The
scaling in r was also confirmed. The Pe5/6 scaling would hold for different values of r with a
corresponding change in the value of the prefactor.

5.1.2 Gradient variance

The gradient is

〈|∇θ|2
〉

=
k2

2
[
〈f2〉+ 〈g2〉

]
+

1
2
[
〈(f ′)2〉+ 〈(g′)2〉

]
(5.19)

noting that the first term was computed in the previous section we focus attention on the second
term. Computing the gradient we obtain

1
2
[
〈(f ′)2〉+ 〈(g′)2〉

]
=

〈(
S

Uks

1
kuδ2

F ′(y/δ)
)2
〉

+〈(
S

Uks

1
kuδ2

G′(y/δ)
kuy

sin(py)
+

S

Uks

1
kuδ

G(y/δ)
[

kuy

sin(kuy)

]′)2
〉

. (5.20)
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The leading order contribution to the integral is the square of the first term (1/δ2 versus 1/δ).
Hence

1
2
[
〈(f ′)2〉+ 〈(g′)2〉

]
≈ 1

π

S2

U2k2
s

1
kuδ3

[∫ π
2kuδ

0
(F ′)2(η)dη +

∫ π
2kuδ

0
(G′)2(η)

k2
uη2δ2

sin2(kuηδ)
dη

]
(5.21)

and by the same arguments as the previous section (DCT etc.) we obtain

〈|∇θ|2
〉
≈ 1

π

(∫ ∞

0
(F ′)2(η)dη +

∫ ∞

0
(G′)2(η)dη

)
S2

U2k2
s

1
pδ3

. (5.22)

Recall from section 2 that 〈|∇θ0|2〉 = S2/κ2k2
s and hence the mixing efficiency is

M1 ≈ CPe1/2, C =
√

π

2
1√∫∞

0 (F ′)2(η)dη +
∫∞
0 (G′)2(η)dη

. (5.23)

The boundary layer and direct numerical solution prefactors differ by approximately 1% for
Pe = 1000. Figure 3 shows the scaling of M1 from the direct numerical solution that confirms
the Pe1/2 scaling. The scaling in r was also confirmed. Interestingly, stirring at small scales
does not enhance the mixing efficiency on small scales. This is because the decrease in gradient
variance due to stirring on small scales is compensated by the increase in gradient variance in
the boundary layer.

5.1.3 Inverse gradient variance

The inverse gradient variance is

〈|∇−1θ|2〉 = 〈|∇−1(f(y) sin(ksx) + g(y) cos(ksx))|2〉 (5.24)

This is the trickiest of the three multiscale mixing measures. We can simplify the integral by
noting that the leading Fourier component of g(y) is zero. Expanding f(y) in a Fourier series

f(y) =
∞∑

n=0

fn cos(nkuy) (5.25)

we obtain

∇−1(f(y) sin(ksx)) =
∞∑

n=0

ks

k2
s + n2k2

u

fn sin(nkuy) sin(ksx)̂i +

nku

k2
s + n2k2

u

fn sin(nkuy) cos(ksx)̂j (5.26)

and

〈|∇−1(f(y) sin(ksx))|2〉 =
∞∑

n=0

|fn|2

k2
s + n2k2

u

=
1
k2

s

|f0|2 +
1
k2

u

∞∑
n=1

|fn|2

n2 + r2

≤ 1
k2

s

|f0|2 +
1
k2

u

∞∑
n=1

|fn|2

n2
≤ 1

k2
s

|f0|2 +
1
k2

u

π

6
sup

n
|fn|2. (5.27)
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Computing the first Fourier coefficient

|f0| =
1
π

∫ l/4

0
f(y)dy =

1
π

S

Uks

∫ ∞

0
F (η)dη (5.28)

and recalling from section 2 that 〈|∇−1θ0|2〉 = S2/κ2k6
s we obtain the large scale mixing efficiency

scaling

M−1 ∼ CPe (5.29)

where C is a prefactor depending on the integral of F (square of the mean versus the mean of
the square). Figure 3 of the direct numerical solution confirms the Pe scaling. The boundary
layer and direct numerical solution prefactors differ by 15%.

