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Abstract

Fluctuating ventilation effect in a simpliÞed box model with three tubes is studied
theoretically. A small basin is cooled from above and connected to an inÞnitely large
isothermal basin with a layer of fresh water at the surface. A necessary condition for a
new layer to form after a convection event is derived, and the model can reproduce �cyclic
convections� observed in past laboratory experiments. A parameterization for interfacial
entrainment is formulated based on a potential energy budget. This introduces two new
regimes to the model. One is an equilibrium state with the interface located in between
the middle tube and the bottom tube with inßows at the top and bottom tube and an
outßow at the middle tube. The other is an �oscillatory ventilation� where the upper
layer thickness does not grow monotonously, but oscillates. This regime is a result
of balances between entrainment, surface cooling, and ßow through the three tubes.
Comparisons with laboratory experiments are made.

1 Introduction

The thermohaline circulation has been studied extensively due to its importance to global
climate variation. The deep convection branch of the thermohaline circulation occurs in very
conÞned regions[1],[2], and the Nordic Sea is one of the important sites. Since the salinity
is very low in the surface layer of the Nordic Sea, the convection caused by the intense
surface cooling cannot reach to a great depth without an increase in salinity. Excluding the
dense overßow, the most probable candidate for a source of salinity increase seems to be the
salty water below the surface[3]. In an attempt to understand this process, Whitehead[4]
analyzed a simple box model both analytically and numerically. The model consisted of
a small basin cooled from above and a large isothermal basin with a surface fresh water
layer maintained at constant thickness. The two basins were connected to each other by
three tubes at top, middle, and bottom. Using a relaxation boundary condition for the
temperature, multiple equilibria were obtained. As an extension of this study, te Raa[5]
performed laboratory experiments and showed that two ßow regimes exist; one is a self-
sustained oscillation and the other is a steady-state with deep convection. However, the
mechanism for this oscillation remains unexplained theoretically. Also, an interfacial mixing
process was not considered in the box model theory.

In this study, we expand earlier studies of oscillatory behavior in the simpliÞed box
model. The paper is organized as follows. In the next section, a description of a three-
tube model and its behavior is presented. A necessary condition for the formation of a
new layer after a convection event is derived. Also, a parameterization for the entrainment
is formulated based on a discussion of potential energy budget. The theoretical model
can then reproduce oscillations observed in the past laboratory experiments. In section 3,
theoretical results are compared to laboratory experiment data. Conclusions are given in
the Þnal section.
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Figure 1: Schematic sketch of the three-tube model.

2 Three-tube Model

2.1 Formulation

Following Whitehead[4], a three-tube model is formulated here so that we can investigate
the role played by the subsurface salty water. The importance of the middle tube may
be further appreciated by comparing the result obtained here with two-tube model results
presented in the Appendix.

A small basin, which represents a small region which contains a deep convection site,
is cooled from above. This basin is connected to an inÞnitely large isothermal basin with
three tubes, one at the surface, the second one at a depth of dm, and the third one at the
bottom. This differs from Whitehead[4], where the middle tube was placed at the depth of
D/2. The depth of both basins is equal at D. A shallow fresh water layer of depth du with
temperature To are maintained on top with temperature To and salinity So in the larger
basin. The parameters in the large basin du, To, and So are kept Þxed. In response to the
surface cooling, the small basin contains a well-mixed surface layer of depth h, temperature
To + T1, and salinity S1. The parameters in the small basin h, T1, and S1 can vary with
time. A sketch of the box model is given in Fig.1.

We assume that a linear ßow resistance in the tubes maintains a relation between the
volume ßuxes through the tubes Qi and the pressure difference between two basins of the
form

Qi = Ci(poi − pi) for i = 1, 2, 3 (1)

where we specify that

C1 = γC , C2 = C3 = C (2)

are hydraulic resistances of tube i, and γ is a positive real number. Let η denote the ßuid
surface elevation of the small basin relative to the large basin. Then, from the hydrostatic
relation, the pressure at tube i is given by

po1 = 0 (3)
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po2 = ρog[du + (1 + βSo)(dm − du)] (4)

po3 = ρog[du + (1 + βSo)(D − du)] (5)

in the large basin and

p1 = ρogη (6)

p2 =


ρog[η + (1 + βS1 − αT1)h+ (1 + β(So + S2)− αT2)(dm − h)] for 0 < h ≤ dm

ρog[η + (1 + βS1 − αT1)dm] for dm ≤ h ≤ D


(7)

p3 = ρog[η + (1 + βS − αT )h+ (1 + β(So + S2)− αT2)(D − h)] (8)

in the small basin. Here, the density is calculated using a linear equation of state and ρo is
the density of fresh water at temperature To. The volume ßuxes Qi obey

