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1 Introduction

The surface temperature of the ocean is different at different points. Can this differential
heating drive a large scale flow? If so how large can that flow be? In this report we analyze
a simple model of the ocean and construct rigorous upper bounds on the heat transport that
can be induced by a horizontal temperature gradient that is imposed on the top surface. We
consider the model shown in figure 1, where the top surface has an imposed temperature
distribution with a cosine profile AT cos kx + T,y, and make a linear transformation of the
true temperature to give the new non-dimensional temperature variable T', which is equal
to cos kx on the top boundary. This set up is known as horizontal convection [1]. Notice

T=cos(kx), u=0
( z=1
| - Z
i i X
| z=0
x=0 u=0 x=L

Figure 1: Set up of the horizontal convection problem

that the problem is in contrast to the usual Rayleigh-Bénard problem, where the motion
is driven by vertical temperature gradients. In horizontal convection, it is the horizontal
temperature gradient that drives the flow.

We use non-slip boundary conditions top and bottom and periodic side wall conditions,
and we also need to specify a bottom boundary condition on the temperature. The box
has dimensional width W and depth H and we non-dimensionalize these to give the new
width L = W/H and height 1. For horizontal periodicity, we also require that k = 27n/L
for some n € N.

We aim to construct rigorous bounds on the total heat transfer rate through the layer,
which we measure using a horizontal Nusselt number. We do this for variety of different
temperature boundary conditions on the bottom of the layer to investigate the dependence
of the scaling of the horizontal Nusselt number on the conditions there. This is because
since horizontal convection is driven by temperatures at the top surface only, we want to
find a bound that is independent of what is happening at the lower boundary. Also we
don’t have a good idea of what is the true oceanographic boundary condition there.

We use the Boussinesq approximation to reduce the equations to the standard non-
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Quantity | Approximate value
v 1.52 x 107 %m2s71

K 1.4 x 107 "m?2s71
gaAT 1072ms—2

W 2.0 x 10"m

H 4 x 103m

k 1.25 x 1073

Ry 3 x 1021

o 10.9

L 5.0 x 104

Figure 2: Approximate oceanographic values of some parameters, from [2]

dimensional form:

u+u-Vu+ Vp=0oRyTz+ oV?u, (NS)
T+u-VT = VT, (H)
V.-u=0, (€)

where u is the non-dimensional velocity field, T is the non-dimensional temperature and p
is the non-dimensional pressure. o = v/ is the Prandtl number and Ry = H3garAT/kv
is the horizontal Rayleigh number. v is the kinematic viscosity, « is the thermal diffusivity
and g is the acceleration due to gravity. The table in figure 2 shows the approximate
oceanographic values of some of these quantities. Note also that the governing equations
do not possess a static solution, unlike the Rayleigh-Bénard problem, since from (N'S), we
would need to satisfy Vp = cRgTz. Since T must have some z-dependence in order to
satisfy the boundary conditions, 7z cannot be gradient.

Thermal energy transport was considered by Sandstréom in the early 20th Century. He
proposed the following theorem, (quoted from [3]):

Sandstrom’s theorem: “A closed steady circulation can only be maintained in
the ocean if the heat source is situated at a lower level than the cold source.”

This implies that horizontal convection cannot induce a large-scale flow and is therefore
unimportant in the oceanic context. However, the theorem as it stands is not strictly true.
For example, Jeffreys [4] constructed a counter example to Sandstrom’s theorem, the “hula
hoop” model, shown in figure 3. The fluid is contained in an annulus and heat is applied
on the right hand side and the fluid is cooled on the left. Jeffreys argued that this heating
and cooling will set the fluid in motion, no matter at what height the heating and cooling
are applied, and thus we can heat near the top and cool near the bottom, as shown, and
still induce a flow in the fluid. In some ways, this counter example is a bit contrived, but it
is certainly a rigorous case where Sandstrom’s theorem breaks down.

A second counter example is provided by Rossby [5], who performed some experiments
on horizontal convection, using a set up similar to that in figure 1 except that he imposed
the differential heating on the bottom surface and had insulating temperature boundary
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Heat here

Cool here

Figure 3: Schematic diagram of Jeffreys’ hula hoop model
Hot Cold Hot

Figure 4: Schematic diagram showing the fluid motion. Note the strong downward motion
in the central plume and large horizontal flows in the top boundary layer. There is also a
slow recirculation in the rest of the layer.

conditions on the side and top walls. He found that there was a plume of hot rising water,
over the hottest point on the bottom boundary. This rising motion induces a flow along the
bottom of the box from the cold part to the hot part, and there is also a slow recirculation
returning the fluid from the top of the box back down to the bottom.

However, even though Sandstrom’s theorem is not completely true, in fact the main
idea is correct: that thermal forcing at a single level as in the Rossby experiment is a
relatively inefficient way to drive a flow when compared with Rayleigh-Bénard convection,
for example, as we shall show in this report.

In the oceanic context the differential heating is at the top of the layer, which is why
we consider this scenario rather than Rossby’s though the two scenarios are linked via a
reflection in the horizontal mid-plane, coupled with reversing the sign of the temperature
field T. A schematic picture of the flow observed in numerical experiments (such as those
in [6, 7, 8, 9]) is shown in figure 4, which is also the reverse of the flow that Rossby observed
in his experiments. However, numerical simulations have only been performed for horizontal
Rayleigh numbers Rz up to about 108, and it is not clear whether or not the flow structure
in figure 4 persists into the oceanographic regime, in which Ry ~ 102%.

Rossby [5] provided a consistent scaling argument for the width of the boundary layer
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in the flow. He assumed that there is a top boundary layer of width ¢ in which the vertical
derivatives are of order §~! whilst the horizontal ones are of order unity. Then from (%),
balancing the advection term with the diffusion term, assuming temperature variations are
of order 1 gives ¢ ~ §~! and balancing the buoyancy term with the dissipation term in (N'S)
yields § ~ R;Il/ °,

Sandstrom [10] also proposed the following:

Sandstrém’s conjecture: “If a viscous and diffusive fluid is non-uniformly heated
from above then in the limit K — 0 with ¢ = v/ fixed, the motion in the fluid
disappears.”