We note two interesting things; first to leading order there is no dependence on r even though
we might have expected that increased shear would increase mixing on large scales (see section
3). Second we expect that the next order term would be proportional to M0 i.e. that

M−1 ∼ Pe + r1/3Pe5/6. (5.30)

Figure 4 shows a plot of M−1/Pe5/6 versus Pe1/6 from direct numerical simulations. A very
non-rigorous check of the scaling involves comparing the slope of the line in figure 4 to the
prefactor above. The slopes differ by 20%. Note in that plot the current limit of large Péclet
and fixed r requires r < 0.1

√
Pe i.e. r < 3 (δ < 1).

There are still some things we do not understand. Are there universal scalings in Pe? Namely
for the steady flow and the Zeldovich sine flow we get the same scalings. Do these scalings appear
for other flows with this source?

5.2 Regular perturbation expansion

We now seek the behaviour of the multiscale mixing efficiencies for r � 1, Pe fixed. Going back
to our system of ODEs and setting ỹ = kuy we obtain

Pe

r2
sin(ỹ)f =

[
− 1

r2
+

d2

dỹ2

]
g (5.31a)

−Pe

r2
sin(ỹ)g =

[
− 1

r2
+

d2

dỹ2

]
f +

√
2S

κk2
s

1
r2

. (5.31b)
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Now we perform a regular perturbation expansion in powers of r−2:

f =
∞∑

n=0

fnr−2n, g =
∞∑

n=0

gnr−2n (5.32)

At O(1) we obtain

f ′′0 = 0 → f0 = const, g′′0 = 0 → g0 = const (5.33)

continuing as usual we obtain at O(r−2)

Pe sin(ỹ)f0 = −g0 + g′′1 , − Pe sin(ỹ)g0 = −f0 + f ′′1 +
√

2S

κk2
s

. (5.34)

The average over a period of the first and second equations implies g0 = 0 and f0 =
√

2S/κk2
s .

Thus, f1 = const, and g1 = −(
√

2S/κk2
s)Pe sin(ỹ) + const. Continuing, we obtain at O(r−4):

Pe sin(ỹ)f1 = −g1 + g′′2 , − Pe sin(ỹ)g1 = −f1 + f ′′2 . (5.35)

The average over a period of the first and second equations imply

f1 = −
√

2
2π

S

κk2
s

Pe2, g1 = −
√

2S

κk2
s

Pe sin(ỹ). (5.36)

Hence to leading order the solution is

θ ≈
√

2S

κk2
s

[(
1− Pe2

2πr2

)
sin(ksx)− Pe

r2
sin(ỹ) cos(ksx)

]
. (5.37)

Given the asymptotic solution for r � 1 at fixed Pe we compute the variance as (keeping only
the leading order term and the O(r−2) term)

〈θ2〉 ≈ S2

κ2k4
s

(
1− 1

π

Pe2

r2

)
(5.38)

which implies

M0 ∼ 1 +
1
π

Pe2

r2
. (5.39)

It is clear from this result that stirring on ever small scales (increased shear) ceases to suppress
the variance. This is because in the limit r � 1 the flow is diffusion dominated hence the mixing
efficiency goes to one.

The gradient to leading order is

∇θ ≈
√

2S

κk2
s

[(
1− 1

π

Pe2

r2

)
ks cos(ksx) +

Pe

r2
sin(ỹ)k sin(ksx)

]
î +[

−Pe

r2
cos(ỹ) cos(ksx)

]
ĵ (5.40)

and so the gradient variance is

〈|∇θ|2〉 ≈ S

κk2
s

(
1− 1

π

Pe2

r2

)
(5.41)
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which implies the mixing efficiency is identical on small and intermediate scales M1 = M0.
The inverse gradient to leading order is

∇−1θ ≈
√

2S

κk2
s

[
1− 1

π

Pe2

r2

k

k2
s

sin(ksx) +
Pe

r2
sin(ỹ)

ks

k2
s + p2

cos(ksx)
]
î +[

−Pe

r2
cos(ỹ)

p

k2
s + p2

cos(ksx)
]
ĵ (5.42)

and hence the inverse gradient variance is

〈|∇−1θ|2〉 ≈ S

κk6
s

(
1− 1

π

Pe2

r2

)
(5.43)

and hence M−1 = M0 (as suspected). Thus in the limit r � 1 and Pe fixed all of the efficiencies
are the same.