Q1 = −γCρogη (9)

Q2 =


Cρog[−η − βSodu + (−βS2 + αT2)dm
+(β(So + S2 − S1) + α(T1 − T2))h] for 0 < h ≤ dm

Cρog[−η − βSodu + (β(So − S1) + αT1)dm] for dm ≤ h ≤ D

 (10)

Q3 = Cρog[−η − βSodu + (−βS2 + αT2)D + (β(So + S2 − S1) + α(T1 − T2))h] . (11)

Assuming that changes in the vertical acceleration with time are small, we obtain

η =
1

2 + γ
[−2βSodu + 2(β(So + S2 − S1) + α(T1 − T2))h+ (−βS2 + αT2)(D + dm)] (12)

for 0 < h ≤ dm, and

η =
1

2 + γ
[−2βSodu + (β(So − S1) + αT1)dm + (−βS2 + αT2)D

+(β(So + S2 − S1) + α(T1 − T2))h]
(13)

for dm ≤ h ≤ D. Substituting (12) into (9), (10), and (11), we obtain

Q1 = −γCρogβSoD
2 + γ

[−2du
D

+ 2(1 +
S2
So
− S1
So
+

α

βSo
(T1 − T2)) h

D

+(−S2
So
+
αT2
βSo

)(1 +
dm
D
)]

(14)
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Q2 =
CρogβSoD

2 + γ
[−γ du

D
+ (−S2

So
+
αT2
βSo

)((1 + γ)
dm
D
− 1)

+γ(1 +
S2
So
− S1
So
+

α

βSo
(T1 − T2)) h

D
]

(15)

Q3 =
CρogβSoD

2 + γ
[−γ du

D
+ (−S2

So
+
αT2
βSo

)(1 + γ − dm
D
)

+γ(1 +
S2
So
− S1
So
+

α

βSo
(T1 − T2)) h

D
]

(16)

for 0 < h ≤ dm, and substituting (13) into (9), (10), and (11), we obtain

Q1 = −γCρogβSoD
2 + γ

[−2du
D

+ (β(1− S1
So
) +

αT1
βSo

)
dm
D
+ (−S2

So
+
αT2
βSo

)

+(1 +
S2
So
− S1
So
+

α

βSo
(T1 − T2)) h

D
]

(17)

Q2 =
CρogβSoD

2 + γ
[−γ du

D
+ (1− S1

So
+
αT1
βSo

)(1 + γ)
dm
D
− (−S2

So
+
αT2
βSo

)

−(1 + S2
So
− S1
So
+

α

βSo
(T1 − T2)) h

D
]

(18)

Q3 =
CρogβSoD

2 + γ
[−γ du

D
− (1− S1

So
+
αT1
βSo

)
dm
D
+ (1 + γ)(−S2

So
+
αT2
βSo

)

+(1 + γ)(1 +
S2
So
− S1
So
+

α

βSo
(T1 − T2)) h

D
]

(19)

for dm ≤ h ≤ D.
The upper layer mass conservation equation is

A
dh

dt
= Q1 (20)

for 0 < h ≤ dm, and

A
dh

dt
= Q1 +Q2 (21)

for dm ≤ h ≤ D. The heat and salt balance equations are

Ah
dT1
dt

=
Ka
ρocp

(T ∗ − T1)− T1Q1Γ(+Q1) (22)

Ah
dS1
dt

= −S1Q1Γ(+Q1) (23)
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A(D − h)dT2
dt

= −T2Q2Γ(+Q2)− T2Q3Γ(+Q3) (24)

A(D − h)dS2
dt

= −S2Q2Γ(+Q2)− S2Q3Γ(+Q3) (25)

for 0 < h ≤ dm, and

Ah
dT1
dt

=
Ka
ρocp

(T ∗ − T1)− T1Q1Γ(+Q1)− T1Q2Γ(+Q2) (26)

Ah
dS1
dt

= −S1Q1Γ(+Q1) + (So − S1)Q2Γ(+Q2) (27)

A(D − h)dT2
dt

= −T2Q3Γ(+Q3) (28)

A(D − h)dS2
dt

= −S2Q3Γ(+Q3) (29)

for dm ≤ h ≤ D. Here, we have taken that heat ßux is proportional to T ∗ − T1. This
is called a restoring boundary condition for the temperature, and is also known as Haney
boundary condition[6]. A zero salt-ßux boundary condition is used.