To make this rigorous quantitatively, we need a measure of the “motion in the fluid”. Such
a measure is the maximum value of the streamfunction. However, the conjecture as stated
has not been proven. Instead we can prove a weaker result for horizontal convection in
the form of an anti-turbulence theorem. We need to define a notion of turbulence, used by
Frisch [11]:

The law of finite energy dissipation: “If in an experiment on turbulent flow, all
the control parameters are kept the same, except for the the viscosity, v, which
is lowered as much as possible, the energy dissipation per unit mass behaves in
a way consistent with a finite positive limit.”

This law is also known as the zeroth law of turbulence. In fact, this definition does not
exclude non-laminar flows in a boundary layer, but it does give a precise definition to work
with. Then we may propose

The anti-turbulence theorem: If the only forcing is non-uniform heating applied
at the surface of a Boussinesq fluid and if the viscosity, v, and thermal diffusivity,
k are lowered to zero, with o = v/k fixed, then in the limit the energy dissipation
€ also vanishes.

This is finally a result that can be proved rigorously, which was done by Paparella and
Young [9], who assumed a zero flux condition (7, = 0) on the bottom boundary (where
the subscript denotes differentiation with respect to z). It relies crucially on the following
principle:

Boundedness principle for the temperature: For the set up shown in figure 1,
with an imposed temperature distribution on the top surface and a no flux
bottom temperature boundary condition, then at any time the temperature field
is bounded by the maximum and minimum values imposed on the top surface
or the maximum and minimum values of the initial temperature distribution.

This can be proved from (#). The derivation for a similar (but slightly more complicated)
case is given in section 4.1. If the system is allowed to relax for a sufficiently long time,
then we expect that the temperature is everywhere bounded by the maximum and minimum
values at the top surface, that is, it lies in the range [—1,+1].

We shall use an overbar to denote the horizontal and time average and angle brackets
to denote the space and time average:

1/t0/y0/ded (= [ =d
- ax t, -:/Tz.
2toyo Jo J—yo Jo Y 0
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Now the energy dissipation per unit mass € is given by v(|V4uy/?) where V4 and uy

are the dimensional versions of V and u. In non-dimensional units, this becomes € =

vk?(|Vu|?)/H*, and rearranging (u - (N'S)) we have

VK2R
T4

Taking ((1 — z) - (X)) gives (wT) = —Ty and so

€ =

(wT).

. 1//@214%1{ <—T|0> < 1//12{4%;1 _ rga AT
H H H
where the inequality makes use of the lower bound on the temperature field, thus proving
anti-turbulence.

In this report, we try to construct bounds on the strength of the convection for horizontal
convection. Often the Nusselt number is used as a measure of the strength, but this measures
the heat flux in the vertical direction, whereas for horizontal convection it is the horizontal
heat flux that is of interest. Thus we need to define a horizontal Nusselt number Nug.
Ideally this would measure the total heat flux into (or equivalently out of) the top boundary,
ie.

—0 ask—0,

x(z,y,t)T.(z,y,1,1),
where x(z,y,t) equals 1 if T,(z,y,1,t) > 0 (corresponding to places where there is flux in)
and 0 otherwise (corresponding to flux out). With a zero flux bottom boundary condition
this equals @\1 /2. However, we don’t know which parts of the top boundary have heat
fluxes into the layer and which have fluxes out and thus we don’t know x. We might assume
a symmetric arrangement, in which if 7' > 0 at the top of the layer then there is a heat flux
out of the layer (i.e. T, < 0), and if ' < 0 then the heat flux is into the layer (i.e. T, > 0).
However, the solutions found in the numerics (see figure 4) are far from symmetric due to the
cold plume, and so we might expect the area of the top surface where x is 1 to be confined
to a small areas around the points where T' takes its maximum value. Thus, this definition
of the horizontal Nusselt number would be extremely hard to estimate mathematically, and
instead we propose an alternative formulation.
In [9], which considered a zero flux bottom boundary condition, the form
(VT])

Nun = 9Ty .
was used, where, since there is no static solution of the equations, we define the “conduction”
solution T, to be the steady solution of the horizontal convection problem where the fluid is
replaced by a solid (and thus we can neglect (N'S) and just solve (H) with u = 0), so T, is
the solution of V2T, = 0 together with the boundary conditions on 7. The justification for
the formula (1) can be seen if we take the time average of (#), integrate over the vertical
coordinate and take the average over the y-coordinate:

! /to/yo /1(( T), — Ty dodydt
UL )y — Lgg) Q2
2toyo Jo J—yo Jo Y
1 to Yo
L @ = 1) dya.
0 —Yo

= lim
to—00,50—00 2t0Yo

lim
to—r00,Yyo—+00
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Integrating with respect to x gives

to
Ju(z) = to—>oo,yo—>oo ST / / / (uT — T,) dzdydt

to
= (T2 — To) d. "dydt.
t0—>00,y0—>00 2toyo / / / ‘1 lo) da’dy

Jir is the average heat flux through a plane of constant x, which, in general, is not constant
as x varies, so to obtain a formula for the horizontal Nusselt number, we must take a
weighted average over x of the form f(z)Jg(x). Looking at the form of the flow in figure 4,
we want f to be positive in the left half (where the heat transport is expected to be in the
+z direction) and negative in the right half. A simple weighting function f satisfying these
requirements is —d7T'(x,y,1,t)/dz = ksinkz. Taking the average and integrating by parts
gives

ksinkxJg = cos kxT,|; — cos kxT|p, (2)

which equals cos kzT,|; with the zero flux bottom boundary condition. The horizontal
Nusselt number is this quantity normalized by the corresponding value for the “conduction”
state. Rearranging (T - (H)) gives

(IVT)?) = coskxT,|1 — TTs|o, (3)

and for a zero flux bottom temperature boundary condition, 77|y vanishes, meaning that
we obtain the form (1).

If instead we have a different bottom boundary condition for which the second equality
in (2) does not hold identically (such as fixed temperature there) then the term cos kzT%|o
is too difficult to estimate mathematically and so since we expect the fluxes through the
top boundary to be much larger than those through the bottom, we neglect this term and
in general we define the horizontal Nusselt number to be

coskaT.|1 ([VT]*) +TT.|o

Nug=—0—/m—— = —————
cos kzT,,|1 cos kxT,,|1

9y (4)

where the second equality is derived from (3).

