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1 Introduction

The understanding of the unsteady separation of high-Reynolds number flow past a pointed
edge is of interest to several fluid-mechanical problems, including flow past an aircraft wing
or flow past a coastline. Much work has been done on the special case of flow past a semi-
infinite line, notably by Rott [1], but much of that work has not been extended to less sharp
points.

In this paper, we consider a two-dimensional approximation of high Reynolds number
vortex shedding from a corner initially at rest in a motionless, unbounded, incompressible
fluid. If the corner is sufficiently sharp, that is if it has exterior angle greater than π,
vorticity must be shed when the fluid begins to move in order to maintain regularity at the
edge. We consider a flow with a vortex sheet emanating from the corner at t = 0. As it
moves away from the corner, the vortex sheet rolls up at its end producing an effect that is
approximately that of a concentrated vortex. Therefore, we model the shed vorticity by a
single point vortex.

The vortex created at t = 0 moves in the flow created by itself, it’s image vortex, and the
forcing flow. The magnitude of the vortex may not decrease because this would represent
the unraveling of the sheet. Therefore, if it reaches some maximum at t = t′, a new vortex
must be created in order to maintain regularity at the corner. The magnitude of the first
vortex will remain constant while the the magnitude of the second vortex increases and both
move in the flow created by the forcing and both vortices and their images. This process
could continue ad infinitum each time the most recently created vortex reaches a maximum.

2 Mathematical Formulation

Let us consider a body with a (not necessarily bounded) boundary C in the physical plane,
which we shall denote as the z-plane with z = x+iy with x, y ∈ Re. Now suppose F : z → ζ
is a conformal mapping from the exterior of C in the physical plane to the plane Im(ζ) > 0.

We create this image plane because we expect to be able to satisfy the boundary con-
dition at the body more easily in this plane than in the physical plane. In the physical
plane, we require that the velocity be parallel to the boundary. In the mapped plane, this
is equivalent to

ImΦ′
∣

∣

∣Imζ=0 = 0. (1)
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Since a point vortex has a logarithmic singularity, we require

Φ ∼ Γi

2π
log(ζ − ζ0) + const. (2)

near ζ = ζ0, where Γ is the strength of the vortex. To satisfy the boundary condition, we
place an “image vortex” with strength −Γ at position ζ = ζ0 within the body in the lower
half plane. The potential of the two vortices is

Φ (ζ) =
iΓ

2π

[

log(ζ − ζ0) − log(ζ − ζ0)
]

, (3)

which satisfies the boundary condition (1).
To calculate the potential in the ζ-plane due to n vortices with strengths Γ1, Γ2, . . . , Γn

at positions ζ1, ζ2, . . . , ζn respectively, we need only superimpose the potentials due to the
vortices and their images. Therefore, the potential including n vortices and the forcing flow,
U (t), is

Φ (ζ) = U (t) ζ +
i

2π

n
∑

j=1

Γn

[

log(ζ − ζj) − log(ζ − ζj)
]

. (4)

Therefore, since Φ (ζ) is analytic in the upper half plane and F is a conformal map,
Φ(F−1 (z)) is the complex potential in the physical plane which is created by n vortices
at z1 = F (ζ), z2 = F (ζ), . . . , zn = F (ζ), their images, and a uniform flow. Thus, we can
write the complex velocity in the physical plane, in terms of the variables in the ζ-plane.
We have

dΦ

dz
=

dζ

dz
Φ′ (ζ) (5)

=
1

F ′ (ζ)
Φ′ (ζ) . (6)

Without loss of generality, we can choose the center of coordinates of the z-plane and
F so that the corner in the physical plane is at z = 0 and so that F (0) = 0. Therefore, if
F ′ (0) = 0, the only way to make the velocity at the origin nonsingular is to force Φ′ (0) = 0.
This condition is known as the Kutta condition and can be expressed as

U (t) +
i

2π

n
∑

j=1

Γj

[

1

ζj

− 1

ζj

]

= 0. (7)

As each new vortex is created, n increases. Note that this condition only depends on
variables defined in the ζ-plane.