When the density stratiÞcation in the small basin becomes unstable:

ρ(To + T1, S1) > ρ(To + T2, So + S2) (30)

a convective adjustment occurs.

2.2 Parameterization of Entrainment

It is well known that entrainment plays an important role in upper ocean dynamics. In
addition, te Raa[5] observed a strong interfacial entrainment in laboratory experiments.
Thus, we here formulate an one-dimensional mixed layer model, which parameterizes the
entrainment process at the interface, following Kraus and Turner[7] and Davis et al.[8].
We expect that an inclusion of entrainment should lead to more realistic representation
of situations in the ocean and the laboratory experiment of te Raa[5]. The model results
without the entrainment are provided in the Appendix.

The upper-layer potential energy is deÞned as

P = g

( 0

−D
(z − zo)ρdz (31)

where z = zo is a reference level, and z = −D is a level below the mixed layer at which
turbulent and radiative ßuxes of heat is assumed to be negligible. The density conservation
equation is

∂ρ

∂t
+
∂

∂z
w#ρ# = 0 (32)
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where w#ρ# is the vertical turbulent ßux of mass. Here, advective terms have been neglected,
because we cannot incorporate their effect in simple models such as the one considered in
this study. Multiplying Eq.(32) by g(z − zo) and integrating it from z = −D to z = 0, we
obtain

∂P

∂t
= g

( 0

−D
w#ρ#dz +

αg

cp
Qozo (33)

where

Qo =
cp
α
w#ρ#(0) = −cpρw#T #(0) (34)

is the net downward heat ßux at the surface. Note that the heat ßuxes are assumed to
vanish at z = −D.

From Tennekes and Lumley[9], the turbulent kinetic energy budget equation is

(
∂

∂t
+ u ·∇+ w ∂

∂z
)ek = −gw#ρ# − ρuw# · ∂

∂z
u− ∂

∂z
w#(p# + ek)− ρ' (35)

where

ek =
ρ

2
(u · u+ w#2) . (36)

Here, the Þrst term is the production of turbulent kinetic energy by the vertical buoyancy
ßux, the second term is the production of turbulent kinetic energy by shear, the third term
is the vertical divergence of the turbulent ßux of turbulent kinetic energy, and the Þnal
term is the viscous dissipation term. Again, the second term and the third term are beyond
the framework of box model and are neglected. Also, based on the laboratory experiment,
Deardorff et al.[10] showed that a Þxed fraction mc (=0.83) of potential energy gained by
the surface cooling is dissipated. Thus, the potential energy equation (33) can be rewritten
as

∂P

∂t
= −mc

αgD

2c
Qo +

αg

c
Qozo . (37)

For the bulk mixed layer with thickness h, the potential energy equation is

gh

2
∆ρ
∂h

∂t
=
αg

c
[−h
2
Qo +

h

2
mcQo] . (38)

Therefore, the entrainment velocity in the three-tube model is parameterized by

we = − α

cp∆ρ
(1−mc)Qo (39)

where ∆ρ is the density difference between the upper and lower layer. Since we are using
the restoring boundary condition for heat, the entrainment velocity is

we = −α(1−mc)Ka(T
∗ − T1)

cpA∆ρ
. (40)
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Including the entrainment process, the upper layer mass conservation equation can be
rewritten as

A
dh

dt
= Q1 +Awe (41)

for 0 < h ≤ dm, and

A
dh

dt
= Q1 +Q2 +Awe (42)

for dm ≤ h ≤ D. The upper layer heat and salt balance equations are rewritten as

Ah
dT1
dt

=
Ka
ρocp

(T ∗ − T1)− T1Q1Γ(+Q1) +A(T2 − T1)we (43)

Ah
dS1
dt

= −S1Q1Γ(+Q1) +A(So + S2 − S1)we (44)

for 0 < h ≤ dm, and

Ah
dT1
dt

=
Ka
ρocp

(T ∗ − T1)− T1Q1Γ(+Q1)− T1Q2Γ(+Q2) +A(T2 − T1)we (45)

Ah
dS1
dt

= −S1Q1Γ(+Q1) + (So − S1)Q2Γ(+Q2) +A(So + S2 − S1)we (46)

for dm ≤ h ≤ D.