In this report, rigorous bounds on the horizontal Nusselt number, as defined by (4), will
be sought for the problem of horizontal convection with the set up shown in figure 1, using a
variety of different bottom boundary conditions for the temperature. In section 2 we impose
a fixed flux condition, and in section 3 a fixed temperature boundary condition. We obtain
different scalings for the two cases and since the ocean floor is neither a perfect conductor
nor a perfect insulator, in section 4 we use a boundary condition that can smoothly move
between fixed flux and fixed temperature, and investigate how the scalings change as we
move away from these two limits.

2 Fixed Flux Bottom Boundary Condition

We consider the horizontal convection set up shown in figure 1 with fixed positive heat flux
T, = —F at the bottom of the layer. With this set up, the “conduction” solution 7, is given
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by
cosh kz
T. = p— coskz + F(1 — z).

Then the denominator of the horizontal Nusselt number (4) is

S— k
coskxT,|1 = 5 tanh k.

If F > 0, corresponding to a heat flux into the layer, then the temperature field is bounded
from below for all time by the minimum of —1 and inf(7'|;—¢). Assuming that we have left
the system to relax for long enough, then T' > —1 everywhere. However, with this particular
boundary condition, there is no analogous upper bound on the temperature field.

2.1 Bound on the Horizontal Nusselt Number Using the Lower Bound
on the Temperature

We try to find the maximum value of the horizontal Nusselt number by using the Doering—
Constantin background method [12]. We let T'(x,t) = 7(z, 2)+6(x, t), where the background
field 7 satisfies the boundary conditions on T' and therefore 6 satisfies the homogeneous
boundary conditions (§ =0 at z =1 and 6, = 0 at z = 0). Note that in contrast to [12], in
which 7 is a function of z only, here 7 must depend on the horizontal coordinate in order
to satisfy the boundary conditions. We consider the variational formulation to bound the

numerator of (4):
L =coskxT,|; —a(u- (NS)) — bl (H)),

where a and b are constant Lagrange multipliers. The first term in this expression is
the term we are trying to bound and from this we subtract the constraints we wish to
satisfy, multiplied by the Lagrange multipliers a and b. Ideally we would require the full
equations (NS,H,C) to be satisfied at every point in the domain for all times, but this is
too complicated to do analytically. Rearranging gives

£ = (V1] = ao|Vu? = (b—1)|VO]? + (b - 2)0V?7 — bu - V7)
+ aocRy{wT) — FT|og + 2F0lg, (5)

and by taking ((1—2)-(H)), we get (wT) = F —T|o. Using the fact that, as long as F' > 0,
the temperature field is bounded from below by —1, and assuming that acRy — F > 0 (to
be checked a posteriori), we can bound the final three terms:

aoc Ry (wT)—FT|o+2F0|g = acRgF —(ac Ry — F)T|o—2F7|o < ac Ry (F+1)—F —2F7|,.

All the terms in this expression are either independent of # and u, or depend linearly on these
quantities or are quadratic negative semi-definite terms, except for the term (—bbu - V7).
If this term is removed the whole expression is bounded above, and straightforward to
maximize. Thus we first bound this this term by quadratic semi-definite quantities and
then find and solve the Fuler—Lagrange equations for the resulting functional to obtain a
bound.

Our choice of background field 7 is designed to minimize the worst case estimate of
(—bbu - VT). We should ideally like to set V7 = 0 everywhere, but then we cannot satisfy
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the boundary conditions. Instead we choose V7 = 0 everywhere except for a boundary
layer top and bottom. We set 7 = 79(z) + 71(2) cos kx where

_J F(éo— 2), for 0 < z < 4o,
TO_{ 0, for §p < z < 1, (6)
] 0, for0 < z<1-—141, 7
= %, for1 —0; < z<1, )

Now we can estimate (—bfu - V7). This only has contributions from the top and bottom
boundary layers, and using the estimates (27), (28) and (30) in appendix A, we obtain

(=b0u - V) < of|Vuf?) + B( V),

where
Fégco d1c1
ozzbmax( o2 ,W(l‘f‘Qkél) s
Fog 201
=b|—+——(1+2kb71) | .
B (2(:0 + 7r201< + 1)>
So

L <(|V7]* = (a0 —a)|Vu]®*— (b—1-0)|VO*+ (b—2)0V?T) +ac Ry (1+F) — F(1+2Fd).
The Euler—Lagrange equations for an extremal value of the functional are

Vp —2(ac — a)V*u = 0, (8)
—2(b—1- B3V = (b—2)V?r, (9)

where the term Vp has been added to ensure incompressibility, yielding the solution

B —(b—-2)
T 2-1-5)

which maximizes the functional as long as the spectral constraints ac > a and b—1> (3
are satisfied. Substituting in the expressions for the extremalizing fields u* and 6%, we get
a bound on L. Dotting (9) by 6* and averaging, we obtain an equation that allows us to
simplify the bound, giving

o* (r—T.), u*=0,

b—2)2 .
£ S <|V7‘2>+ﬁ (<V7‘ . V(T — TC)> — F(’T — TC)‘O)+CZO'RH(1+F)—F<1—|-2F50)
For our choice of 7,
1 k%
2\ _ 12 1
(197%) =60 + 5= + =¢*,

k
(VT -VT.) =F?5 + 5 tanh &,
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meaning that

L <

=2 6 4b—1-p)

1 k% (b—2)? 1 k%
e %, 6 2

+— - Etanhk—l—FQ(l —50))
+aoRy(1+ F)—F —§F%  (10)

To obtain the tightest bound we need to minimize (10) subject to the spectral con-
straints. These are of the form

R S
ac > bmax(Pcp,Qc1), b—1>1b (_ + _> ,
Co C1

where P, (), R and S are independent of a, b, ¢g and c;. Thus they are satisfied if and only
if
ao(b ao(b

-1 -1
a0b=1, ppips@ @l spa . og
b2 c1 b2 co

A suitable value of ¢g/c1 can be chosen if and only if

ac(b—1) fac(b—1)
b2 ( b?

— PR — QS) >0,
and since ao(b—1)/b? > 0, the spectral constraints are equivalent to ac > (PR+QS)b?/(b—

1).

Since both b%/(b—1) and (b—2)2?/4(b— 1 — 3) are minimized at b = 2 (and the quantity
in the bracket multiplying (b — 2)?/4(b — 1 — ) in (10) is positive) this means that b = 2
is optimal in that it minimizes the right hand side of (10). We should also minimize ac, so

we set 5 o3 )
F=6 46
ao = ( 7T20 + 7_‘_—41(1 +2k51)2> .