Summarizing the different limits, we find that the norms scale differently in Pe for fixed r
and the scalings were confirmed with the direct numerical solution. However, the norms behave
similarly for fixed Pe and r � 1 where the flow is diffusion dominated.

6 Bounds on the multiscale mixing efficiencies with scalar decay

Now consider the advection-diffusion equation for the concentration of a passive scalar θ(x, t)
which has a slow decay rate α maintained by a body source s(x) with spatial mean zero:

∂θ

∂t
+ u · ∇θ = κ∆θ + s(x)− αθ (6.1)

where κ is the molecular diffusivity. The decay rate may have various interpretations such
as the decay rate due to chemical kinetics, or radiative relaxation in meteorology (relevant
for the sphere). We follow the procedure of TDG which was used to derive upper bounds on
mixing efficiency for α = 0 to derive upper bounds on 〈|∇pθ|2〉 for p = 0, 1,−1 when α 6= 0.
We re-define the advection-diffusion operator and its formal adjoint to include the slow decay:
Lα := ∂t + u · ∇ − κ∆− α and L†α := −∂t − u · ∇+ κ∆− α. Now we proceed with computing
bounds on the multiscale mixing efficiencies.

6.1 Bounds on the variance

Following the TDG procedure, we perform the following optimization:

〈θ2〉 ≥ max
ϕ

min
θ̃
{〈θ̃2〉 | 〈θ̃(u · ∇ϕ + κ∆ϕ− αϕ)〉 = −〈ϕs〉} (6.2)

upon applying the Cauchy-Schwarz inequality and maximizing over ϕ we obtain

〈θ2〉 ≥ 〈sMα
0 s〉 (6.3)

where Mα
0 := (LαL†α)−1. Substituting the definition of Lα and restricting to HIT

〈sMα
0 s〉 = 〈s{κ2∆2 − uu : ∇∇+ κ(2∇u · ∇∇+∇u · ∇)− αu · ∇ − 2ακ∆ + α2}−1s〉

= 〈s{κ2∆2 − (U2/d)∆− 2κα∆ + α2}−1s〉. (6.4)
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The variance in the absence of stirring is

〈θ2
0〉 = 〈s{κ2∆2 − 2κα∆ + α2}−1s〉 (6.5)

and hence an upper bound on the mixing efficiency is

(Mα
0 )2 ≤ 〈s{κ2∆2 − 2κα∆ + α2}−1s〉

〈s{κ2∆2 − (U2/d)∆− 2κα∆ + α2}−1s〉
. (6.6)

In Fourier space this is

(Mα
0 )2 ≤

(∑
k

|ŝ(k)|2

κ2k4 + 2καk2 + α2

)(∑
k

|ŝ(k)|2

κ2k4 + (U2/d + κα)k2 + α2

)−1

. (6.7)

Clearly, the upper bound depends on the Fourier transform of the source function s. In the next
section we investigate the high-Pe behaviour of Mα

0 for a measure valued source. To determine
the high-Pe behaviour we approximate the sums by integrals and take the limit of infinite volume
noting that the α term allows the integrals to converge:

(Mα
0 )2 .

(∫ ∞

0

|ŝ(k)|2kd−1ddk

k4 + 2καk2 + α2

)(∫ ∞

0

|ŝ(k)|2kd−1ddk

κ2k4 + (U2

d + 2κα)k2 + α2

)−1

. (6.8)

Letting ξ= k
√

κ
α in d-D we obtain:

(Mα
0 )2 .