2.3 Non-dimensionalized Equations

Using the transformations

�Qi =
Qi
Qss

, �Ti =
αTi
βSo

, �du =
du
D
, �dm =

dm
D
,

�Si =
Si
So
, �T ∗ =

αT ∗

βSo
, �t =

AD

Qss
t , �Ka =

Ka
ρocpQss

(47)

where

Qss =
γCρogβSoD

2 + γ
(48)

the model equations are non-dimensionalized as

�Q1 = 2 �du − 2(1 + �S2 − �S1 + �T1 − �T2)�h− (− �S2 + �T2)(1 + �dm) (49)

�Q2 = − �du + (− �S2 + �T2)((γ
−1 + 1) �dm − γ−1) + (1 + �S2 − �S1 + �T1 − �T2)�h (50)
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�Q3 = − �du + (− �S2 + �T2)(γ
−1 + 1− γ−1 �dm) + (1 + �S2 − �S1 + �T1 − �T2)�h (51)

d�h

d�t
= �Q1 + �we (52)

�h
d �T1

d�t
= �Ka( �T

∗ − �T1)− �T1 �Q1Γ(+ �Q1) + ( �T2 − �T1) �we (53)

�h
d �S1

d�t
= − �S1 �Q1Γ(+ �Q1) + (1 + �S2 − �S1) �we (54)

(1− �h)d
�T2

d�t
= − �T2 �Q2Γ(+ �Q2)− �T2 �Q3Γ(+ �Q3) (55)

(1− �h)d
�S2

d�t
= − �S2 �Q2Γ(+ �Q2)− �S2 �Q3Γ(+ �Q3) (56)

for 0 < �h ≤ �dm, and

�Q1 = 2 �du − (1− �S1 + �T1) �dm − (− �S2 + �T2)− (1 + �S2 − �S1 + �T1 − �T2)�h (57)

�Q2 = − �du + (1− �S1 + �T1)(1 + γ
−1) �dm − γ−1(− �S2 + �T2)− γ−1(1 + �S2 − �S1 + �T1 − �T2)�h

(58)

�Q3 = − �du − γ−1(1− �S1 + �T1) �dm + (1 + γ
−1)(− �S2 + �T2) + (1 + γ

−1)(1 + �S2 − �S1 + �T1 − �T2)�h
(59)

d�h

d�t
= �Q1 + �Q2 + �we (60)

�h
d �T1

d�t
= �Ka( �T

∗ − �T1)− �T1 �Q1Γ(+ �Q1)− �T1 �Q2Γ(+ �Q2) + ( �T2 − �T1) �we (61)

�h
d �S1

d�t
= − �S1 �Q1Γ(+ �Q1) + (1− �S1) �Q2Γ(+ �Q2) + (1 + �S2 − �S1) �we (62)

(1− �h)d
�T2

d�t
= − �T2 �Q3Γ(+ �Q3) (63)

(1− �h)d
�S2

d�t
= − �S2 �Q3Γ(+ �Q3) (64)

for �dm ≤ �h ≤ 1. Here,

�we = −(1−mc)
�Ka( �T

∗ − �T1)

(1 + �S2 − �T2)− ( �S1 − �T1)
. (65)
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2.4 New Layer Formation

In laboratory experiments, it was observed that a new layer of low salinity water formed on
top after a convective overturning (Whitehead, pers. comm.). In order to reproduce this
phenomenon and resulting oscillations, we derive a necessary condition for this process to
occur.

Fresh water ßowing in from the top tube tries to form a new layer above the well-mixed
thick layer of temperature �T2 and salinity 1 + �S2 after a convective adjustment, or the
interface reaching the bottom. Since the upper layer thickness is �h = 0 then, the volume
ßux �Q1 is

�Q1 = �du − �T2 + �S2 . (66)

A new layer is formed on top with a thickness of

�ho = �Q1∆�t (67)

after one time step ∆�t. However, the new layer is quickly cooled by the surface heat loss,
�Ka �T

∗, and becomes denser. From the heat balance equation, an increase in the density of
the new layer after one time step is

∆�ρ1 = −
�Ka �T

∗∆�t
�Q1∆�t

= −
�Ka �T

∗
�Q1

. (68)

To maintain static stability after the cooling,

∆�ρ1 = −
�Ka �T

∗
�Q1

< 1 + ( �S2 − �T2) . (69)

Thus, the necessary condition for �Q1 to prevent convective overturning is

�Q1 > −
�Ka �T

∗

1 + ( �S2 − �T2)
. (70)

Note that this condition is independent of the size of the time step. If this is not
satisÞed, the new layer becomes denser than the thick layer below, leading to another
convective overturning. However, as the volume ßux �Q1 progressively increases due to an
increase in the density of the whole layer, the cooling of the thicker new layer decelerates.
At some point, the above condition may be satisÞed and the upper layer starts to grow
again.