We now derive the equation of motion for the vortices in the flow. Recall, that the
velocity near a vortex has a singular part due to its strength and a nonsingular part due to
the flow and all of the other vortices and images. Saffman [2] shows that the balance of the
pressure force on a small circle around the vortex and the change of momentum through the
circle requires that the vortex move with the nonsingular part of the flow. In the physical
plane that means

dzj

dt
= lim

z→zj

d

dz

[

Φ
(

F−1 (z)
)

− iΓj

2π
log (z − zj)

]

= lim
ζ→ζj

1

F ′ (ζ)

d

dζ

[

Φ (ζ) − iΓj

2π
log (F (ζ) − F (ζj))

]
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Removing the terms which are not singular at ζ = ζj and combining the singular logarithms,
we have

dzj

dt
=

1

F ′ (ζj)







U (t) +
i

2π

n
∑

k 6=j

[

Γk

ζj − ζk
− Γk

ζj − ζl

]

− iΓj

2π
(

ζj − ζj

) − iΓj

2π
lim
ζ→ζj

d

dζ
log

(

F (ζ) − F (ζj)

ζ − ζj

)







(8)
Finally, we expand F (ζ) in a Taylor series around ζj to find that

log

(

F (ζ) − F (ζj)

ζ − ζj

)

= log

(

F ′ (ζj)

[

1 +
F ′′(ζj)

2F ′ (ζj)
(ζ − ζj) + o

(

(ζ − ζj)
2
)

])

= log F ′ (ζj) +
F ′′(ζj)

2F ′ (ζj)
(ζ − ζj) + o

(

(ζ − ζj)
2
)

(9)

Substituting equation (9) into equation (8) reveals that

dzj

dt
=

1

F ′ (ζj)







U (t) +
i

2π

n
∑

k 6=j

[

Γk

ζj − ζk
− Γk

ζj − ζl

]

− iΓj

2π
(

ζj − ζj

) − iΓj

4π

F ′′(ζj)

F ′(ζj)







. (10)

The last term in equation (10) is known as the Routh correction and takes into account the
self advection of the vortex. For convenience, we will study the evolution in the ζ-plane,
so we convert equation (10) by conjugating both sides and multiplying on both sides by
dζj/dzj = 1/F ′(ζj) to find that for each 1 ≤ j ≤ n

dζj

dt
=

1

|F ′ (ζj)|2







U (t) − i

2π

n
∑

k 6=j

[

Γk

ζj − ζk

− Γk

ζj − ζk

]

− iΓj

2π
(

ζj − ζj

) +
iΓj

4π

F ′′(ζj)

F ′(ζj)







.

(11)
For completeness, we mention here that some authors have used equations other than

equation (11) to study the shedding of vortices in two-dimensional flows. Brown and Michael
[3] include a correction term on the left-hand side of equation (11) which is proportional to
dΓn/dt to balance the force on a hypothetical line of vorticity stretching from the corner to
the vortex, which feeds the vortex allowing it to grow in strength. Howe [4] also considers
a line of vorticity, but he further requires that the correction term account for balancing
the torque on the sheet. We will discuss Brown and Michael’s equation briefly in section
3, but will not consider Howe’s equation because it is significantly more complicated and
even according to his own results only adds a very small correction.

3 The Evolution of the First Vortex

As discussed in Section 2, at t = 0, i.e. just as the fluid starts moving, we expect a vortex
to be shed from the corner in the physical plane. Since there is only one vortex in the fluid
initially, we need only consider equation (11) for j = n = 1 where Γ1 allows the Kutta
condition, i.e. equation (7), to be satisfied. Solving equation (7) for Γ1 yields

Γ1 = 2πi
|ζ1|2

ζ1 − ζ1

U (t) . (12)
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Therefore, we have

dζ1

dt
=

1

|F ′ (ζ1)|2

[

U (t) − iΓ1

2π
(

ζ1 − ζ1

) +
iΓ1

4π

F ′′(ζ1)

F ′(ζ1)

]

=
U (t)

|F ′ (ζ1)|2

[

1 − |ζ1|2

4 (Imζ1)
2 + i

F ′′(ζ1)

F ′(ζ1)

|ζ1|2
4Imζ1

]

, (13)

with the initial condition that ζ1 (0) = 0.