For sufficiently large Rayleigh numbers, the value of Jy is insignificant at leading order but
we want d; to be as large as possible and so we set dg = 0 and ac = 465(1 + 2ké1)?/7*,
leaving us with

1 k%6, 462
LS —+ ——+—
- 20 + 6 * md
For sufficiently large Ry, the leading order terms will be 1/20; + 46? Ry(1+ F)/7%. These
are minimized with the choice §; = (7/2)%3(Ry (1 + F))~'/3, yielding the leading order
bound £ < 3(Ry(1+ F))Y/3/22/37%/3 and so

(1+2ké1)*Ry(1+ F) - F.

3-2181 4+ P)Y3 13

N <
UYH S T Ak tanh b

(11)

to leading order.
Note that we assumed acRpy — F' > 0, which is always true for the given scalings as
Ry — oo with F fixed. However, if F is very large (i.e. if F3(1+F)% > (1+2k61)5 Ry /47?)
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we cannot use the lower bound on 7. We could choose ac Ry — F' = 0 yielding the leading

order bound
< | =,/ = -
Nug S (71_2“ ja + F )/2ktanhk, (12)

2F?
Nupy < —22
YH ~ ktanhk’

if RY° < F < Ry and

(13)

if F' 2 Ry. However, this is probably not optimal since we have been forced to choose
acRy — F > 0 in order to use the fact that T" > —1 everywhere. For F' > 0, we might
expect that T' is well above —1 at the bottom boundary. Instead in the next section we
bound the horizontal Nusselt number without using the bound on the temperature to see
if we can get a better bound for Nug when F is large.

2.2 Bound on the Horizontal Nusselt Number Without Using the Lower
Bound on the Temperature

As F becomes larger, since there are steep negative temperature gradients at the bottom
boundary, we expect that the lower bound on the temperature there gives a poor estimate
of the actual temperature. To attempt to find a better scaling, we do not use this lower
bound and instead we must find an alternative way to bound the final three terms in (5).
We have

ao Ry (wT) — FT|o + 2F6|o = (aoc Ry — F)(w(r + 0)) + F? — 2F7|o,
and now the sign-indeterminate quadratic terms contributing to £ are
((acRpg — F)wh — bbu - V),

which we bound by a(|Vul|?) + 3(]V|?) for suitable o and 3. We choose the background
field 7 so that the integrand is zero over as much of the layer as possible. To do this we use
T = 710(2) 4+ 71(2) cos kz where 71 is again given by (7) and

T_{F(cSo—z)—WR%f_m(l—éo), for 0 < z < do,
0 =

_(aoRu=F) ) _ ), for do <z <1,

which means that the integrand is zero everywhere except in the boundary layers, and
estimate a and (3 using the bounds in appendix A.

Proceeding in the same way as for the small F' case, we obtain the FKuler—Lagrange
equations

Vp —2(ac — a)V?*u = (acRy — F)72,
—2(b—1-p3)V?0 = (b—2)V?r,
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which have the same solution for 8, but now the solution for u is non-zero. Substituting in
the extremal values u* and 6* gives

_9)\2
L< (VP + % (V7 V(7 —T)) ~ Flr ~Tlo) + (a0 Rt — F){w*7)
L F?_9F <F60 - Wu - 50)> .

(w*T) is estimated in equation (34) in appendix B, and we proceed in the same way as
for small F. The best choice at leading order for Ry — oo is g = 0, aoc = 467 /74,

6y = /5 )21/5. 32/5R%5 and b = 8/3 and we get

2/5
211/5RH/
33/578/5k tanh k~

Nug < (14)

/

and so this bound is not as good as (11). However, when F' > Rllq5 we can show that
Nupg < (363 — 862 + b+ 8)F2/2b(b — 1)k tanh k at leading order. This bound is minimized
when b =~ 1.87, giving

0.46F

ktanh k’

thus improving the prefactor of the corresponding results (12) and (13) in the previous
section, but not the order of magnitude of the bound.

Nupg S

2.3 Application to the Real Ocean!

The total heat flux from the Earth’s interior is Fg = 3 x 10'W. For a large ocean, such as
the Pacific or Atlantic, this means that the non-dimensional flux on the ocean floor is

FrH

F=_tET o
cpAAT 59,

where H ~ 4000m, ¢ = 4184Jkg 'K ! is the specific heat of the water, p = 1000kgm 3
is the density, A = 47(6.4 x 10%)2m? is the area of the surface of the Earth. Thus the
R%g scaling is appropriate here and with k ~ 1.25 x 102 we obtain Nugy < 10'3. The

~

dimensionalized heat flux in an ocean covering the whole Earth would be approximately

cpARAT cpARAT
kH
and thus for a large ocean, such as the Pacific or Atlantic, the heat flux due to horizontal

convection is bounded by 1022yW where « is the proportion of the Earth’s surface covered
by the ocean.

sinkxJyg = cos kxT,|; ~ 1022w,

2.4 How does this Differ from the Rossby Scaling?

Recall that Rossby [5] proposed a scaling for the boundary layer, in which 8/0z ~ 671,
0/0x ~ 1 and u ~ (§72,0,6°1). With this scaling Nuyg ~ (|VT|?) ~ R11q/57 whereas our

rigorous bound only gives Nug < COR%?’ for a constant Cj.
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It turns out that the difference in the scalings comes in the bound for (—bfu - V1),
specifically when we come to estimate fll_ 5, lwo|dz. Our estimate (28) bounds this quantity

by
25%(/1 2 L, )
—lec widz + — 02dz | .
w2 Y clis °

The problem comes in the next step when we estimate

1 1 rt
/ w?dz < —/ |Vul|?dz.
1-61 4 )15

In fact Rossby’s scalings would have

1 1
/ wrdz ~ 5%/ |Vul|?dz,
1-61 1-6

since the term on the right hand side is dominated by fll_ 5 u?dz. If we could show that

f11_51 w? < K63 f11_51 |Vu|?dz (for some order 1 constant k), then we too would obtain a

R}f) scaling of the horizontal Nusselt number. However, there is no obvious way to improve

the estimate, and so the bound of order R}f’ stands.