2.5 Steady-state Solutions

Numerous calculations were performed over varieties of parameter ranges and sensitivity of
the model to dimensionless parameters were investigated. Calculations were initiated from
�T2 = �S2 = �S1 = �T1 = 0 and �h = �du with no ßow at each tube.
Figure 2 shows the sensitivity of the model to the depth �dm. The inclusion of entrain-

ment results in drastic changes in the equilibrium states. This can be compared with no
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Figure 2: Regime diagrams for the three-tube model with entrainment at �Ka = 0.5 and
�du = 0.03 for (a) γ = 0.05 and (b) γ = 1.0.

entrainment case illustrated in Fig. 11. When the cooling is weak, an equilibrium state
with the interface above the middle-tube exists independent of γ (indicated by �2 Layers
h < dm�). The upper layer temperature becomes �T

∗ and all ßow stops.
Since the entrainment leads to a faster upper layer deepening and faster increase in

upper layer density due to the salinity, the upper layer either reaches the bottom or becomes
statically unstable at much weaker cooling than without entrainment. The interface reaches
the bottom with forcing temperature �T ∗ as high as -0.52 with entrainment, whereas it
reaches the bottom only after �T ∗ is decreased below -1.06 without entrainment. For a small
γ, an equilibrium state with only one layer emerges as the cooling is enhanced (indicated by
�1 Layer�). For this regime, the upper layer either becomes statically unstable or reaches the
bottom, but the volume ßux �Q1 never accelerates enough to satisfy the necessary condition.
The small basin has inßows through the top and middle tube, and outßow through the
bottom tube. This corresponds to �deep convection� state in te Raa[5].

Equilibrium states depend upon the depth of the middle tube for a large γ. When
�dm is deep, the interface reaches the bottom once, but the model reaches an equilibrium
state with the interface above the middle tube (indicated by �R.B. 2 Layer h < dm�). On
the other hand, an �oscillatory ventilation� mode exists for shallower �dm. This regime is
a result of subtle interplay between entrainment, surface cooling, and ßow through the
three tubes. The upper layer thickness does not grow monotonously, but oscillates in the
�oscillatory ventilation�. This is contrasted with �cyclic convection�, where the convection
has a cyclic nature, but the upper layer grows monotonously. This regime appears as the
cooling temperature is further decreased. They are discussed more in detail in the next
section.

The model is also very sensitive to the upper layer depth of the large basin (Fig. 3).
Another interesting equilibrium state exists for relatively deep �du with forcing temperature
of −0.58 < �T ∗ < −0.46 for large γ and −0.76 < �T ∗ < −0.46 for small γ. The model
reaches equilibrium with the interface located in between the middle tube and the bottom
tube. Since the pressure difference at the bottom tube remains even after the model reaches
the equilibrium, the inßow through the bottom tube persists. Thus, the water ßows out
from the small basin only through the middle tube and no deep water is formed in this
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Figure 3: Regime diagrams for the three-tube model with entrainment at �Ka = 0.5 and
�dm = 0.5 for (a) γ = 0.05 and (b) γ = 1.0.

regime. A similar equilibrium state exists for three-tube model without entrainment, but
the pressure difference at the bottom vanishes completely and the ßow through the bottom
tube stops ( �Q3 = 0) when the equilibrium is reached. The time evolution of this regime is
also discussed in the next section.

2.6 Time-dependent Solutions

For certain parameter range, very interesting oscillations are obtained (Fig.4), which do not
exist in the model without entrainment (upper layer variables and thickness are set to zero
in Þgures, when there is only one active layer after reaching the bottom or the convective
adjustment). At �t = 40, the interface reaches the bottom. As the volume ßux �Q1 becomes
large and satisÞes the necessary condition (at �t = 41), the upper layer starts to grow again.
Although �ρ1 initially increases, it begins to decrease after �Q2 becomes negative, and the
salinity source at the mid-depth is lost. Then, �Q3 (> 0) becomes larger than �we, and the
upper layer starts to become shallower. This is possible because the upper layer grows
rapidly without increasing its density much, and the integrated mass above the bottom
tube; the entrainment leads to faster deepening but only redistributes the mass within the
small basin.