3.1 An Exact Solution for the Infinite Wedge

To proceed, we must choose the boundary in the physical plane and calculate the conformal
map F . An infinite wedge with its tip at z = 0 is of particular interest because in the
region very near the tip, any corner is approximated by the infinite wedge. Therefore, let
us choose the boundary to be an infinite wedge with exterior angle απ that is bisected by
the imaginary axis. The corresponding conformal map is therefore given by

F (ζ) = e−i(α−1) π
2 ζα, (14)

so that equation (13) becomes

dζ1

dt
=

U (t)

α2 |ζ1|2(α−1)

[

1 − |ζ1|2
4(Imζ1)2

+ i
(α − 1) ζ1

4Imζ1

]

. (15)

Writing ζ = ξ + iη with ξ, η real, we separate real and imaginary parts in equation (15) to
find coupled equations for dξ1/dt and dη1/dt. That is

dξ1

dt
=

U (t)

α2
(

ξ2
1 + η2

1

)α−1

[

1 − α

4
− ξ2

1

4η2
1

]

, (16)

and
dη1

dt
=

U (t)

α2
(

ξ2
1 + η2

1

)α−1

[

α − 1

4

ξ1

η1

]

. (17)

To solve equations (16) and (17), we note that the only explicit time dependence occurs
in a prefactor that multiplies the right side of both equations. Therefore, by dividing
equation (16) by equation (17) we are left with a differential equation for ξ1 as a function
of η1. Solving this equation with the initial condition ξ(η = 0) = 0 yields gives us

ξ1 = ±
√

4 − α

α
η1. (18)

Now, we can solve for η1(t) in equation (17) by substituting equation (18) for ξ1 recalling
that η1 ≥ 0. This yields an exact solution for η1, which in turn gives us an exact solution
for ζ1. We find

ζ1 (t) =

[

(α − 1) (2α − 1)

4α5/2

∣

∣

∣

∣

∫ t

0
U (τ) dτ

∣

∣

∣

∣

]

1
2α−1

(√
α

2
i + sign

(
∫ t

0
U (τ) dτ

)
√

4 − α

2

)

.

(19)
This indicates that the first vortex moves away from the origin along a ray in the ζ-plane.
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3.2 Preparing to Shed the Second Vortex

As discussed in Section (2), we expect the vortex to continue along its path as determined
by equation (19) until such time that the magnitude of its strength reaches a maximum.
From equation (12), we compute

Γ1 (t) =
2πU (t)√

α

[

(α − 1) (2α − 1)

4α5/2

∣

∣

∣

∣

∫ t

0
U (τ) dτ

∣

∣

∣

∣

]

1
2α−1

. (20)

Without loss of generality, we can take U to be nonnegative for small t since replacing U
with −U and ξ1 with −ξ1 leaves equations (16) and (17) unchanged. With this assumption,
upon differentiating equation (20) by t, we see that Γ1 reaches a local extremum at t = t̂ if
and only if

U ′
(

t̂
)

∫ t̂

0
U (τ) dτ +

U2
(

t̂
)

2α − 1
= 0. (21)

3.3 An Exact Solution with the Brown and Michael Model

As discussed in Section 2, Brown and Michael [3] added a correction term to equation (10)
to account for an unbalanced force on a vortex sheet leading up to the vortex coming out
of the origin. For the first vortex, the corrected equation is

dz1

dt
= −z1

1

Γ1

dΓ1

dt
+

1

F ′ (ζj)

{

U (t) − iΓj

2π
(

ζj − ζj

) − iΓj

4π

F ′′(ζj)

F ′(ζj)

}

. (22)