3 Fixed Temperature on the Bottom Boundary

We now consider the problem as shown in figure 1 with a fixed temperature T' = T at the
bottom boundary. We try to bound the horizontal Nusselt number (4). The “conduction”

solution T, is
sinh kz cos kx

T, =TH(1 —
¢ o 2)+ sinh k ’

meaning that
— k
coskaTe,|1 = 5 coth k. (15)

We proceed in the same way as for the fixed flux case, letting T = 7(z, 2) + 0(x,t) and
constructing the functional

L = coskxT,|; — (au- (NS)) — (b8 - (H)).

We have (wT) = —To—T.|o, but in this case, unlike the fixed flux, we cannot use a bounding
principle on T to bound this term, as in section 2.1, because we need to know T,|o. So we
must proceed in a similar way to section 2.2 and choose the background field to minimize
the worst case estimate of

((acRp — To)wl — bou - V1),

which we bound by o(|Vu|?) + 8(|V8|?). Again, we let T = 7 + 0 and choose T = 19(z) +
71(z) cos kx that make the integrand zero over the bulk of the layer, and again 77 is given
by (7). However, in this case it is not clear whether or not it is best to have just a single
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boundary layer at the bottom for 7y or to have boundary layers top and bottom, since
with both options we can force the integrand to be zero over the bulk of the layer whilst
satisfying the boundary conditions. However, we obtain the same scaling in each case, it is
just the prefactor that may be improved. For simplicity and comparison with the fixed flux
case, we just have a boundary layer at the bottom and let
o = { % <T0((50—Z)—%(CLO'RH—TQ)(l—(;o)Z), fOI'O<Z<($O, (16)
—+(acRy — Tp)(1 — 2), for 6o < z < 1.

Proceeding as for the fixed flux case, solving the Euler-Lagrange equations we obtain the
extremal bound

b—2)2 (acRy — Tp)? k263
< n, 02" G o) T2 L(1
(17)
where
o= 2% max (Jao Ry + (b — 1)Ty| Soco, borer (1 + 2k1)) | (18)
™
2 do bo
B = —5 max <|aaRH + (b—1)Tp = —1(1 + 2k51)> . (19)
™ co’

Making the simplifying assumption b = 2 (though this is not optimal) yields

1/1 9 1 k%0  (aocRyg —Tp)? k269
<= (=- — :
L< 1 (50 1) (acRp +To)" + %, t— a0 —a) 504 (1+0(61)) (20)

For moderate Ty, where we expect o < 1 and §; < 1, it may be shown that the
dominant contribution to the bound is given by G where

G acRy + T0)2 +

:4_50( T

For the bound to be as tight as possible, we need to choose dg and §; as large as possible. Sub-
ject to the spectral constraints, the best choice is ac = 467 /7% and 6y = 261 /|40? Ry / 74+ Ty,

meaning that
3

L]
26,

1
G—8—61

463 Ry
T4

+ 1o

Assuming that z = 467 Ry /7* + Ty > 0, (which can be checked) we have

dG 1

s <5x3 — 6T —4) .

It may be shown that there is only one positive root x = z* of dG/dd; = 0, which provides
the minimum of G, giving the bound

Nupg < R}ff(To), (21)
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Figure 5: Prefactor for the bound on the Nusselt number with fixed temperature 7y at the
bottom of the layer and k = 1.25 x 10~3. The bound is proportional to R}f in each case.
(a) shows the prefactor with the horizontal Nusselt number Nuy = cos kxT,|;/cos kxT.,|1,
whilst (b) shows the prefactor with Nusselt number Nu = (|VT|?)/(|VT.|?).

where

) = ,
f(To) 272/ (a* — To)k coth k
as long as |Tp| < Rpy. A graph of f is shown in figure 5(a).

For Ty > 0, the leading order contribution comes from the first term in (20) and we
pick ac = Ty/5Rpg and 6y = /572 /6+/RyTy, giving

10872 R}/
25572k coth b

Nug S

For Ty <« 0, we may set §o = d; = 1 and the dominant contribution is from the term
(1+0(81))(ac Ry — Tp)?*k?63/2016(ac — ). This is of order —TpRyk? multiplied by some
prefactor, but to work out this prefactor we would have to solve (31) in appendix B to all
orders. So the most we can say without doing the full calculation is that the bound on the
horizontal Nusselt number is of order —ToRp.

3.1 Connection to Rayleigh—Bénard Scaling

For very large Ty we would expect the motion to be dominated by the large vertical temper-
ature gradient and look like Rayleigh—Bénard convection, and thus would expect the vertical
Nusselt number to be bounded by R‘l// 2 multiplied by some prefactor, (where Ry = ToRpy
is the vertical Rayleigh number). Similarly in the limit of small Tj, we would expect the
Nusselt number to be bounded by something that tends to unity.

In order to check that the bounds match in the two limits, we define the Nusselt number
to be

(VT]?)

Nu=r——1L
(IVTe[?)
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and proceed to try to bound it. In this case
2 2 1
(|IVT.|*) =Ty + §kcothk.
This time instead of (20), we obtain the expression

L< i (aoRpg +1 ) - —1 acRy(acRy + 4Ty) + —1 _k261
5o 0 ! H H 0 2, + 5
(CLO RH — To)2 k25?

4(ac —a) 504

(14+0(61)). (22)

For moderate Ty, we obtain (21) again, but this time f(7p) is given by the graph in fig-
ure 5(b). If Top > 1 then

21 21
G\f\/ Ry = 6\f\/ ~ 0.55R/>.

252 2572

to leading order and thus we recover the scaling of the Doering—Constantin result for
Rayleigh-Bénard convection [12], although the prefactor is not optimal since we only used
a bottom boundary layer and not a top one. If we use top and bottom boundary lay-
ers of equal depth, and optimize over the choices of constants a, b, dy, d1, then we get

Nug < 3\/§R%,/ 2 /4% ~ 0.13Ry/ Y2 ot leading order, and the prefactor agrees with the
Rayleigh—Bénard result.
If Ty < — Ry then we can choose §p = 1, and the leading order contribution is from the

first two terms in the bound (22), which gives £ < 7§ and hence
Nu <1,

to leading order, and so we also recover the result for Rayleigh-Bénard convection in the
limit of small Tj.

4 Intermediate Bottom Boundary Condition

We now wish to see more clearly why the Rl/ ® and R%z scalings arise — what is the
connection between them and what happens 1f we have a boundary condition that is not
perfectly conducting or perfectly insulating?