(∫ ∞

0

|ŝ(ξ
√

α
κ )|2ξd−1dξ

ξ4 + 2ξ2 + 1

)(∫ ∞

0

|ŝ(ξ
√

α
κ )|2ξd−1dξ

ξ4 + (P̃e
2
+ 2)ξ2 + 1

)−1

. (6.9)

where P̃e := U`/κ = U/
√

κα where ` =
√

κ/α is the diffusive length scale i.e. the distance
travelled by diffusion before decay.

6.1.1 Delta function source

Consider a delta function point source so that there is a separation of scales between the source
and the stirring field. In d = 2 we obtain∫ ∞

0

ξdξ

ξ4 + 2ξ2 + 1
=

1
2
,

∫ ∞

0

ξdξ

ξ4 + (P̃eP̃e
2
+ 2)ξ2 + 1

=
1
2

ln ξ1
ξ2

ξ1 − ξ2
(6.10)

where ξ1 and ξ2 are the solutions of the quartic equation:

ξ1,2 =

(
P̃e

2
+ 2
)
∓ P̃e

2
√

1 + 4P̃e
−2

2
=

(
P̃e

2
+ 2
)
∓ P̃e

2
(
1 + 2P̃e

−2 − 2P̃e
−4

+ ...
)

2
.

In the large P̃e limit the mixing efficiency is

Mα
0 .

P̃e

2 ln P̃e
. (6.11)
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Note this is a distinct scaling as regards κ compared to the problem with α = 0. An efficiency
scaling of ∼ P̃e implies the eddy diffusivity would scale as

√
κ. For d = 3 we have∫ ∞

0

ξ2dξ

ξ4 + 2ξ2 + 1
=

π

4
,

∫ ∞

0

ξ2dξ

ξ4 + (P̃e
2
+ 2)ξ2 + 1

=
π

2

√
ξ1 −

√
ξ2

ξ1 − ξ2
. (6.12)

In this limit the mixing efficiency is

Mα
0 .

1
2

√
P̃e. (6.13)

Thus for d = 3 we also have an anomalous scaling in P̃e with an equivalent diffusivity propor-
tional to κ1/4.

6.2 Bounds on the gradient variance

For the gradient variance the optimization problem is

〈|∇θ|2〉 ≥ max
ϕ

min
θ̃
{〈|∇θ̃|2〉 | 〈∇θ̃ · (uϕ + κ∇ϕ− α(∇(∆−1ϕ)))|2〉 = −〈ϕs〉} (6.14)

upon applying the Cauchy-Schwarz inequality (we will revisit this approach at the end of this
section) we obtain

〈|∇θ|2〉 ≥ max
ϕ

≤ 〈sϕ〉2

〈|κ∇ϕ + ϕu− α(∇(∆−1ϕ))|2〉
. (6.15)

Under the assumptions of HIT

〈|κ∇ϕ + uϕ− α(∇(∆−1ϕ))|2〉 = 〈κ2|∇ϕ|2 + |u|2ϕ2 + α2|∇(∆−1ϕ)|2 − 2κα∇(∆−1ϕ) · ∇ϕ〉.(6.16)

The solution to the optimization problem is (after some algebra)

〈|∇θ|2〉 ≥ 〈sMα
1 s〉 (6.17)

where Mα
1 := (−κ2∆ + U2

d + 2κα + α2∆−1)−1. Given the gradient variance in the absence of
stirring we obtain a bound on the small scale mixing effciency

(Mα
1 )2 ≤ 〈s{−κ2∆ + 2κα + α2∆−1}−1s〉

〈s{−κ2∆ + U2

d + 2κα + α2∆−1}−1s〉
. (6.18)

In Fourier space the bound is expressed as

(Mα
1 )2 ≤

(∑
k

|ŝ(k)|2

k2(κ + α
k2 )2

)(∑
k

|ŝ(k)|2

k2(κ + α
k2 )2 + U2

d

)−1

. (6.19)

Once again since we are interested in the high-P̃e behaviour we approximate the sums by
integrals

(Mα
1 )2 .

(∫ ∞

0

k2|ŝ(k)|2kd−1ddk

κ2k4 + 2καk2 + α2

)(∫ ∞

0

k2|ŝ(k)|2kd−1ddk

κ2k4 + (U2

d + 2κα)k2 + α2

)−1

. (6.20)
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Letting ξ = k
√

κ
α in d-D we obtain:

(Mα
1 )2 .