The inßow at the bottom tube ( �Q3 > 0) causes both �T2 and �S2 to increase, and since the
temperature increase is faster, �ρ2 decreases. This in turn makes the density difference �ρ2−�ρ1
smaller, leading to an acceleration of the entrainment. The increased rate of entrainment
results in an increase in �S1 and �ρ1, which leads to further decrease in the density difference
and acceleration of the entrainment process. When �we becomes larger than �Q3 (at �t = 142),
the upper layer starts to grow again. Then, it reaches the bottom (at �t = 168) and the
whole cycle repeats itself.

A self-sustained �cyclic convection� is also possible (Fig. 5). We start our description
of this oscillation from �t = 4.3, when the upper layer starts to grow. The upper layer
temperature �T1 decreases rapidly due to the surface cooling, while the salinity �S1 increases
slowly due to the entrainment. When the interface descends below the middle tube at �t = 5,
the warm and salty water ßows into the upper layer of the small basin ( �Q2 > 0), causing �T1
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Figure 4: Time evolution of temperature, salinity, density, upper layer thickness, entrain-
ment velocity, and ßow rate at �Ka = 0.5, �du = 0.03, �dm = 0.25, �T

∗ = −0.54, and γ = 1.0.

to initially increase and �S1 to increase steadily. At �t = 7.8, the interface reaches the bottom
and we now have one layer state in the small basin. Although the necessary condition for
the new layer formation is not satisÞed in the beginning, the density of the whole layer
and the ßow rate �Q1 gradually increase. Finally, the necessary condition for stable layer
initiation is satisÞed and the newly formed layer starts to grow from �t = 8.1. The �cyclic
convection� is also seen in the three-tube model without entrainment and the two-tube
mode (see Appendeces). However, the salinity plays no role in the �cyclic convection� of the
two-tube model.

Although it shows no oscillatory behavior, the equilibrium state with the interface in
between the middle tube and the bottom tube shows very interesting features (Fig. 6),
which cannot be obtained without the entrainment process. Until the interface reaches the
middle tube (at �t = 6), the outßow at the middle tube and the bottom tube have the same
magnitude. After the interface descends below the middle tube, the outßow through the
middle tube accelerates, while the ßow at the bottom tube reverses (at �t = 8). As the model
approaches the equilibrium, the inßow through the bottom tube �Q3 and the entrainment
velocity �we balance each other.

3 Comparison with Laboratory Experiments

The number of laboratory experiments is still limited, but we believe that it is worthwhile
to make some comparison with the theoretical results obtained in the present study. The
experimental set up is identical to the box model used in this study. The middle tube was
placed at �dm = 0.5, and the surface fresh water layer of thickness �du = 0.05 was maintained
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Figure 5: Time evolution of temperature, salinity, density, upper layer thickness, entrain-
ment velocity, and ßow rate at �Ka = 0.5, �du = 0.03, �dm = 0.3, �T

∗ = −1.0, and γ = 1.0.
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Figure 6: Time evolution of temperature, salinity, density, upper layer thickness, entrain-
ment velocity, and ßow rate at �Ka = 0.5, �du = 0.18, �dm = 0.5, �T

∗ = −0.54, and γ = 1.0.
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(a) (b)

(c)

Figure 7: Time evolution of the temperature and salinity obtained in laboratory experiments with
(a) �T ∗ = −22◦C, (b) �T ∗ = −30◦C, and �T ∗ = −18◦C (provided by Whitehead).

in the large basin.
Figure 7 shows time evolution of the density contributions of temperature and salinity

at different forcing temperature. All three experiments are similar to the behavior of �cyclic
convection�. For each cycle, the temperature at the top initially decreases due to the surface
cooling. However, the temperature and salinity increase afterward due to the entrainment.
When the density stratiÞcation becomes unstable, a convective overturning occurs and
another cycle starts.

The experimental results further suggest that the period becomes shorter as the surface
forcing is enhanced; the period is 40000 seconds for �T ∗ = −18◦C, 7500 seconds for �T ∗ =
−22◦C, and 2200 seconds for �T ∗ = −30◦C. This is qualitatively consistent with our box
model result (Fig. 8). The period becomes shorter, because the inßow through the top tube
is larger and the entrainment velocity is faster when the surface forcing is enhanced.

Although an upside-down version of the three-tube model was used (heating is at the
bottom and a layer of salty water is maintained at the bottom of the large basin) for practical
reasons, experiments in te Raa[5] contain the same physics. Hence, more comparison are
made with the present theory. In her experiments, the middle tube was also placed at
dm = 0.5, and the bottom salty water layer of thickness du = 0.033 was maintained in the
large basin. From experiments, it was determined that �Ka = 1.2 and γ = 0.004.