We choose the bottom boundary condition T'— X1, = Ty at z = 0, where A > 0,
smoothly moving from a perfectly insulating condition at A = co to a perfectly conducting
condition for A = 0. This physically corresponds to the bottom of the layer being in contact
with a thin imperfectly conducting sheet that is in contact with an infinite heat bath. For
this boundary condition, it is not immediately obvious that the velocity and temperature
fields stay bounded and thus we first prove their boundedness, which enables us to drop the
averages of their time derivatives.
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4.1 Bounds on the Temperature and Velocity Fields

In this section, we prove that the fields are bounded in time, which is not completely obvious
for the given boundary conditions. Thus for this section only (section 4.1), (-} and = denote
only spatial averages (and not long time average).

First of all we prove a boundedness principle for the temperature field, using ideas
from [13]. We consider the solution of (H) starting from some bounded initial temperature
distribution at ¢ = 0, and solved on the time interval ¢ € [0,%p]. We want to look for the
point where T' attains its maximum value. Suppose the maximum occurs at a point where
z # 0,1. At this point we must have VT = 0, V2T < 0 and so from (H), 9T/0t < 0,
meaning that the maximum of T is attained at ¢ = 0. If the maximum occurs at z = 0,
then we have T, < 0 there, which implies, using the boundary condition, that T < Tj.
Alternatively it can occur at z = 1, in which case T' < 1. A similar principle can be used
to bound T from below and thus 7' is everywhere in the range

[min(—1, Ty, inf(T|;=)), max (1, Ty, sup(T|=0))]-
If the system is allowed to relax for sufficiently long then T' will eventually be in the range
[min(—1,Tp), max(1,Tp)],

a result that we shall use when applying the background method.
To bound the velocity field, we first use Poincaré’s inequality and obtain (ju|?) <
2(|Vul|?)/n2. Rearranging (u- (NS)) yields averaging yields

Ld

57Uy = Ru(wT) — (| Vuf?),

meaning that (Ju|?) is bounded above by its initial value and 72 Rpg+/(T?) /2.

4.2 The Set Up

Having proved the boundedness of the fields, we can now begin to apply the Doering—
Constantin method to bound the horizontal Nusselt number given by (4). With these
boundary conditions, T is given by

1-— z) sinh kz + Ak cosh kz
1+ A sinh k + Ak cosh k

coskx,

TC:T()(

giving

k (coshk + Ak sinhk)

o Tl = &
cos kxT. |1 2 \sinh k + Ak cosh k
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and so we try to find an upper bound on the numerator of Nug
coskaT,|y = (|[VT*) + T(T — To) o/

Letting T' = 7 4 60, where 7 satisfies the boundary conditions on 7" and 6 satisfies the
homogeneous boundary conditions, we have
L =coskzT,|1 — (au- (NS)) — (b0 - (H)),
=(|V7|? — ao|Vul* + (b — 1)0V?0 + (b — 2)0V>7 + ac Rgw(r + 6)
1

—bfu - V) — 00,0 — 207.]0 + XM\O,
=(|V7|? = ac|Vul]® + (b — 1)0V?0 + (b — 2)0V>*T + ac Rw(T + 6)
—bfu-V7)+ %m\o + %(ﬂo —Tp), (23)
=(|V7|? — ac|Vul*> + (b — 1)0V?0 + (b — 2)0V>7 + pw(r + 6)
—b(‘)u-VT)—F%m\o— 11;02)\. (24)
where T,
p=aoRy — 7,

and we have used the lower boundary conditions to obtain (23). Then to obtain (24), the
final term in (23) can be absorbed into the global average, using (H) to derive an expression
for T)o:

To 1+X=

T =-Tlg—T,lo=~——- —T Tly =
(wT) lo lo 3 ;y o = Tl

TO - A <U)T>

14+ A (25)

Note also that in (24) we have chosen to rewrite any terms proportional to |[V6|? in terms
of @V20. This is because when the Euler-Lagrange equations are computed to minimize
such terms, the former term would give some contributions from the boundary, which make
the equation more difficult to solve, whereas the latter will not.

4.3 Bound on the Horizontal Nusselt Number

Starting from expression (24), we proceed to try to minimize £ using the boundedness of
the temperature. From (25) we can bound (pw(7 + 0)) = u(wT) < M u, where

M max ﬂ%""\,—To , ifu>0,
" | max I0+_’\,—T0 , if uw<0.

We choose the background field 7 to minimize the worst case estimate of (—bfu - V1),
choosing V7 = 0 over as much as possible of the layer. In order to satisfy the boundary

conditions we must again have top and bottom boundary layers. We choose 71 to be given
by (7) and

o DtTy,  for 0< z < do,
0, for 0 < z < 1,
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With this choice,
(—bu- V1) < of|[Vul?) + 8(| V%),

for all fields u and 6 where, using the estimates in appendix A,

|To| 5(2)00 d1c1
=b 1+ 2k6
o max (50—1-)\2772’ 271'2( +2k01) ),

|To|  do 201 )
=b|———+ ——(1+2k6 .
s (50+)\260 + 7r261( + 2kd)

Then
£ < (V1] = (a0 = a)|Vu] + (b — 1 — B)IV0 + (b — 2)0V7T)
73

1—
M (1 —TH)2|y —
+Mp+ (1= T0)%o TN

where the boundary term —3606, |y arising from the integration by parts has been neglected
since it is negative semi-definite as long as g, A > 0.
The Euler-Lagrange equations for minimization of the functional bound for £ are
Vp — 2(ac — a)V?u = 0,
—2(b—1- B3V = (b—2)V?r,

yielding the solution
—(b-2
2b—-1-7)
which minimizes the functional as long as the spectral constraints ac > a and b—1> (3

are satisfied. The extremal bound is

(T - TC)7

o2

£ < (V) + s (9 9 = Ty + T =T~ Tl )

s Mp ST, - D
Y 0T TN

and similarly to section 2.1 we can show that b = 2 is the value giving the tightest bound.