Cortelezzi [5] gives an exact solution for the infinite wedge in the case that α = 2. However,
we can solve equation (22) for any value of α, 1 < α ≤ 2. In terms of ζ1 equation (22) can
be rewritten

αζ1
α−1

ζ̇1 = −ζ1
α

(

U̇

U
+

ζ̇1

ζ1

+
ζ̇1

ζ1
− ζ̇1 − ζ̇1

ζ1 − ζ1

)

+
U (t)

αζα−1
1

(

1 +
|ζ1|2

(

ζ1 − ζ1

)2 +
α − 1

2

ζ1

ζ1 − ζ1

)

.

(23)
Changing variables by setting ζ = ρeiθ reduces equation (23)to equations for ρ̇ and θ̇. They
are

θ̇ =
α − 4 sin2 θ

4α2 sin θ

U (t)

ρ2α−1
, (24)

and

ρ̇ = − ρ

α + 1

U̇

U
+

α − 1

α2 (α + 1)

U cos θ

ρ2α−2
. (25)

We now solve equations (24) and (25) using the following change of variables:

λ = U (2α−1)/(α+1)ρ2α−1, µ = cos θ, t̃ =
∫ t
0 U3α/(α+1) (τ) dτ. (26)

After some algebra, we have

dλ
dt̃

= (2α−1)(α−1)
α2(α+1)

µ, dµ
dt̃

= 4−α−4µ2

4α2λ
(27)
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with the initial conditions that λ(0) = 0 and µ(0) = µ0. Combining equations (27) to form
a single differential equation for u = λ2 gives

d2u

dt̃2
=

(2α − 1) (α − 1) (4 − α)

2α4 (α + 1)
− α (2 − α)

(2α − 1) (α − 1)

1

u

(

du

dt̃

)2

. (28)

To solve this equation, we set du/dt̃ = f(u) since there is no explicit time dependence.
After some manipulation, we find that

λ
(

t̃
)

= ±(2α − 1) (α − 1)

2α2 (α + 1)

√
4 − αt̃ (29)

and that

µ = ±
√

4 − α

2
. (30)

Putting all of this together, we find that the exact solution for the first vortex with the
Brown and Michael correction is

ζ1 =

(

(2α − 1) (α − 1)
√

4 − α

2α2 (α + 1)

)

1
2α−1

(

1

U (t)

)
1

α+1
(
∫ t

0
U (τ)3α/(α+1) dτ

)

1
2α−1

(

±
√

4 − α

2
+ i

√
α

2

)

.

(31)
Therefore,

Γ1 =
2π√
α

(

(2α − 1) (α − 1)
√

4 − α

2α2 (α + 1)

)

1
2α−1

(

U
α(2α−1)

α+1

∫ t

0
(U(τ))

3α
α+1 dτ

)

, (32)

which implies that the first vortex increases in strength until t = t1 satisfies

α (2α − 1)

α + 1
U ′ (t1)

∫ t1

0
(U(τ))

3α
α+1 dτ + U (t1)

4α+1
α+1 = 0. (33)

This agrees with the solution found by Cortelezzi for α = 2. In addition, equation (31)
agrees with our solution without the vortex sheet, equation (19), in its angle of departure.

4 The Second Vortex for the Infinite Wedge

If for some t1 > 0, equation (21) is satisfied, a second vortex will be shed from the corner
of the infinite wedge, and the strength of the first vortex will be fixed for all times t ≥ t1.
For example, if U = sin t, t1 = cos−1 (−1/2α). The system of equations given by (11) with
n = 2 is

dζ1

dt
=

1

α2 |ζ1|2α−2

{

U (t) − i

2π

[

Γ2

ζ1 − ζ2

− Γ2

ζ1 − ζ2

]

− iΓ1

2π
(

ζ1 − ζ1

) + (α − 1)
iΓ1

4πζ1

}

, (34)

and

dζ2

dt
=

1

α2 |ζ2|2α−2

{

U (t) − i

2π

[

Γ1

ζ2 − ζ1

− Γ1

ζ2 − ζ1

]