Our box model successfully explains some of the unexplained phenomena in the experi-
ment. First, the mechanism for the shift in ßow regime as the surface forcing is strengthened
was unknown. In order to clarify this transition, we made a regime diagram of �T ∗ and γ
(Fig. 9). We decided to vary γ in the regime diagram since γ seems to be the most uncertain
value derived from the laboratory experiments. When γ is about 0.15, the present model
successfully reproduces this shift at �T ∗ = −1.3. The shift itself occurs, because it becomes
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more difficult to satisfy the necessary condition (70) as the surface forcing is enhanced. The
volume ßux �Q1 slowly increases with the strengthening forcing for small γ.

In addition, a reason for not being able to Þnd the shallow convection state, or �2 Layers
h < dm� mode, is also clear from Fig. 9 . The shallow convection state exists only when
�T ∗ > −0.50 in the model with entrainment, whereas in the laboratory experiments of te
Raa[5], | �T ∗| was set between 0.8 and 1.7. If the entrainment is excluded from the box model,
the existence of the shallow convection state is predicted in this forcing temperature range.
Therefore, this gives an additional evidence that the entrainment is a crutial process here.

However, the period of oscillation in laboratory experiments, especially when the cooling
is weak, is much longer in the experiments than in the box model theory. Also, the value
of γ suggested from this study is much larger than the experimentally determined value
of te Raa[5]. One possible reason for these inconsistencies is the linear ßow relation we
used in our box model; it may not correctly explain the ßow through the three tubes in
the laboratory experiments. Although the linear equation of state is used in this study,
nonlinearity certainly becomes important as the temperature and salinity varies over a
large range. Also, the double diffusive processes may play an important role, since the
small basin is in the �diffusive-layering� regime (cold and fresh water over warm and salty
water).

4 Conclusions

We have found two distinct modes for the oscillatory behaviors of the simpliÞed three-
tube box model. Two new processes are included in the box model in the present study
comapared with the past studies[4],[5].

First, the necessary condition for a new layer formation has been found. It applies
after the convective adjustment occurs or the interface reaches the bottom. This allows the
model to have �cyclic convection�. Then, the entrainment process is parameterized, where
a Þxed percentage of potential energy input by the surface cooling is used to entrain water
from the lower layer. This introduces two new equilibrium states to the model. One is the
equilibrium state with the interface located in between the middle tube and the bottom
tube. This has inßows at the top and bottom tube and an outßow at the middle tube. The
other is an �oscillatory� mode where the upper layer thickness does not grow monotonically,
but oscillates. This regime is a result of subtle interplay between entrainment, surface
cooling, and ßow through the three tubes.

The current result may represent some aspects of the thermohaline circulation in the
real ocean. As suggested by Fig. 3, a thickening in the surface fresh water layer outside
the deep convection site may shut down the deep water formation without changing the
heat ßux (for small γ at about −0.7 < �T ∗ < −0.5). For thick fresh water layer, a �2 Layers
h > dm� mode with inßows at the top and bottom tube and an outßow at the middle
tube exists. On the other hand, we have a �1 Layer� mode with inßows at the top and
middle tube and an outßow at the bottom tube for thin fresh water layer. This feature is
also simulated in the past coupled GCM studies[11]. When freshwater was released to the
North Atlantic Ocean (between 50◦N and 70◦N), the thermohaline circulation weakened
and became shallower, allowing deep inßow of Antarctic bottom water.

Although the box model presented in this paper is very simple, this study suggests the
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important roles played by the freshwater layer above the halocline and salty water below
it. Also, it was shown that it is important to take entrainment process into account even
in simple box models. Future studies should shed light on the role played by the double
diffusive process and nonlinearity in equation of state.
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Appendix A: Two-tube Model without Entrainment

Formulation

In this Appendix, a two-tube model is constructed by removing the middle tube. By
comparing reslts obtained here with results in section 2, the importance of the middle tube
will become more clear. Since we want to concentrate on the role played by the middle
tube, the entraninment process is omitted from the two-tube model.