(∫ ∞

0

ξ2|ŝ(ξ
√

α
κ )|2ξd−1dξ

ξ4 + 2ξ2 + 1

)(∫ ∞

0

ξ2|ŝ(ξ
√

α
κ )|2ξd−1dξ

ξ4 + (U2

κα + 2)ξ2 + 1

)−1

. (6.21)

Clearly the convergence of these integrals depends on the property of the source. We must have
for α 6= 0, s ∈ H−1.

Here we re-examine the application of the Cauchy-Schwarz inequality. The analysis can be
improved by evaluating

min
θ̃
{〈|∇θ̃|2〉 | 〈∇θ̃ · (uϕ + κ∇ϕ− α(∇(∆−1ϕ)))〉 = 〈ϕs〉} (6.22)

with functional F := 〈12 |∇θ̃|2+λ(v·∇θ̃−ϕs)〉 where v = uϕ+κ∇ϕ−α(∇(∆−1ϕ)). As in section
3 the solution to the optimization problem depends on the two-point correlation statistics of the
velocity field

〈|∇θ|2〉 =
〈ϕs〉2

〈(∇ · v)(−∆−1)∇ · v〉
≥ 〈ϕs〉2

〈|v|2〉
. (6.23)

In the case of HIT a strict application of the Cauchy-Schwarz inequality yields the optimal
bound. Again this analysis does not apply to either the variance or inverse gradient variance.

6.2.1 Delta function source

As for the case of α = 0, a δ-function or white noise source will cause the integrals in (6.21) to
diverge and thus Mα

1 = 1 for δ-function sources.

6.3 Bounds on the inverse gradient variance

For the inverse gradient variance the variational problem is

〈|∇−1θ|2〉 ≥ max
ϕ

min
θ̃
{〈|∇−1θ̃|2〉 | 〈∇∆−1θ̃ · ∇(u · ∇ϕ + κ∆ϕ− αϕ)|2〉 = 〈ϕs〉} (6.24)

upon applying the Cauchy-Schwarz inequality

〈|∇−1θ|2〉 ≥ max
ϕ

〈sϕ〉2

〈|∇(u · ∇ϕ + κ∆ϕ− αϕ)|2〉
. (6.25)

Under the HIT assumptions

〈|∇(u · ∇ϕ + κ∆ϕ− αϕ)|2〉 = 〈κ|∆∇ϕ|2 +
Γ2

d
|∇ϕ|2 +

U2

d
(∆ϕ)2 + α2|∇ϕ|2 − 2ακ∇ϕ ·∆∇ϕ〉.

The solution to the optimization problem is (after some algebra)

〈|∇−1θ|2〉 ≥ 〈sMα
−1s〉 (6.26)

where Mα
−1 := (κ2∆3 − (Γ2/d)∆ + (U2/d)∆2 + 2κα∆2 − α2∆)−1. Given the inverse gradient

variance in the absence of stirring we obtain a bound on the large scale mixing effciency

(Mα
1 )2 ≤ 〈s{κ2∆3 + 2κα∆2 − α2∆}−1s〉

〈s{κ2∆3 − Γ2

d ∆ + U2

d ∆2 + 2κα∆2 − α2∆}−1s〉
. (6.27)
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In Fourier space the bound is expressed as

(Mα
−1)

2 ≤

(∑
k

|ŝ(k)|2

κ2k6 + 2καk4 + α2k2

)(∑
k

|ŝ(k)|2

κ2k6 + (U2

d + 2κα)k4 + (α2 + Γ2)k2

)−1

. (6.28)

Once again since we are interested in the high P̃e behaviour we approximate the sums by
integrals

(Mα
−1)

2 .

(∫ ∞

0

|ŝ(k)|2kd−1ddk

k2(κ2k4 + 2καk2 + α2)

)(∫ ∞

0

k2|ŝ(k)|2kd−1ddk

k2(κ2k4 + (U2

d + 2κα)k2 + α2 + Γ2)

)−1

.(6.29)

Letting ξ = k
√

κ
α in d=D we obtain:

(Mα
−1)

2 .