− iΓ2

2π
(

ζ2 − ζ2

) + (α − 1)
iΓ2

4πζ2

}

, (35)
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with the initial conditions that ζ1 is continuous at t1 and that ζ2 (t1) = 0.
From the Kutta condition, we can solve for Γ2 yielding

Γ2 = 2πi
|ζ2|2

ζ2 − ζ2

[

U (t) +
iΓ1

2π

(

1

ζ1

− 1

ζ1

)]

. (36)

Plugging equation (36) into equation (35), we find

dζ2

dt
=

1

α2 |ζ2|2α−2

{

U (t) − i

2π

[

Γ1

ζ2 − ζ1

− Γ1

ζ2 − ζ1

]

+

[

U +
iΓ1

2π

ζ1 − ζ1

|ζ1|2
]

[

− |ζ1|2

4 (Imζ2)
2 + i (α − 1)

ζ2

4Imζ2

]}

.

(37)
Since 0 < |ζ2| ¿ |ζ1 (t)| for t − t1 ¿ 1, we can expand the second term inside the braces in
equation (37). Defining

K1 (t) = U +
iΓ1

2π

ζ1 − ζ1

|ζ1|2
, (38)

and

ε2 =
1

α2 |ζ2|2α−2 , (39)

we are able to write

dζ2

dt
= ε2

{

K1 (t)

[

1 − |ζ2|2

4 (Imζ2)
2 + i

(α − 1) ζ2

4Imζ2

]

− 2Re(g1)ζ2 − 2Re(h1)ζ2
2
+ o(ζ3

2 )

}

, (40)

where
g1 = iΓ1

2πζ2
1
, h1 = iΓ1

2πζ3
1
. (41)

4.1 The Size of the Terms in Equation (40)

Recall that we defined

K1 (t) = U +
iΓ1

2π

ζ1 − ζ1

|ζ1|2
(42)

for all times t. From the Kutta condition, K1 ≡ 0 for all t < t1. Therefore,

d

dt
K1 = U ′ +

iΓ1

2π

d

dt

(

ζ1 − ζ1

|ζ1|2
)

+
iΓ′

1

2π

ζ1 − ζ1

|ζ1|2
= 0 (43)

for all t < t1. However, t1 is defined to be the location of the first local extremum of Γ1 so
that Γ′

1 (t1) = 0. Therefore,

lim
t→t+1

dK1

dt
(t) = U ′ (t1) +

iΓ1 (t1)

2π

d

dt

(

ζ1 − ζ1

|ζ1|2
)∣

∣

∣

∣

t=t1

= 0, (44)
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since U and ζ1 are continuous functions at t = t1. This means that the Taylor expansion of
K1 for t > t1 is of the form

K1 (t) =
k1

2
(t − t1)

2 + o
(

(t − t1)
3
)

, (45)

where

k1 = lim
t→t+1

d2K1

dt2
(t) (46)

is, in general, a nonzero constant.
Now if we suppose that ζ2 ∼ (t − t1)

β , equating exponents of the leading terms on both
sides of equation (40), we find that

β − 1 = min(2, β) − 2β (α − 1) (47)

so that

β =

{ 1
2α−2 α ≥ 5

4
3

2α−1 α ≤ 5
4 .

(48)

4.2 Case 1: α > 5/4

From equation (48), we see that if α > 5/4, then to leading order in (t − t1), equation (40)
is

dζ2

dt
= −2Re(g1 (t1))

α2 |ζ2|2α−2 ζ2. (49)

Therefore, setting ζ2 ∼ a (t − t1)
1/(2α−2), we find an equation for a:

a

2α − 2
= −2

a

α2 |a|2α−2 Re(g1 (t1)). (50)

Solving for a, we find

a =

(

4α − 4

α2
|Re(g1 (t1))|

)2α−2
√

sign(−Re(g1(t1))). (51)