We also have

8oT? 1 k25

2\ _ 040 1

VT =G+ 2 T as 6
N2TE

(1 —T0)?|o :m'

In the following, we only consider the bounds as Ry — oo with Ty and A\ fixed; if
Ry is finite, it may be that a better bound can be obtained with a different scaling. As
in section 2.1, the choice dg = 0 does not affect the bound at leading order and subject

to the spectral constraint, the optimal value of ac is 46? /7* to leading order, giving £ <
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1/2614+4M6&3 Ry /m*. The tightest bound is obtained with §; = (7/2)*3(MRy)~1/3, giving
L < 3(MRy)'/3/22/374/3 and so the horizontal Nusselt number is bounded by

3-23(~TRy)'/3 [ nt3k (St ), M Th < -1,

Nug < 1/3 .
H 3.91/3 (TQ+/\1+/\RH) / /7T4/3k (coshk—i—)\ksmhk) . if Tp > —1.

(26)
sinh k+ Ak cosh k

If we proceed without utilising the boundedness of the temperature field, then as with
the fixed flux case, the bound on Nuy is proportional to R?f’, and so the R}f bound is
always better as Ry — oo with Ty and A fixed.

As A — oo with Tp/A = F fixed, we immediately recover the bound for the fixed flux
bottom boundary condition (11) in section 2.1. As A — 0, we might similarly hope to
recover the bounds found in section 3. However, things are not so simple as we might

expect!

4.4 Bound for Small A and Connection to Fixed Temperature Boundary
Condition?

As long as A > 0, then (26) shows that we have a bound of size Rllf’. However, if A = 0,

then as shown in section 3 we can only get a bound of order R}f. Why do we have this
difference?

In fact, as A\ — 0, both the bounds in (26) grow arbitrarily large (if Ty < —1 then this
growth is in one of the omitted terms) and so, although the asymptotic behavior is Rllf’,
for any finite value of Ry, the prefactor is so huge that the bound will be larger than might
be expected. Thus we may ask ourselves, whether there is some way to make the bounds
connect in the limit of small A by using a different background field.

The bounds on T" at z = 0 provide poor estimates for small A (unless 7Ty = 0), and so
we shall do better if we proceed without using this. Starting from the expression (24), we
choose the background field 7 to make the integrand of the unwanted terms (uwé—b6u-Vr)
zero over as much of the layer as possible. Again we set 7 = 79(2) + 71(2) cos kx where 7|
is given by (7) and

_ { ﬁ (To(0o — 2) = #(1 = do)(z + A)),  for 0 < 2 < &,
—£(1 - 2), for 5o < z < 1,
which tends to the expression for fixed temperature (16) in the limit A — 0. Solving the
Euler-Lagrange equations yields the bound

£ < (vr) + 2

=T (V7 Ve =T+ 5T =T =Tl ) + 5= TP

b [ )
1+ X 4(ac — a) 504

(1+0(41)),
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which tends to expression (17) as A — 0. Using appendix A, the estimates for « and 3 are

o — max |w(A + 1) + bTy| d3co bdicy
do + A 22’ 272
_ (A +1) +0T] do | 251

= — (1 + 2ké1).
b do+ A 2co * 77201( +2ko1)

(1+ 2k51)> ,

Comparing these with (18) and (19) respectively, we see that as A — 0 we obtain the same
limit for the second term in each expression, but not the first term. This is due to the
fact that with the methods we have used, we cannot estimate the temperature on the lower
boundary very well, and so we are forced to use the bound (30) rather than (29). This
difference turns out to be crucial in the bounding procedure and thus we cannot obtain a
continuous bound on the horizontal Nusselt number as A — 0.

5 Conclusions and Discussion

In summary, we have obtained upper bounds on the horizontal Nusselt number for horizon-
tal convection using a variety of different boundary conditions on the bottom of the box.
As long as the lower boundary is not perfectly conducting we found that the horizontal

Nusselt number is always bounded by a constant prefactor times Rllq/?’, and if it is perfectly

conducting then the bound increases to a prefactor times R%z.

In a similar way, we might ask if it is possible to use the analogous method to bound the
dissipation €. However, it turns out that we cannot improve on the bound obtained using
the method outlined in the introduction. For a fixed heat flux F' through the bottom, we

get

rga AT
<—1+F
€ —_ H ( + )7

and for the intermediate boundary conditions, we get

AT To+1
6</~£g0¢ max( 0+)\+)\,—T0>.

These bounds imply the anti-turbulence theorem in both cases. With the fixed temperature
boundary condition, however, we can’t easily relate the flux through the bottom to the
temperature there, and in this case, using the Doering—Constantin method, the bound
turns out to be (|Vul?) < g(Ty)R3/? for some function g, meaning that e is bounded by a
non-zero constant as k — 0 with o fixed, which does not prove anti-turbulence.

It would be interesting to have some idea of what the actual velocity and temperature
fields look like in the asymptotic limit as Ry — oo, and see if figure 4 does indeed give the
correct flow pattern in the limit. However, since we set the velocity to zero, the method
we have used tells us nothing about the velocity field except perhaps that the velocities in
the asymptotic solution are not very large in magnitude. It doesn’t prove anything about
the temperature field either, although the fact that we did consistently use the background
field 7 = 19(2) + 71(2) cos kx where 71 was given by (7), suggests that the real solution may
have a top boundary layer and that the temperature field has little horizontal dependence
deeper into the layer. Our choice of 7y varied but we found that the depth of the bottom
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boundary layer did not matter at leading order, (except with the fixed bottom temperature
condition), suggesting that the horizontally averaged temperature has no large gradients
throughout the layer.

Possibly a more physically realistic set up in the oceanographic context would be to
use a stress free velocity boundary condition at the top of the layer rather than the non-
slip one, shown in 1, which was used throughout the report. Proceeding to bound the
horizontal Nusselt number in a similar fashion, we encounter a problem. We cannot estimate
f11_5 |uf]dz in terms of (|Vu|?) and (|V6|?) as we have no control on the size of u at the
top boundary, and so we cannot easily find a bound on Nug. Note that this problem does
not occur for Rayleigh—Bénard convection, since the offending term only arises due to the
horizontal dependence of 7.

In summary the bound of R}f’, (which holds asymptotically for all the boundary con-
ditions investigated except for the fixed temperature condition), suggests that horizontal
convection with an insulating or nearly insulating bottom boundary is much less efficient
at transporting heat through a layer than Rayleigh-Bénard convection. In particular, since
the bound less than order Rllq/2, the scalings of the temperature and velocity fields in the
boundary layers in horizontal convection cannot be independent of the molecular parameters
v and k [14, 15].