(∫ ∞

0

|ŝ(ξ
√

α
κ )|2ξd−1ddξ

ξ2(ξ4 + 2ξ2 + 1)

)(∫ ∞

0

|ŝ(ξ
√

α
κ )|2ξd−1ddξ

ξ2(ξ4 + (P̃e
2
+ 2)ξ2 + 1 + Γ2

α2 )

)−1

. (6.30)

In d=2 there may be an infra-red divergence problem. The integrals converge if |ŝ(k)|2 = f(k)
if f(k) ≈ kβ where β > 0 (we require mean zero sources as to prevent blow up at 0). This is our
only restriction on the source. How the Fourier transform decays as k → 0 indicates the large
scale structure of the source. Exploration of the bound’s behavior remains a task for the future.

6.3.1 Delta function sources

In d=3∫ ∞

0

dξ

ξ4 + 2ξ2 + 1
=

π

4
,

∫ ∞

0

dξ

ξ4 + (P̃e
2
+ 2)ξ2 + 1 + Γ2

α2

=
π

2

√
ξ1 −

√
ξ2

(ξ2 − ξ1)
√

ξ1ξ2
(6.31)

where ξ1 and ξ2 are roots of the quadratic equation:

ξ1,2 =
(
P̃e

2
+ 2
)
±
√
P̃e

4
+ 4P̃e

2 − 4Γ2

α2
. (6.32)

In the limit of P̃e � 1 we get to leading order in P̃e:

ξ1 = P̃e
2 − P̃e

2

√
1− 4

Γ2κ2

U4
≈ 1

2
P̃e

2

Pe2
λ

, ξ2 ≈ 2P̃e, ξ1 − ξ2 ≈ P̃e
2

√
1− 4

Γ2κ2

U4
(6.33)

hence ∫ ∞

0

dξ

ξ4 + (U2

κα + 2)ξ2 + 1 + Γ2

α2

=
π

2

√
2P̃e

2P̃e

√
P̃e

3

Pe2
λ

(6.34)

where Peλ = Uλ/κ where λ (a Péclet number using a length scale of the velocity field). Hence

(Mα
−1)

2 ≤ Pe2

Peλ
(6.35)

note that the efficiency may be larger when there is stronger shear Γ � 1 as was found in the
case of α = 0. Table 2 summarizes the high-Pe scaling for HIT in the case of α = 0 and α 6= 0
for a δ-function source.
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α = 0 d=2 d=3
M1 1 1
M0

Pe√
log Pe

√
Pe

M−1
PeL

λ
√

log(1+L2/λ2)
Pe
√

L
λ

α 6= 0 d=2 d=3
Mα

1 1 1
Mα

0
P̃ e√
log P̃ e

√
P̃ e

Mα
−1 ? P̃ e√

Peλ

Table 2. High-Pe scalings of the multiscale mixing efficiencies for a δ-function source. The
? indicates that the scaling depends on |ŝ(k)| as k → 0 and P̃e := U`/κ = U/

√
κα where

` =
√

κ/α.

7 Conclusions and future work

Multiscale mixing efficiencies are susceptible to rigorous analysis. Upper (lower) bounds on mul-
tiscale mixing efficiencies were obtained from lower (upper) bounds on appropriately weighted
variances. Bounds on large-scale mixing are sensitive to small-scale stirring. The bounds can be
sharp (sweeping flows on the torus). Furthermore, the efficiency of some complex random flows
can be understood via simple steady state scalings. Finally, the inclusion of a decay term in the
advection-diffusion equation introduces new features namely new high-Pe dependences of the
equivalent diffusivity on the molecular diffusivity.

The current analysis has only answered some of the questions posed in the introduction
hence, there are exciting problems that are the subject of current and future investigation. For
example, extending the current analysis to bounded domains (sphere etc.) and formulating an
appropriately constrained variational problem for the optimal (source specific) stirring field.
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