Therefore, if Re (g1) > 0,

ζ2 ∼ i

(

4α − 4

α2
|Re(g1 (t1))|

)2α−2

(t − t1)
1/(2α−2) (52)

and

Γ2 ∼ π
k1

2

(

4α − 4

α2
|Re(g1 (t1))|

)2α−2

(t − t1)
2+ 1

2α−2 . (53)

However, if Re (g1 (t1)) < 0, we would have a contradiction because the vortex would be
trying to stay on the wedge so that the boundary condition cannot be satisfied. Therefore,
we must determine sign (Re (g1)). We calculate,

sign (Re (g1)) = sign

(

iΓ1

2πζ2
1

)

= sign (Γ1) sign
(

Im
(

ζ2
1

))

. (54)
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We know that if signU > 0, then ζ1 is in the first quadrant so that ζ2
1 is in the upper half

plane; however, ζ1 is in the second quadrant if signU < 0, which implies that ζ2
1 is in the

lower half plane. Therefore, sign
(

Im
(

ζ2
1

))

= signU , and

sign (Re (g1)) = sign(Γ1)sign(U)

= (sign(U))2 > 0, (55)

which implies that the second vortex can always be released. Once the vortex moves away
from the singular point at the origin, the motion of both vortices can be analyzed by
numerically integrating equations (34) and (35).

4.3 Case 2: α < 5/4

Setting ζ2 = ξ2 + iη2, we see that equation (40) is, to leading order in (t − t1),

dζ2

dt
=

1

α2 |ζ2|2α−2

{

k1

2
(t − t1)

2

(

1 − α

4
− ξ2

2

4η2
2

+ (α + 1) i
ξ2

η2

)}

. (56)

This is equivalent to equation (15) with ζ1 replaced with ζ2 and U (t) replaced with
k2 (t − t1)

2 /2. Therefore,

ζ2 ∼
[

(α − 1) (2α − 1)

12α5/2
|k1| (t − t1)

3

]
1

2α−1
(√

α

2
i + sign (k1)

√
4 − α

2

)

, (57)

and

Γ2 ∼ πk1 (t − t1)
2

√
α

[

(α − 1) (2α − 1)

12α5/2
|k1| (t − t1)

3

]
1

2α−1

(58)

shortly after the second vortex is created. After it moves away from the origin, we can
again use numerical integration to explore the dynamics of the system.

5 More Vortices for the Infinite Wedge

Now suppose that at some t2 > t1, the magnitude of the second vortex reaches a maxi-
mum. If we again assume that, once this maximum is reached, the strength of the second
vortex is fixed, a third vortex must be shed from the origin to satisfy the Kutta condition.
Furthermore, under certain conditions which will be discussed in this section, this process
could repeat itself several (perhaps, infinitely many) more times. Therefore, for the rest of
the section let us suppose that n vortices have been released from the origin and they are
located at z1, z2, . . . , zn respectively in the physical plane (corresponding to ζ1, ζ2, . . . , ζn in
the image plane). We further assume that each of the ζj are nonzero and that there exist
times 0 < t1 < t2 < · · · < tn at which each of the n vortices have reached a maximum,
respectively. We now consider the dynamics as the next vortex is released, i.e. for t > tn.

Using equation (11) for a system of n + 1 vortices and equation (14) we have for the
newest vortex

dζn+1

dt
= εn+1

{

U (t) − i

2π

n
∑

k=1

[

Γk

ζn+1 − ζk

− Γk

ζn+1 − ζk

]

− iΓn+1

2π
(

ζn+1 − ζn+1

) + i
(α − 1) Γn+1

4πζn+1

}

,

(59)
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while for each j, 1 ≤ j ≤ n,

dζj

dt
= εj







U (t) − i

2π

n+1
∑

k 6=j

[

Γk

ζj − ζk

− Γk

ζj − ζk

]

− iΓj

2π
(

ζj − ζj

) + i
(α − 1) Γj

4πζj







, (60)

where we have defined, in agreement with section 4,

εl =
1

α2 |ζl|2α−2 (61)

for each l, 1 ≤ l ≤ n + 1. These equations must be solved with the initial conditions