So how relevant are these results to the ocean? We don’t know the oceanographic
bottom boundary conditions, and the bottom is certainly far from being flat! However, we
have shown that there is only a weak dependence on these conditions, and so the results are
probably still valid. However, possibly more significantly, there are many other processes
going on in the ocean such as wind forcing, that can cause large amounts of mixing and these
are probably much more significant factors in the circulation than horizontal convection.

I should like to thank Richard Kerswell for suggesting this project and for giving up
a lot of time to discuss the problem, Neil Balmforth who provided many useful insights
and Charles Doering for making some helpful suggestions. I am grateful to Woods Hole
Oceanographic Institution for its funding and hospitality and to everyone on the GFD
program for making my stay so enjoyable!

A Estimates of Boundary Layer Integrals

In this section we estimate the maximum possible size of some integrals that are needed to
estimate the sign-indeterminate quadratic terms. The integrals that are needed are

1 1 s
/ |wh|dz, / |uf|dz  and / |wh|dz,
1-6 1-6 0

where © and w are zero on both the top and bottom boundaries and 6 is zero at the top.
At the bottom we have three possibilities: # = 0,0, =0 or § — A0, = 0.
First we prove the result

If the functions f and g are both zero on the plane z = 2y then

z0+0 252 20+6 __ 1 [#o+d
/ |fgldz < — c/ f2dz + —/ g2dz | .
20 ™ 20 C Jz
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The proof (thanks to Michael Proctor) is as follows:

z0+0 2040 2040 1/2
[Tl ([T e [ gz )
20 20 20

(using the Cauchy—Schwarz inequality),
1 20+0 __ 1 [20+6 _
<= c/ f2dz+ - g2dz |,
2 20

(& 20

(using Young’s inequality, vab < (ca + b/c)/2 for any ¢ > 0).

We can use the calculus of variations to minimize the ratio

20+6 z0+0
/ h2dz / / h2dz,
20 z0

subject to h(z9) = 0. The minimum value is 72/42, and hence the result follows.
Using this we have

1 _ 2 __ P92 2
/ fld: < 2 <cug b; )d B <c|vu|2 —|V92> iz (27)
1—

1-5 2 Jiss c T
L 262 1 — 9_2 242 — 11—

/ |lwlldz < —- cw? + = )dz < — (cwg + —|V9|2) dz, (28)
1-6 w2 Ji—s c w2 Ji—s c

and similarly if § = 0 at z = 0 then

5 202 0/ — 1
/ |w0|dz§—2/ (cwg+—|w2> dz, (29)
0 w4 Jo c
otherwise

5 5 5 1/2
/ |wh|dz g(/ wzdz/ 92dz> , (Cauchy—Schwartz),
0 0 0
1
2

( / wldz + = / 02dz> (Young’s inequality),

;(452 [ [ (o))

252

IN

21 / ((1 —z)/ 62, dz)dz, (Cauchy—Schwartz),
c

<252 _2dz+—<\ve\2> (30)
- 72 z 2c ’

where ¢ can take any positive value.

Rather than simply bounding w? by |Vu/?, we improve the bounds by using the following
inequality, which is taken from [12]. Since u; + vy + w, = 0 then

(Uzw + vyw, + w2) = 0= (uw, + vwy +w?) =0,

2

<w§> = ((ug + Uy)2> = <w§ — Uy — U; — 2uyvg) =0,
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where the boundary conditions have been used to integrate by parts. Twice the first equa-
tion plus the second plus (|Vu|?) gives

(dw? + (uy —v2)* + (uz +we)* + (vz + wy)?) = (| Vuf’) = | (wF) < i(IVUI2>-

B Estimate of the Size of (w*rT)

In section 2.2, we obtained a term proportional to (w*7) in the bounding procedure. This
term must be estimated, which is done in this section.
In both cases u* satisfies an equation of the form

Vp — V?u = Priz, (31)
where 7 = 79(2) + 71(2) cos kx and
] 0, for0 < z<1-1941,
e %, forl—961 <z<1,
Taking the curl gives
Vi = —Pr,,
B Ig—fy sin kx for y > 0,
10 for y < 0,

where y = z — 14+ §; and u = (—1,,0,%;). The solution is of the form

ks—lgl (y + (A'y + B')sinh ky + (C'y + D') cosh ky) sin kx
_ for 0 <y < 4y,
v = kfél ((Ay + B) sinh ky + (Cy + D) cosh ky) sin kx
for -1 +6; <y <O,

for some constants A, B, C, D, A, B’, C' and D’ to be determined. Note that since 1)
is proportional to sinkz, (w*r) = (w*r| cos kx), with no contribution from 7y and so the

solution is only needed in the top boundary layer.
Matching v, 1y, 1y and 1y, at y=0 gives
3 1
A=A B =B-_— "= -, D'=D.
) Qk ) C C + 2 )

The boundary conditions at the top and bottom of the box imply that

518,5 St 516,5 Ct

St + kélct k:ct k(518t + ¢t kSt
(01 — 1)sp Sb (61 — Dey p

Sp + k(51 — l)Cb key, k(51 - l)sb +cp ks

QW

—81 + 25 — 30104
—1- lkélst + ¢
_ 2
‘ ES)
0
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where ¢; = cosh kd1, s; = sinh kd1, ¢ = coshk(d; — 1) and s, = sinh k(67 — 1). Note that
if §; < 1 then the right hand side of this equation is O(d}), whilst the determinant of the
matrix is O(1), and thus A, B, C and D are O(d7) at the largest. In fact the first equation
arising from this matrix equation is

3 1
018tA + 5¢B + 61¢:C + ¢: D = —61 + ﬂst — 5(51015,

The coefficients of the first three terms are at most O(d1), and so the terms must be O(47).

The right hand side is also O(67) and ¢; is O(1). Thus D is O(67). Therefore since y is
O(41) in the top boundary layer,

P 1
= o (y — % sinh ky + §ycosh ky + O(5i’)> sin kx,
= O(Ps}).

Therefore w is also O(Pé§}) and so

(w*T) = O(P5?). (33)

In fact, by inverting the matrix in (32), we have, to leading order

u* =P ((i(l — Nk — (e — dke —1)(1 — Ok} + O(cﬁ’)) sin kx,

24 12((e2* — 1)2 — 4k2e%F)
k2
0, (EOM —5¢+ )t + O((ﬁ’)) cos kx) )

in the top boundary layer, where ( = y/d; > 0, giving

2 5
(w'r) = ZLE (11 0(3). (34)
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