Using same assumptions, the volume ßuxes are

Q1 = −Q2 = −γCρogD
γ + 1

[(β(So + S2 − S1) + α(T1 − T2)) h
D
− βSodu

D
+ (αT2 − βS2)] (71)

the upper layer mass conservation equation is

A
dh

dt
= Q1 (72)

and the heat and salt balance equations are

Ah
dT1
dt

=
Ka
ρocp

(T ∗ − T1)− T1Q1Γ(+Q1) (73)

Ah
dS1
dt

= −S1Q1Γ(+Q1) (74)

A(D − h)dT2
dt

= −T2Q2Γ(+Q2) (75)

A(D − h)dS2
dt

= −S2Q2Γ(+Q2) . (76)

Using the following transformations

�Qi =
Qi
Qs

, �Ti =
αTi
βSo

, �du =
du
D
, �Si =

Si
So
, �T ∗ =

αT ∗

βSo
, �t =

AD

Qs
t , �Ka =

Ka
ρocpQs

(77)

where

Qs =
γCρogβSoD

γ + 1
(78)

the nondimensionalized equations are

�Q1 = − �Q2 = −[(1 + �S2 − �S1 + �T1 − �T2)�h− �du + ( �T2 − �S2)] (79)
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d�h

d�t
= �Q1 (80)

�h
d �T1

d�t
= �Ka( �T

∗ − �T1)− �T1 �Q1Γ(+ �Q1) (81)

�h
d �S1

d�t
= − �S1 �Q1Γ(+ �Q1) (82)

(1− �h)d
�T2

d�t
= − �T2 �Q2Γ(+ �Q2) (83)

(1− �h)d
�S2

d�t
= − �S2 �Q2Γ(+ �Q2) . (84)

Thus, we have three dimensionless parameters for this simple model.
The necessary condition for a new layer formation is

�Q1 > −
�Ka �T

∗

1 + ( �S2 − �T2)
. (85)

However, there is an upper bound for the volume ßux �Q1, which depends on the value of
�T ∗ and �du:

�Q1 < �du − �T ∗ (86)

or

�Q1 < �du − �T ∗ − 1 (87)

in case the small basin loses all of its salinity. This is possible when the upper layer reaches
the bottom or after an inÞnite number of convective adjustments takes place. Hence, the
new layer cannot form when

�du − �T ∗ < −
�Ka �T

∗

1− �T ∗ + �S2
(88)

or

�du − �T ∗ − 1 < �Ka (89)

for no salinity.
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Figure 10: Regime diagrams for the the two-tube model with �Ka = 0.5.

Steady-state Solutions

Equilibrium states of the model is discussed for progressively stronger cooling. When the
cooling is weak, the model reaches equilibrium before the interface reaches the bottom. The
upper layer temperature �T1 is quickly cooled and becomes �T

∗. The volume ßux Q1 and Q2
become zero and the equilibrium depth of the upper layer is

�heq =
�du

�T ∗ + 1
. (90)

Since there is no interfacial mixing in this model, we have assumed that �T2 = �S2 = �S1 = 0.
In order to reach equilibrium before reaching the bottom (�heq < 1),

�T ∗c + 1 > �du (91)

For the forcing temperature below �T ∗c, the interface reaches the bottom before reaching
the equilibrium state. However, if the cooling is not strong enough to strengthen the ßow
to satisfy necessary condition, it is not possible to form a stable new layer. Now, we obtain
a new equilibrium state with one fresh layer of temperature �T ∗, and the volume ßux as
predicted from Eq.(87). Finally, a third �cyclic convection� regime can exist as the forcing
temperature is decreased further. The above mentioned three regimes in the two-tube model
can be summarized by Fig. 10.

Appendix B: Three-tube Model without Entrainment

Equilibrium states with different cooling temperature are investigated using different values
of middle-tube depth �dm (Fig.11). Equilibrium states have no γ-dependence at forcing
temperature �T ∗ below -1.06. At weak cooling ( �T ∗ < −0.72), the model has an equilibrium
state with the interface above the middle tube, but when the cooling is enhanced, the model
reaches an equilibrium state with the interface between the middle tube and the bottom
tube. For small γ, an equilibrium state with 1 layer emerges, when cooling is further
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Figure 11: Regime diagrams for the three-tube model without entrainment at �Ka = 0.5 and
�du = 0.03 for (a) γ = 0.05 and (b) γ = 1.0.
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Figure 12: Regime diagrams for the three-tube model without entrainment at �Ka = 0.5 and
�dm = 0.5 for (a) γ = 0.05 and (b) γ = 1.0.

enhanced. On the other hand, �cyclic convection� regime appears for large γ; with larger
γ values, the volume ßux at the top tube becomes larger, so that it is easier to satisfy the
necessary condition (70).

Similarly, three-tube model is sensitive to the fresh water layer thickness of the large
basin (Fig. 12). Compared with shallow �du, the interface reaches the middle tube at warmer
�T ∗, but the equilibrium states of �cyclic convection� or �1 Layer� emerges at colder �T ∗ for
deeper �du.
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