ζn+1 (tn) = 0, Γn+1 (tn) = 0, (62)

for the new vortex and that each of the other vortices must move in a continuous manner,
holding their strength constant. From the Kutta Condition, i.e. equation (7) with n + 1
vortices, we can solve for Γn+1, finding

Γn+1 = 2πi
|ζn+1|2

ζn+1 − ζn+1

[

U (t) +
n
∑

k=1

iΓk

2π

(

1

ζk

− 1

ζk

)

]

. (63)

We can substitute equation (63) into equation (59) and expand the resulting equation
to leading order in ζn+1 since, for t − tn ¿ 1, ζn+1 ¿ ζj , for all 1 ≤ j ≤ n. The resulting
equation of motion is

dζn+1

dt
= εn+1

{

Kn (t)

[

1 − |ζn+1|2

4 (Imζn+1)
2 + i

(α − 1) ζn+1

4Imζn+1

]

− 2Re (gn) ζn+1 − 2Re (hn) ζn+1
2
+ o(ζ3

n+1)

}

,

(64)
with

Kn (t) = U (t) +

n
∑

k=1

iΓk

2π

ζk − ζk

|ζk|2
, (65)

and
gn =

∑n
k=1

iΓk

2πζ2
k

, hn =
∑n

k=1
iΓk

2πζ3
k

. (66)

Note that equation (64) has exactly the same form as equation (40). Furthermore, the same
reasoning used in section 4.1 to show that K1 ∼ (t − t1)

2 can be reapplied to show that

Kn (t) ∼ kn

2
(t − tn)2 (67)

for t − tn ¿ 1 with

kn = U ′ (tn) +
d

dt

(

n
∑

k=1

iΓk(tn)

2π

ζk − ζk

|ζk|2

)∣

∣

∣

∣

∣

t=tn

. (68)

Supposing that ζn+1 ∼ (t − tn)β , equating the exponents of the leading terms in equa-
tion (64) reveals that

β =

{ 1
2α−2 α ≥ 5

4
3

2α−1 α ≤ 5
4

(69)

as before.
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5.1 Revisiting α > 5/4

Following section 4.2, we find that setting ζn+1 ∼ a (t − tn)1/(2α−2) and substituting in
equation (64) gives us an equation for a which can be solved to give

a =

(

4α − 4

α2
|Re(gn (tn))|

)2α−2
√

sign(−Re(gn(tn))) (70)

which still leaves us with a contradiction if Re(gn(tn)) < 0. However, with more than two
vortices it is actually possible for this contradiction to manifest itself. In fact, for the infinite
line (α = 2), considered by Cortelezzi and others, and U = sin t, this contradiction arises
at t2, so that the third vortex cannot be shed. If we choose

U (t) =

{

2−2πτ
τ t + 2πτ−1

τ2 t2, t ≤ τ
1 + 1

10 cos(20πt), t > τ,
(71)

with τ = .075 following Cortelezzi [5], gn (tn) is always positive so that vortices can be shed
indefinitely.

5.2 Vorticity Dipoles

To handle the contradiction just discussed, we must consider what happens when vorticity
is held near the boundary. The contradiction arises because the newly shed vortex and
its image are at the same point in space when the vortex is on the boundary. Rott [1]
suggests that one possibility would be to consider a boundary layer of vorticity around the
body. A simpler idea is to treat the vortex and its image together as a vorticity dipole
with strength ~D chosen to be parallel to the boundary. However, this approximation has
a few complications. First, the strength of the dipole is not the same in the physical and
mapped planes so that the shedding condition either cannot be treated as only dependent on
variables in the mapped plane or does not correspond to the strength of the dipole reaching
a maximum. Second, there is some ambiguity as to which direction along the boundary the
dipole travels; that is, two possible trajectories appear to satisfy the Kutta condition at the
origin and the equations of motion. These complications have not been worked out yet and
will be the subject of future work.
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